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We take a closer look at the fundamental Casimir-Polder (CP) interaction between quantum particles and
dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in
the near-field, van der Waals regime the free-energy shift of a particle contains a thermal component that depends
exclusively on the excitation of the evanescent surface polariton (plasmon or phonon) modes. Our work makes
evident the link between particle surface interaction and near-field thermal emission and demonstrates how this
can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are
washed out as the distance from the surface increases. In the case of molecules or excited-state atoms, far-field
approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the
mean number of photons at the frequency of the atomic or molecular transition. Finally we present numerical
results for the CP interaction between Cs atoms and various dielectric surfaces with a single polariton resonance
and discuss the implications of temperature and retardation effects for specific spectroscopic experiments.
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I. INTRODUCTION

The Casimir-Polder (CP) interaction between a polarizable
quantum object (atom or molecule) and a surface arises from
quantum fluctuations in vacuum. It is an excellent candidate
for fundamental tests of cavity quantum electrodynamics
and is crucial for any experiments attempting to measure
non-Newtonian gravity interactions [1,2]. CP forces are also
relevant in physical chemistry, playing an important role in the
interpretation of physical phenomena such as atomic adsorp-
tion and desorption from hot surfaces or even surface chemistry
and catalysis. The continuous urge for miniaturization has led
to integrated devices, such as atom and molecule chips [3–6],
that are used for a variety of applications, and more recently,
tapered nanofibers were used to trap atoms at distances as small
as 200 nm away from the surface [7–9], where atom-surface
forces become exceedingly relevant. Novel trapping schemes
that exploit the complexity of the van der Waals (vdW)
potential of excited atoms have also been proposed [10].

The most basic description of the CP effect is that of a
classical dipole interacting with its surface induced image.
This approach is mostly valid in the vdW (z−3 law) regime,
but QED theory [11] revealed that when distances are larger
than the wavelength corresponding to atomic transition,
retardation effects scramble the interaction, giving a z−4

distance dependence. For excited-state atoms or molecules
an additional contribution [12,13] resembling the interaction
of an antenna with its own reflected field has to be considered
[14]. Thermal corrections to the CP force are analogous to the
blackbody-radiation-induced corrections to the well-known
Lamb shift [15]. In thermal equilibrium the problem has been
considered by several authors [16–18]. A novel behavior was
predicted when the surface and the vacuum are at different
temperatures [19].

*athanasios.laliotis@univ-paris13.fr

Accurate experimental demonstrations of the vdW law
were given in a series of experiments performed with beams
of Rydberg atoms [20] as well as spectroscopic selective-
reflection experiments [21,22]. Retardation effects were also
demonstrated [23] with a ground-state sodium beam. Several
experiments with cold atomic clouds have also been performed
[24–27], and a Bose-Einstein condensate (BEC) positioned
6–12 μm away from a silica surface was used to demonstrate
the temperature dependence of the atom surface interaction
out of thermal equilibrium [28].

In thermal equilibrium, temperature effects have remained
elusive and have only very recently been demonstrated using
spectroscopic measurements in thermal vapor cells [29,30]
that probe atoms at distances on the order of 100 nm
away from the surface. Critical to this experiment is the
probing of excited-state atoms, which, much like molecules
and in contrast to ground-state atoms, have the advantage
of presenting numerous dipole couplings in the mid and
far infrared. At these frequencies dielectrics support surface
polariton modes whose thermal excitation creates nearly
monochromatic electromagnetic fields (compared to the well-
known blackbody radiation) that evanescently decay away
from the surface [31].

Here we use quantum-mechanical linear response theory to
calculate the thermal CP interaction at all distances away the
surface. By resumming the Matsubara frequency expansion
we derive analytical expressions which demonstrate that the
thermal component of the vdW interaction can be considered
a shift of the atomic levels due to near-field thermal emission
of surface modes. As such, its sign and strength depend
exclusively on the relative position (detuning) of the atomic
transitions compared to the frequency of the surface-polariton
resonance. We show that the thermal excitation of surface
polariton or plasmon modes can have observable effects even
for low-lying excited-state or ground-state atoms or molecules.
We also examine scenarios where temperature changes can
lead to a complete cancellation or change of sign of the
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atom-surface interaction. This allows engineering of CP forces
with the use of temperature. We also derive analytical expres-
sions for the resonant contribution to the CP interaction in the
far-field regime. The resonant contribution, dominant in many
cases of interest (e.g., excited atoms and molecules), resembles
a classical dipole-dipole interaction and depends on the surface
reflectivity. Unlike the nonresonant CP predicted behavior for
ground-state atoms [32], the resonant contribution preserves a
strong anisotropic component, characteristic of dipole-dipole
interactions. We finally discuss the transition between the
two regimes using numerical calculations. We demonstrate
that controlling the CP interaction with temperature is no
longer possible as the distance from the surface increases.
We also show that retardation effects are relevant even for
spectroscopic experiments at nanometric distances away from
the surface.

II. CASIMIR-POLDER INTERACTION

We start by considering the CP free-energy shift of a
quantum particle �Fa at a given energy level |a〉, which is the
sum of a resonant contribution and a nonresonant contribution
[12,13]. We follow the formalism of Gorza and Ducloy [17],
describing the free-energy shift at a finite temperature T .

�Fa = �Fr
a + �Fnr

a . (1)

To simplify the notation we will expand our reasoning for a
two-level |a〉 , |b〉 system. For a real multilevel system one
simply has to sum all the contributions of all individual dipole
couplings.

At a finite temperature the nonresonant term is given by the
following sum:

�Fnr
a = −2

kBT

�

∞∑
k=0

′
μab

α μba
β Gαβ(z,iξk)

ωo

ξ 2
k + ω2

o

. (2)

We use the Einstein notation, implying a summation over the
index variables α and β that denote the Cartesian coordinate
components. The prime symbol signifies that the first term of
the sum should be multiplied by 1/2. The transition frequency
ωo = (Eb − Ea)/� depends on the energy difference between
the two levels. It takes a positive or negative sign depending
on the nature of the coupling (absorption or emission). Also
ξk = 2π kBT

�
K are the Matsubara frequencies, μab

α and μba
β

are the dipole moment matrix elements, and Gαβ(z,iξk) are
the components of the linear susceptibility matrix of the
reflected field, defined in [12,13]. In the general case, the
linear susceptibility gives the reflected displacement field at
a point �r due to a dipole �μ(ω), oscillating at a frequency ω,

positioned at �r ′, via the relation �D(�r,�r ′,ω) = ↔
G (�r,�r ′,ω) �μ(ω).

In our case
↔
G is evaluated for �r = �r ′ because we are interested

in dipoles interacting with their own reflected field. Due to the

cylindrical symmetry
↔
G is only a function of frequency and

the distance z of the dipole from the reflecting wall.
The resonant part of the CP shift is written as [17]

�Fr
a = n(ωo,T )μab

α μba
β Re[Gαβ(z,|ωo|)]. (3)

The mean occupation number n(ωo,T ) = 1

e
�ωo
kB T −1

of a mode ac-

cording to Bose-Einstein statistics is here extended to negative

frequencies. Note that in the case of virtual emission ωo < 0
the sign changes, and an additional photon due to spontaneous
emission is added, n(ωo,T ) = − [1 + n(−ωo,T )].

The problem reduces to calculating the linear susceptibility
function. We will focus on the simple geometry of a semi-
infinite surface with a bulk dielectric constant ε(ω) and
an atom that is in the vacuum. The diagonal terms of the
linear susceptibility [12,13,33] calculated for an imaginary
frequency iξ are

Gxx(z,iξ ) = Gyy(z,iξ )

= ξ 3

2c3

∫ ∞

1
e− 2ξzu

c (u2Rp − Rs)du, (4)

Gzz(z,iξ ) = ξ 3

c3

∫ ∞

1
e− 2ξzu

c (u2 − 1)Rpdu. (5)

In the above equations Rp and Rs are the Fresnel reflection
coefficients, and u is a dummy integration variable. The
problem has no simple analytical solutions apart from the
famous case of an ideal conductor or an ideal dispersionless
dielectric. For a real surface one has to resort to numerical
simulations except in the limiting cases when 2ξz

c
� 1, i.e.,

the long-range case where retardation effects are important, or
2ξz

c
� 1, which is the electrostatic or van der Waals regime.

III. VAN DER WAALS INTERACTION

Since the first experimental demonstration of retardation
effects [20], the vdW interaction has been considered mostly
an electrostatic limit of the CP interaction. A QED description
is, however, necessary when the atom is in the presence of
a hot surface. Here we pursue further the results of [17]
by considering real dielectrics with one polariton resonance
in order to illuminate the physics of CP interactions in the
presence of polaritons or plasmons. We show that excited
surface waves create intense thermal fields in the vicinity of
the surface (near-field thermal emission) that offer a way to
control the vdW interaction in a way that is not possible in the
far-field regime.

In the near-field, vdW regime (z � λo

4π
, where λo is the

atomic transition wavelength) the linear susceptibility has an
analytical solution given by [13]

Gxx(z,ω) = Gyy(z,ω) = 1

(2z)3
S(ω), (6)

Gzz(z,ω) = 2

(2z)3
S(ω). (7)

Equations (6) and (7) are valid for both real and imaginary fre-
quencies when 2|ω|z

c
� 1. Here S is the frequency-dependent

image coefficient, which is a function of the bulk dielectric
constant ε(ω). It is given by

S(ω) = ε(ω) − 1

ε(ω) + 1
. (8)

We start by using a single-resonance model to describe the
dielectric constant of the surface.

ε (ω) = εinf + (εst − εinf)ω2
T

ω2
T − ω2 − i
ω

, (9)
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where εinf and εst are constants giving the dielectric constant
at the two extreme ends of the spectrum, 
 is the phenomeno-
logical decay rate, and ωT is the transverse frequency of
oscillations. The above equation models dielectrics with one
surface polariton resonance. The validity of Eq. (9) is limited
to a certain frequency range (see also discussion in [16]);
however, it accurately describes the CP interaction between
many atom-surface systems. A more realistic model should
account for multiple resonances; however, this scenario will
not be considered here.

We first assume that 
 = 0. In this case, the surface

polariton frequency is given by ωS = ωT

√
εst+1
εinf+1 , and the image

coefficient becomes

S (ω) = Sinf + (Sst − Sinf)
ω2

S

ω2
S − ω2

. (10)

Here Sinf and Sst represent the values of S(ω) calculated
for εinf and εst , respectively. Equation (10) diverges at the
polariton frequency, but this is a small price to pay for
keeping our analytical expressions simple with a clear physical
interpretation.

Inserting the linear susceptibility equations (6) and (7) and
the dielectric constant equation (9) into Eq. (2), we can sum
the Matsubara frequency expansion and arrive at the following
analytical expression for the nonresonant free-energy shift of
the vdW interaction:

�Fnr
a = −C

pc

3

z3

{
Re [S(ωo)] coth

(
�ωo

2kBT

)

+ (Sst − Sinf)ωoωS

ω2
o − ω2

S

coth

(
�ωS

2kBT

)}
. (11)

Here the constant C
pc

3 = |〈a|μ|b〉|2
12 represents the vdW coeffi-

cient for a perfect conductor. We have also used the relation
coth( �ω

2kBT
) = 2n(ω,T ) + 1. One notices the characteristic z−3

dependence of the vdW interaction. The terms inside the curly
braces in Eq. (11) depend only on the dielectric properties of
the surface and on temperature. We refer to them as the nonres-
onant part of the image coefficient. The seemingly complicated
temperature dependence of the nonresonant term, given by a
complex sum over imaginary frequencies, essentially reduces
down to the number of photons in the atomic and polariton
frequencies. On the other hand, the resonant part of the shift,
Eq. (3), depends only on the number of photons in the atomic
frequency and is given by

�Fr
a = −C

pc

3

z3

{
Re [S(ωo)] − Re [S(ωo)] coth

(
�ωo

2kBT

)}
.

(12)

We refer to the term inside the curly braces in Eq. (12) as the
resonant part of the image coefficient. A simple inspection of
the above equations reveals that the temperature dependence
of the resonant contributions cancels out the first term of the
nonresonant contribution. Adding Eqs. (11) and (12), we find

the total free-energy shift �Fa = −C
pc

3
z3 r (ωo,T ) = −C3

z3 . Here
C3 is the vdW coefficient, and r (ωo,T ) is the image coefficient

given by

r (ωo,T ) = Re [S(ωo)] + (Sst − Sinf) ωoωS

ω2
o − ω2

S

coth

(
�ωS

2kBT

)
.

(13)

The above equation gives the temperature dependence of the
vdW interaction. It depends strictly on thermal fluctuations at
the polariton frequency, i.e., on the thermal excitation of the
evanescent surface polariton modes and not on the number of
thermal photons at the atomic frequency. In the two extremes
of the spectrum, when ωo � ωS and ωo � ωS , all temperature
dependence vanishes, in accordance with previous results
given for an perfect conductor [18]. In agreement with the
classical picture, when material dispersion is neglected, the
vdW attraction is independent of temperature. Similar results
can be obtained with the methodology of [16], but Eq. (13) is
more general since it is valid for all temperatures, including
T = 0, and includes both virtual absorption (ωo > 0) and
emission (ωo < 0). In the limit of a high photon number the
temperature-dependent part of Eq. (13) can also be derived by
calculating the Stark shift induced by the thermally excited
evanescent surface polariton modes whose density of states
ρD is given by [31,34]

ρD(ω,T ,z) = 1

8π2ωz3
Im

[
ε − 1

ε + 1

]
. (14)

This last approach is analogous to the one used in [35] in order
to calculate the atomic shifts due to blackbody radiation.

The calculation becomes significantly more cumbersome
if 
 
= 0, but analytical expressions can also be found. In
most cases of practical interest (
 � ωS) many terms can
be neglected, and the image coefficient becomes

r(ωo,T ) = Re[S(ωo)]

+ 2ωoωS(Sst − Sinf)
[

2 + 2

(
ω2

o − ω2
S

)]
[

2 + 2

(
ω2

o − ω2
S

)]2 + 4
2ω2
S

× coth

(
�ωS

2kBT

)
. (15)

Within the limits of Eq. (15) the cancellations that make
the vdW interaction independent of the number of photons
at the transition frequency ωo are still valid. The above
approximation deviates from the exact solution in the vicinity
of the polariton resonance by only a few percent, whereas in
the rest of the spectrum differences are negligible.

To illustrate the importance of these results we start by
giving in Table I a list of all the parameters involved in Eq. (9),
i.e., εst , εinf , ωT , and 
, for some dielectrics. Among them,
sapphire is very commonly used in atom-surface interaction

TABLE I. Parameters used to model the dielectric constant of
sapphire, CaF2, BaF2, and SiC.

εinf εst
ωS

2π
(cm−1) ωT

2π
(cm−1) 2π


ωS

BaF2 2.12 7.16 291 179.9 0.047
CaF2 2.02 6.82 416.2 258.6 0.063
Sapphire 3.03 9.32 828.9 518 0.02
SiC 6.7 10 947.8 793 0.005

052506-3



A. LALIOTIS AND M. DUCLOY PHYSICAL REVIEW A 91, 052506 (2015)

FIG. 1. (Color online) (a) The real part of the surface response for real frequencies. The results of the single-resonance model, Eq. (9), are
shown for sapphire [red (dark gray)] and BaF2 (light gray). The black dotted (sapphire) and dashed (BaF2) lines represent the results of the
elaborate model of Ref. [36]. (b) The surface response for imaginary frequencies using the exact same color and line coding. The dielectric
constant and therefore the surface response are strictly real in this case.

experiments, whereas CaF2 and BaF2 have been considered
for this purpose (see [29,36]) due to their isolated surface
resonances in the relatively far infrared. SiC is most commonly
used for near-field thermal emission measurements [37,38].
Here we explore the potential interest of performing CP
measurements with this material. We also restrict ourselves to
dielectrics whose dielectric constant is adequately described
by the single-resonance model throughout the visible and near-
and far-infrared frequency ranges. In the case of CaF2, BaF2,
and sapphire the parameters are deduced by fitting Eqs. (8)
and (9) to the experimental data given in Ref. [36], whereas
for SiC the parameters are taken directly from [31]. In Fig. 1(a)
we plot the real part of the surface response vs real frequencies
(ω/2π ) for both sapphire and BaF2. The results of Eq. (8)
(colored lines) are compared to those of the more elaborate
model described in [36] (black lines). The surface response
for imaginary frequencies (ξ/2π ) is shown in Fig. 1(b).
The single-resonance model of Eq. (9) reproduces very well the
surface response of the above dielectrics. The only observable
discrepancy between the two models is due to the existence
of an additional, albeit much smaller, surface resonance at
480 cm−1 in the case of sapphire. One should not be deceived
into thinking that Eq. (9) is a perfect model of the dielectric
constant itself. However, Fig. 1 clearly demonstrates that our
simple model can be reliably used to predict the van der Waals
free-energy shifts of atoms or molecules against any of the
dielectric surfaces of Table I.

Having established the validity and the main features of our
model, we can proceed to calculate the interaction between
some realistic atom-surface systems. In Fig. 2 we plot the
C3 coefficient as a function of temperature for Cs∗(7D3/2)
against sapphire and SiC. The C3 coefficient for this atomic
level depends strongly on the 7D3/2 → 5F5/2 dipole coupling
at 923 cm−1. The sapphire resonance at 829 cm−1 is on the
red side of this transition frequency, leading to an increase
of the vdW coefficient as a function of temperature, as
demonstrated experimentally in Ref. [30]. Conversely, the
same atom near a SiC surface displays a completely different
behavior. The SiC resonance at 945 cm−1 is on the blue
side of the transition frequency; thus the vdW coefficient

now decreases with temperature. According to our theoretical
estimates the fundamental long-range atom-surface interaction
should be null at T ∼ 1200 K, a temperature range which
could be experimentally achievable. Figure 2 shows the
possibility of controlling the CP interactions close to dispersive
surfaces via temperature. Other atom-surface systems have
been considered for achieving repulsive vdW potentials [36]
at finite temperatures, but so far there has been no experimental
proof of this effect [29].

It is also of interest to estimate the effects of surface polari-
tons for ground-state atoms. This situation is relevant for most
experimental measurements using cold atoms [2,24,26,28].
The finite-temperature corrections (T = 300 K) in the near-
field regime are, in this case, 0.02%, 0.16%, 1.29%, and 1.75%
for SiC, sapphire,CaF2, and BaF2, respectively. These numbers
indicate that near-field thermal emission has negligible effects
compared to the experimental precision of most experiments
so far, but it could have implications in the case of precision
experiments aiming at putting new limits on the existence
of non-Newtonian gravity forces [1,2]. The above numbers
should be considered indicative because we have used the

FIG. 2. (Color online) The vdW coefficient as a function of
temperature for a Cs(7D3/2) atom against a sapphire [red (dark gray)]
and a SiC (black) surface.
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simplified model of Eq. (9) and they are calculated in the vdW
electrostatic limit, which restricts their validity to very small
distances away from the surface.

IV. FAR-FIELD APPROXIMATION

The behavior of the nonresonant term of Eq. (1) has been
discussed extensively in the past (see, e.g., [18,28,39] and
references therein). We will just recall here that at T = 0 there
is a passage from a z−3 law to a z−4 law for the energy shift at
large distances from the surface. At a finite temperature T there
is a second crossover to a z−3 law when z � 1

4π
�c

kBT
, where

λT = �c
kBT

is usually referred to as the thermal wavelength. In
this case the sum of Eq. (2) is dominated by the first term [39]
and therefore gives

�Fnr
a = −2

ε(0) − 1

ε(0) + 1

kBT

�ωo

C
pc

3

z3
. (16)

In the far field the free-energy shift is independent of
material dispersion. Only the dc or “static” value of the
dielectric constant at zero frequency comes into play. This
far-field or high-temperature limit is sometimes referred to as
the Lifshitz regime [28].

The behavior of the resonant term in the far field is rather
different. Using the imaginary frequency formulas above, we
can see that in the far field the exponential decays rapidly.
The multiplying functions (u2Rp − Rs) and (u2 − 1)Rp vary
rather slowly, and one can find approximate expressions for the
linear susceptibility by Taylor expanding them around 1 to the
lowest nonzero order. The real part of the linear susceptibility
for real frequencies ωo is the relevant quantity for the resonant
term of the free-energy shift, which is given by

Re[Gxx,yy(z,ωo)] = k2
o

2zo

|ρ(ωo)| cos[2kozo + φ(ωo)], (17)

Re[Gzz(z,ωo)] = − ko

2z2
o

|ρ(ωo)| sin[2kozo + φ(ωo)], (18)

where ρ(ωo) = |ρ(ωo)|eiφ(ωo) is the frequency-dependent com-
plex reflection coefficient of the surface at normal incidence.
Equations (17) and (18) are valid when z � λo

4π
, where λo

is the transition wavelength. As has been pointed out before
[14], the resonant term resembles the interaction of an antenna
with its own reflected field, which oscillates between repulsion
and attraction with a period of λo/2. In the case of a perfect
conductor, Eqs. (17) and (18) lead to the cavity QED shifts
reported in [14]. The term is highly anisotropic since a
dipole antenna does not radiate on its axis. For this reason
Re[Gzz(z,ωo)] decays much faster than Re[Gxx,yy(z,ωo)]. In
reality this term will dominate the far field of CP interaction
for excited-state atoms or molecules [40,41]. At very large
temperatures or at very large distances from the surface it will
eventually dominate the interaction between a surface and a
ground-state atom.

In Fig. 3 we plot the reflection coefficient as a function
of frequency. The limitations of the single-resonance model
are here visible, especially for sapphire. The discrepancies are
due to additional resonances that have been neglected [42].
The most noteworthy feature of Fig. 3 is that the reflection

FIG. 3. (Color online) The absolute value of reflection coefficient
as a function of frequency. The solid lines represent the reflection
coefficient as calculated using the single-resonance model of Eq. (9)
in the case of sapphire [red (dark gray)] and BaF2 (light gray). The
black dotted (sapphire) and dashed (BaF2) lines represent the results
of the model described in Ref. [36].

coefficient does not display the same variations as the surface
response, which changes sign around the surface polariton
frequency (Fig. 1). This shows that exotic effects such as
resonant vdW repulsion [43] or temperature effects due to the
thermal excitation of surface polaritons [30] should be washed
out as the distance from the surface increases.

V. DISCUSSION

In order to demonstrate the effects of retardation and
thermal excitation of the surface we focus our attention
on some concrete examples. We first choose two couplings
(virtual emission) with frequencies −820 and −838 cm−1,
corresponding to the two extrema of the sapphire image coef-
ficient, close to the sapphire resonance at 829 cm−1 (Fig. 1).
In Fig. 4(a) we plot the normalized CP shift due to these
couplings as a function of distance from a sapphire surface.
The shift is calculated by numerically integrating Eqs. (4) and
(5) using the single-resonance model for sapphire’s dielectric
constant, without any approximations. In the near field the
two dipole couplings present shifts of opposite sign. The
first [blue (dark gray) line at −820 cm−1] corresponds to a
large attraction, whereas the second [red (light gray) line at
−838 cm−1] corresponds to a repulsion. This exotic effect
persists only in the nanometric scale, at distances smaller than
1 μm. The two curves converge for larger distances, oscillating
from attraction to repulsion in a very similar fashion. The
reader should note that even though the amplitudes of these
oscillations are almost the same, there is a noticeable phase
difference between them. The estimated free-energy shifts
using the far-field approximation of Eqs. (17) and (18) are also
shown as black dashed and dotted lines. At large separations
(z > 10 μm) they coincide almost perfectly with the numerical
calculations. In Fig. 4(b) we plot the free-energy shift due to
downward coupling at −830 cm−1 for a BaF2 surface at two
different temperatures, T = 200 K and T = 600 K. Due to the
thermal excitation of the BaF2 surface polariton at 291 cm−1

the vdW interaction changes sign from attraction to repulsion.
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FIG. 4. (Color online) (a) The free-energy shift multiplied by z2

for −820 cm−1 [blue (dark gray)] and −838 cm−1 [red (light gray)]
downward couplings against a sapphire surface at T = 300 K. The
dashed and dotted lines represent the free-energy shift as given by
the far-field approximation of Eqs. (17) and (18). (b) The free-energy
shift multiplied by z2 for a −830 cm−1 downward coupling against a
BaF2 surface for T = 200 K [blue (dark gray)] and T = 600 K [red
(light gray)] lines.

The near-field temperature dependence is governed by the
number of thermal photons at the polariton frequency ωS of
BaF2, as described by Eq. (13). Conversely, the temperature
dependence in the far field is related to the number of thermal
photons at the transition frequency ωo, as can be seen by
Eqs. (3), (17), and (18). Here again the effects of the evanescent
polariton modes are present only in the nanometric range
[34,44]. The transition frequencies used in Fig. 4 are in
the vicinity of the 7P → 6D transitions of both Cs and
Rb. The vdW interaction of Cs∗(6D3/2), Rb∗(6D3/2), and
Rb∗(6D5/2) was experimentally investigated in the past with
selective-reflection experiments in vapor cells [45].

Finally, we perform a complete calculation of the Casimir-
Polder free-energy shift for the case of ground-state Cs(6S1/2)
and the low-lying excited-state Cs∗(6P1/2). Here we take into
account only the most important dipole couplings (Table II),
ignoring the contribution of core excitations [47]. In Fig. 5
we show our results, focusing first [Fig. 5(a)] on rather short
distances from the sapphire wall. There is a dependence of the
CP interaction on temperature, which is more important for
the Cs∗(6P1/2) state because the 6P1/2 → 5D3/2 coupling is

TABLE II. Individual contributions to the C3 coefficient of the
most important dipole couplings for Cs(6S1/2) and Cs(6P1/2) close to
a perfect conductor. Transition probabilities are taken from Ref. [46]

λ (μm) ω (cm−1) C
pc

3 (kHz μm3)

Cs(6S1/2)
6P1/2 0.894 11 178.24 0.94
6P3/2 0.852 11 732.35 1.62
Cs(6P1/2)
6S1/2 −0.894 −11 178.24 0.94
5D3/2 3.01 3321.25 1.64
7S1/2 1.36 7357.27 0.59
6D3/2 0.876 11 410.65 0.64
7D3/2 0.673 14 869.62 0.15

closer to the sapphire polariton frequency. The effect should
be barely measurable with the precision of spectroscopic
atom-surface interaction [48] experiments. One notices that
for the ground-state Cs atom, the van der Waals limit is not yet
reached even at such short distances, which is characteristic
of the distance dependence of the nonresonant contribution

FIG. 5. (Color online) (a) The CP free-energy shift multiplied
by z3 for Cs(6S1/2), Cs∗(6P1/2) against a sapphire surface and the
difference between them at two different temperatures, T = 500 K
(black) and T = 1200 K [red (gray)] for distances between 0 and
200 nm. (b) The CP free-energy shift multiplied by z3 for Cs(6S1/2)
against a sapphire surface for a distance range between 0 and 20 μm at
two different temperatures, T = 500 K (black) and T = 1200 K [red
(gray)]. The dashed and dotted lines show the results of the far-field
approximation of Eq. (16). For higher temperatures Eq. (16) is valid
for distances closer to the surface.
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to the CP interaction [13,14,17,24]. Conclusive experimental
evidence of this behavior is given only for distances greater
than 150 nm [26]. This is less true for Cs∗(6P1/2), which
seems to follow a z−3 dependence for distances smaller than
100 nm. Intuitively, one can assume that this is because the
wavelength of the dominant coupling is larger for the 6P1/2

state (3 μm instead of 0.852 μm for 6S1/2), but that is not true.
Remarkably, it is the interplay between the different couplings
(some virtual emissions and some virtual absorptions) that
leads to this phenomenological adherence to the vdW z−3

law. This coincidence could have important implications for
spectroscopic experiments in the near field of the atom-
surface interaction, which are sensitive to the free-energy
difference between levels. For low-lying excited states (such as
6P1/2) experimental measurements of the CP shift could vary
depending on the typical probing distance. In this particular
example the 6S1/2 → 6P1/2 shift is almost doubled between
0 and 100 nm and is clearly not following the vdW z−3 law.
This should be taken into consideration for experiments on
low-lying excited states of alkalis [48–50] (see also Discussion
and Prospects section in [51]). It is worth mentioning that in the
selective-reflection experiments reported in [48] the measured
C3 coefficient is 1.4 kHz μm3, a value which is more consistent
with Fig. 5 (for distances greater than 50–100 nm) than the
theoretical vdW prediction of 0.8 kHz μm3 (essentially for
z = 0). Conversely, high-lying excited states exhibit huge CP
shifts compared to low-lying states and should be less affected
by this problem [22,29,30,43,45]. In Fig. 5(b) we plot the CP
shift of the Cs ground-state atom at a much larger range of
distances (0–20 μm). The nonresonant term dominates, and
the approximation of Eq. (16) is mostly valid in the far field.
At very high temperatures (T = 1200 K) one begins to see the
beat between the QED oscillations of the resonant term at 894
and 852 nm. Putting these predictions to a real experimental
test is, at the moment, extremely challenging.

VI. CONCLUSIONS

We have analyzed the thermal effects of the CP interaction
when the surface is at thermal equilibrium with the surrounding
environment. We derived simple analytical expressions in the
case of a dielectric with one surface resonance that provide a

transparent physical interpretation of the temperature depen-
dence of the CP free-energy shift of atoms or molecules. Our
work shows that in the near field thermal effects are entirely
due to the excitation of evanescent surface modes (near-field
thermal emission). The results can be easily extended to the
case of metals in which plasmon frequencies are typically at
UV wavelengths. Using more realistic models for dielectrics
is also straightforward but significantly more tedious. We
also derive simple expressions in the far-field approximation
that are valid for not only ground-state but also excited-state
atoms and molecules. We show that retardation effects can be
significant for spectroscopic experiments on low-lying states
performed at nanometric distances away from the surface. This
raises important questions concerning the validity of the z−3

vdW law. The fact that the CP interaction can also affect the
radiative properties (transition rates) of atoms or molecules
[52,53] is often neglected. Our conclusions can be extended
to calculate a distance-dependent transition linewidth [12,13]
using the imaginary part of the linear susceptibility matrix.
Although our treatment was performed entirely in the case
of thermal equilibrium, our demonstration that the near-field
temperature dependence is solely due to the excitation of
evanescent surface waves suggests that in the near field our
results are also valid in an out-of-equilibrium case with
T being the temperature of the surface [44]. A complete
treatment of the out-of-equilibrium case for excited-state
atoms or molecules is, however, more challenging. Finally,
the simplicity of our results could render them very useful
when applied to intrinsically more complicated problems such
as multilayered dielectrics [13] or two-dimensional dielectrics
such as graphene deposited on dielectric substrates [54] or
even metasurfaces.
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