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Evaluation of optical probe signals from nonequilibrium systems
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We predict several effects associated with the optical response of systems prepared in a nonequilibrium state
by impulsive optical excitations. The linear response depends on the phase of the electric field even if the
initial nonequilibrium state has only populations, no coherences. Initial quantum coherences induce additional
phase dependence, which also shows new resonances in nonlinear wave mixing. In systems strongly driven by
an external optical field, the field frequency generates a phase-dependent probe absorption. This gives further
control to manipulate the relative contribution to the linear signal due to initial populations and coherences.
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I. INTRODUCTION

Spectroscopic signals are commonly expressed in terms
of the polarization induced in the molecule by external driv-
ing [1]. For n-wave mixing processes [2,3], the polarization is
calculated perturbatively to (n−1)th-order in the field-matter
interaction and written as a combination of n-point matter
correlation functions, which depend on the initial state of
the molecule. In the frequency domain, the polarization is
expressed in terms of the nth-order optical susceptibility χ (n).
For systems initially in equilibrium due to time-translational
symmetry, χ (n) depends only on n-independent frequency
variables. This is because the sum of all n + 1 field frequencies
must add up to zero. This reflects the energy conservation of
the field.

If the system can be prepared in an arbitrary nonequilibrium
state, the time-translational symmetry is broken and the
nonlinear optical response is governed by a more general χ (n)

that depends on n + 1 independent frequency variables. This
one extra frequency variable yields new resonances that are
not present in the nth-order equilibrium response. To make
a consistent connection with n-wave mixing results obtained
with equilibrium state preparation, we introduce a generalized
nth-order optical susceptibility χ̃ (n), which depends on the
nonequilibrium initial state. This initial state can contain
populations and coherences. Such a nonequilibrium state
prepared by an ultrashort actinic pulse is commonly studied in
femtosecond Raman spectroscopy [4–7]. In a different context,
systems prepared in the nonequilibrium superposition of quan-
tum states induced by a strong monochromatic laser field have
been extensively studied in quantum optics [8,9] and quantum
thermodynamics [10–12]. Monitoring field-induced quantum
coherence by the transmission of a weak probe shows many
interesting effects, including electromagnetically induced
transparency [13], lasing without population inversion [14,15],
and coherent population trapping [16,17]. Molecules in open
junctions are another example of nonequilibrium preparation,
where the molecule subjected to a chemical or thermal bias,
across its boundaries, can be in a stationary state [10]. For
such initial conditions the standard fluctuation-dissipation
relations are violated [18–20]. In all the above examples,
nonequilibrium preparation affects the response of the system
with respect to an optical perturbation. Typically the optical
response of a system is probed by nonlinear n-wave mixing.
For instance, Raman χ̃ (3) measurements [6] can detect phase
and amplitude information about resonances. In this paper we

show that similar information about phase can be obtained
from simpler linear measurements described by χ̃ (1), which
depends on two independent frequencies. The linear signal
now depends on the phase of the electric field, even if the
system is initially prepared in a population state. The initial
coherence further results in additional phase dependence,
which can be used in coherent control schemes [21,22].
Another consequence of the nonequilibrium preparation are
the new resonances in n-wave mixing. These are at the
frequencies shifted from the usual n-wave mixing phase
matching condition by an amount determined by the phase of
the nonstationary state corresponding to initial coherence [23].
We further study an example where the initial conditions are
considered explicitly for a three-level model system driven by a
strong monochromatic light source. We show how the control
parameters of the driving field affect the phase dependence
of the linear signal by manipulating initial coherences and
populations.

The paper is organized as follows: In Sec. II, we calculate
linear absorption of systems initially prepared in an arbitrary
superposition state and discuss the phase dependence due
to the field envelope. Compact expressions are derived by
employing superoperator notation. In Sec. III, we extend the
calculation to nonlinear wave mixing signals and examine
new resonances that show up because of the initial quantum
coherence. In Sec. IV, we repeat the calculation for linear
absorption of a strongly driven three-level model system. The
phase dependence now appears in the signal through the field
frequency for both initial population and coherence states. We
further examine the role of driving field parameters to control
the relative contribution to the signal coming from population
and coherences. In Sec. V, we summarize our findings and
discuss possible experimental conditions where these effects
can be realized.

II. PHASE DEPENDENCE OF LINEAR OPTICAL SIGNAL

We consider a multilevel quantum system driven by a
classical optical field and is described by the Hamiltonian

H (t) = H0 + Hint(t), (1)

where H0 is the system Hamiltonian and Hint(t) is the light-
matter interaction,

Hint(t) = V Ẽ(t) = V [E(t) + E∗(t)]. (2)
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Here V = μ + μ† is the dipole operator, which is partitioned
into lowering (μ) and raising (μ†) operators and is responsible
for the deexcitation and excitation between the molecular
states, respectively. E(t) and E∗(t) are positive and negative
frequency components of the total electric field Ẽ(t) = E(t) +
E∗(t). We will calculate signals for an arbitrary initial molec-
ular state. We employ superoperator notation where with each
Hilbert space operator A, we associate two superoperators,
denoted as AL (left) and AR (right), defined through their ac-
tion on Hilbert space operator X as ALX ≡ AX,ARX ≡ XA.
We further define the linear combinations A+ = (AL + AR)/2
and A− = AL − AR . A+(A−) operation in Liouville space
corresponds to an anticommutation (commutation) operation
in Hilbert space. Using this notation, the frequency-dispersed
heterodyne-detected signal is given by [24,25]

S(ω,�) = 2

�
Im

{
E∗(ω)

∫ ∞

−∞
dt eiω(t−t0)

×
〈
T VL(t) exp

[
− i

�

∫ t

τ0

dτ1Hint−(τ1)

]〉
ρ(τ0)

}
,

(3)

where � represents the set of parameters of the incoming
fields. These will be specified later. The angular bracket
〈· · · 〉 represents an average over the initial density matrix
of the molecule prepared at time τ0. The external fields
have finite envelopes centered at t0 � τ0. The superoperators
in Eq. (3) are in the interaction picture with respect to

the free system Hamiltonian H0, i.e., for any operator A,
Aν(t) ≡ exp[iH0−(t − τ0)]Aν exp[−iH0−(t − τ0)], ν = L,R.
We further define the retarded Liouville space evolution op-
erator G(t − τ0) = (−i/�)θ (t − τ0) exp[− i

�
H0−(t − τ0)] and

the advanced evolution operator G†(t−τ0) = (i/�)θ (τ0−
t) exp[− i

�
H0−(t − τ0)]. In the frequency domain these prop-

agators are written as G(ω) = ∫ ∞
−∞ dt eiω(t−τ0)G(t − τ0) =

1
�

(ωI − 1
�
H0− + iε)−1 and G†(ω) = ∫ ∞

−∞ dt e−iω(t−τ0)G†(t −
τ0) = 1

�
(ωI − 1

�
H0− − iε)−1. Here I is the identity operator

in Liouville space, and T is the time-ordering superoperator

T Aν(t1)Bν ′(t2) = θ (t1 − t2)Aν(t1)Bν ′(t2)

+ θ (t2 − t1)Bν ′(t2)Aν(t1),

ν,ν ′ = L,R. (4)

The linear signal is obtained by expanding the exponential in
Eq. (3) to first order in the field-matter interaction Hint−,

S(1)(ω; t0,τ0) = 2

�
Im

[
i�

∫ ∞

−∞
dt

∫ t

−∞
dτ1e

iω(t−t0) E∗(ω)Ẽ(τ1)

×〈VLG(t − τ1)V−G(τ1 − τ0)〉ρ(τ0)

]
. (5)

Note that G(τ1−τ0) = − i
�
I if ρ(τ0) is a stationary distribution

(equilibrium or steady state). Otherwise it describes the
evolution of the nonstationary initial state. The presence of
θ (τ1 − τ0) in G(τ1 − τ0) allows one to extend the lower limit of
integration for τ1 to −∞. Making the change of time variable
t − τ1 = t1, we write

S(1)(ω; t0,τ0) = 2

�
Im

[
i�

∫ ∞

−∞
dt

∫ ∞

0
dt1e

iω(t−t0)E∗(ω)Ẽ(t−t1−t0)〈VLG(t1)V−G(t−t1−τ0)〉ρ(τ0)

]
. (6)

Performing the inverse Fourier transformation for G(t − t1 − τ0), Ẽ(t−t1−t0) and integrating over t1 and t , we obtain

S(1)(ω; t0,τ0) = 2

�
Im

[
i�

∫ ∞

−∞

dω0

2π

∫ ∞

−∞

dω′
1

2π
e−i(ω−ω′

1)t0eiω0τ0 E∗(ω)

× Ẽ(ω′
1)〈VLG(ω′

1 + ω0)V−G(ω0)〉ρ(τ0)2πδ(ω − ω0 − ω′
1)

]
. (7)

The ω0 integration can be carried out easily, which results in

S(1)(ω; t0,τ0) = 2

�
Im

[
i�

∫ ∞

−∞

dω′
1

2π
e−i(ω−ω′

1)(t0−τ0) E∗(ω)Ẽ(ω′
1)〈VLG(ω)V−G(ω − ω′

1)〉ρ(τ0)

]
. (8)

This expression holds for an arbitrary initial density matrix.
We now assume that the molecule is prepared in a superposition of eigenstates ρ(τ0) = ∑

ab ρab|ab〉〉 by a weak impulsive pulse
centered at τ0 and calculate the linear absorption of a second weak probe pulse. We neglect dephasing and assume that the probe
interacts with the system while the coherence is alive. This is the case in recent experiments in photosynthetic complexes [26]
and solar cells [27]. In Sec. IV we consider a particular example where the strong driving field induces quantum coherence and
it is long-lived. For a superposition state |ab〉〉 the contour integration over ω′

1 in Eq. (8) can be carried out, which gives

∫ ∞

−∞

dω′
1

2π
Ẽ(ω′

1)Gab(ω − ω′
1)e−iω′

1(τ0−t0) = −1

�
lim
η→0

∫ ∞

−∞

dω′
1

2π

∫ ∞

−∞
dt̄ Ẽ(t̄)

eiω′
1(t̄−τ0+t0)

ω′
1 − (ω − ωab) − iη

= − i

�

∫ ∞

−∞
dt̄ θ (t̄ − τ0 + t0) Ẽ(t̄) ei(ω−ωab)(t̄−τ0+t0), (9)
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where in the second line η is an infinitesimal positive number used to satisfy the causality condition for the retarded propagator.
In the last line we use the definition of the Heaviside θ function. The signal is finally given by

S(1)(ω,; t0 − τ0) = 2

�

∑
ab

Im

[ ∫ ∞

−∞
dt̄ θ (t̄ + t0 − τ0) E∗(ω)Ẽ(t̄)〈VLG(ω)V−〉ρab

ei(ω−ωab)t̄ e−iωab(t0−τ0)

]
. (10)

In the following we discuss various limits of the signal and its dependence on the phase of the field.

A. Systems at equilibrium

The standard equilibrium result is recovered from Eq. (10)
in the limit τ0 → −∞, where the molecule initially may reside
in some population state |aa〉〉 (no coherence) or, in thermal
equilibrium, i.e., ρeq(τ0) = e−βH0/Z, where β is the inverse
temperature and Z = Tr[e−βH0 ] is the partition function. The
linear signal then reduces to

S(1)
eq (ω) = 2

�
Im[E∗(ω)Ẽ(ω)χ (1)(−ω; ω)], (11)

where χ (1)(−ω; ω) ≡ 〈VLG(ω)V−〉ρeq
, which depends on a

single frequency and Ẽ(ω) is the Fourier transformation
of the total electric field Ẽ(t). Making the rotating-wave
approximation (RWA) and assuming that the molecule initially
is in a ground electronic state |a〉, we get for the linear signal

S(1)
eq (ω) = 2

�

∑
ac

Im

[
|E(ω)|2 |μca|2ρaa

ω − ωca + iη

]
. (12)

This solely depends on the power spectrum of the field |E(ω)|2
and is independent of its phase.

B. Nonequilibrium state and long pulses

When the pulse is long (cw), i.e., the field Ẽ(t̄) = Ẽ e−iω1 t̄ ,
and E(ω) = 2πEδ(ω − ω1) the integrated signal [Eq. (10)] is
given as

S(1) ≡
∫

dω

2π
S(1)(ω)

= 2

�

∑
ab

Im[E∗Ẽ〈VLG(ω1)V−〉ρab
Gab(ω1 − ω1)]. (13)

The signal is now independent of t0 and τ0. Note that even if
the system is initially prepared in a superposition state, i.e.,
there is nonzero initial coherence ρab, the cw signal does not
show ωab-dependent resonances.

C. Initial nonequilibrium state with populations and coherences

Starting with a general nonequilibrium state with initial
populations and coherences and following Eq. (10) with the
assumption that the field envelopes are centered at t0 = τ0 we
obtain the linear signal

S(1)(ω) = 2

�
Im

[∑
ab

E∗(ω)Ē(ω − ωab)〈VLG(ω)V−〉ρab

]

≡ 2

�
Im

[ ∫
dω′

1

2π
E∗(ω)Ē(ω′

1)χ̃ (1)(−ω,ω′
1)

]
, (14)

where

Ē(ω) =
∫ ∞

0
dt Ẽ(t) eiωt (15)

is the one-sided Fourier transform of the electric field, which
makes the signal dependent on the phase of the field. We define
the generalized linear susceptibility

χ̃ (1)(−ω,ω′
1) =

∑
ab

〈VLG(ω)V−〉ρab
δ(ω−ω′

1−ωab), (16)

which depends on two independent frequency variables. Ex-
pansion of matter correlation function in molecular eigenstates
gives

〈VLG(ω)V−〉ρab

=
∑

c

ρabμ̄ca

[
μ̄bc

ω − ωcb + iη
− μ̄cb

ω − ωac + iη

]
, (17)

where μ̄ac = μac + μ∗
ac is the matrix element of the total

dipole operator.
The generalized susceptibility in Eq. (16) may also be recast

in terms of forward (G) and backward (G†) Liouville space
propagators:

χ̃ (1)(−ω,ω′
1) = i

2π

∑
ab

ρab〈〈I |VLG(ω)V−

× [G(ω − ω′
1) − G†(ω − ω′

1)]|ab〉〉. (18)

In the t0 = τ0 limit we could also write the signal directly from
Eq. (8) as

S(1)(ω) = 2

�
Im

[
i�

∫ ∞

−∞

dω′
1

2π
E∗(ω)Ẽ(ω′

1)

×〈VLG(ω)V−G(ω − ω′
1)〉ρ(τ0)

]
. (19)

This equation contains an additional Green’s function G(ω−
ω′

1) compared to systems initially at equilibrium. This
frequency-domain Green’s function is given by a one-sided
Fourier transform of a corresponding time-domain Green’s
function in Eq. (6), which depends on a superoperator time
ordering via the Heaviside θ function. The latter is an intrinsic
part of the bookkeeping of the field-matter interaction, which
is typically done by assigning the time-ordering operator
to the matter correlation function, while allowing the fields
to evolve in an unrestricted manner. The frequency-domain
electric field Ẽ(ω′

1) is given by a complete Fourier transform
of the time-domain field envelope. Alternatively, the burden
of time ordering can be placed in the field correlation function
while allowing matter to evolve in time without restriction.
In this case the complete Fourier transform of the Green’s
function results in the δ function as shown in Eq. (16), while
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the electric field is transformed via one-sided Fourier transform
as in Eqs. (14) and (15). Both representations are identical
and the choice can be made according to the convenience in
bookkeeping of the field-matter interactions and details of the
signal. When time-translational symmetry is restored for an
initial equilibrium or steady state (with or without coherence),
the Green’s function G(ω − ω′

1) = δ(ω − ω′
1) and the linear

signal or the susceptibility χ (1) depend on a single frequency
variable. The breakdown of time-translation symmetry due to
an initial nonequilibrium state gives rise to a signal described
by χ̃ (1), which depends on two frequency variables as shown
in Eq. (16).

1. Phase dependence induced by initial populations

From Eq. (14) we separate the contribution to the signal
from initial populations:

S(1)
pop(ω) = 2

�
Im

[∑
a

E∗(ω)Ē(ω)〈VLG(ω)V−〉ρaa

]
. (20)

Despite the fact that initial state contains only diagonal ele-
ments of the density matrix (populations), the signal in Eq. (20)
depends explicitly on the phase of the electric field. This is
because the initial state at τ0 is not an equilibrium state, which
makes the signal depend on Ē(ω) instead of E(ω). It is only in
the limit τ0 → −∞ that the phase dependence disappears.

To demonstrate this phase dependence we consider a
linearly chirped [28,29] Gaussian pulse with spectral phase

φ(ω) = φ0 + φ′′(ω − ω̄c)2/2. The electric field is given as

E(ω) = √
πE0T0e

−(ω−ω̄c)2T 2
0 /4eiφ′′(ω−ω̄c)2/2, (21)

where T0/
√

2 is the field-transform-limited temporal width,
δωL = √

2/T0 is the spectral width, ω̄c is the central frequency
of the field, and φ′′ is the quadratic phase inducing the linear
chirp. The corresponding temporal profile is

E(t) = E0

2

√
�

�0
e−�t2

e−iω̄ct , (22)

where 1
�

= 1
�0

− 2iφ′′ and 1/�0 = T 2
0 . The temporal width

of the chirped pulse is given as Tp = T0

√
1 + (2φ′′/T 2

0 )2

and the instantaneous frequency is ω(t) = ω̄c + 2αt with
α = (2φ′′)/[T 4

0 + (2φ′′)2]. Equation (15) is then given by

Ē(ω) =
√

πE0T0

4
e−(ω−ω̄c)2T 2

0 /4eiφ′′(ω−ω̄c)2/2

×
(

1 + i Erfi

[
ω − ω̄c

2
√

�

])
, (23)

where Erfi[z] is an imaginary error function. It is then clear
that the chirp rate dependence in the signal enters through the
E∗(ω)Ē(ω) ∝ Erfi[ω−ω̄c

2
√

�
] function.

FIG. 1. (Color online) (a) Level scheme for a three-level model system with two lower states |a〉 and |b〉 and one upper state |c〉. The
dipole transition is allowed between the states |a〉 → |c〉 and |b〉 → |c〉. The states |a〉 and |b〉 are initially in a maximally coherent state, i.e.,
ρaa =ρbb =ρab =ρba = 1

2 . (b) Two-dimensional (2D) plot for the linear transmission signal S(1)
aa vs the detected frequency ω and chirp rate φ′′

starting with initial population in state |a〉. (c) Plot for S
(1)
bb with initial population in state |b〉 and (d) the combined signal due to population

S(1)
pop = S(1)

aa + S
(1)
bb . (e) The signal S

(1)
coh = S

(1)
ab + S

(1)
ba due to initial coherence (ρab,ρba). (f) The total signal S

(1)
tot including both population and

coherences. The parameters are given as follows: ωba = 0.1 eV, ωca = 0.8 eV, ω̄c = 0.5 eV, η = 0.004 eV, T0 = 6.6 fs.

052501-4



EVALUATION OF OPTICAL PROBE SIGNALS FROM . . . PHYSICAL REVIEW A 91, 052501 (2015)

2. Phase dependence due to initial coherence

From Eq. (14) the contribution of initial coherences to the
signal is

S
(1)
coh(ω) = 2

�
Im

⎡
⎣ ∑

a,b,a �=b

E∗(ω)Ē(ω − ωab)〈VLG(ω)V−〉ρab

⎤
⎦ .

(24)

The signal now shows a new resonance which depends on the
initial coherence frequency ωab between levels a and b. The
field envelope depends on the shifted frequency Ē(ω − ωab),
which also generates a phase-dependent signal. For a chirped
pulse, the chirp rate dependence in the signal is E∗(ω)Ē(ω −
ωab) ∝ eiφ′′(ω2

ab−2(ω−ω̄c)ωab) Erfi[ω−ω̄c

2
√

�
].

3. Application to a three-level model system

In the following we demonstrate the phase dependence in
the linear signal for the three-level model system shown in
Fig. 1(a). We assume that the two lower states |a〉 and |b〉 are
initially in a maximally coherent state, i.e., ρaa =ρbb =ρab =
ρba = 1

2 and all other elements of the density matrix vanish.
Dipole transitions are allowed between states |a〉 → |c〉 and
|b〉 → |c〉. Using Eq. (14) and making the RWA, the signal can
be written as S

(1)
tot (ω) = ∑

i,j=a,b S
(1)
ij (ω), where

S
(1)
ij (ω) = 2

�
Im

[
E∗(ω)Ē(ω − ωij )

μciμ
∗
cjρij

ω − ωcj + iη

]
. (25)

In Figs. 1(b) and 1(c) we display linear transmission vs the
chirp rate and frequency when the system starts in population
states ρaa and ρbb, respectively. S(1)

aa and S
(1)
bb show peaks

corresponding to ωca = 0.8 eV and ωcb = 0.7 eV transitions,

respectively. The population oscillations in the signal come
from the error function, which oscillates faster with the chirp
rate φ′′ for higher ω − ω̄c. We use the central frequency ω̄c =
0.5 eV, which implies that for the ωca transition the oscillation
is higher compared to the ωcb transition. Also, the signal is
asymmetric with respect to the chirp rate φ′′. In fact, it is
stronger for positive φ′′ as compared to the negative one and is
due to the amplitude of the field envelope, which is higher for
positive chirp. In Fig. 1(d) we display the total signal due to
initial populations S(1)

pop = S(1)
aa + S

(1)
bb . In Fig. 1(e) we plot the

signal S
(1)
coh = S

(1)
ab + S

(1)
ba due to initial coherence. This signal

appears to be stronger compared to that due to populations
even for negative chirp. In Fig. 1(f) we display the total signal
S

(1)
tot due to initial population and coherence.

III. NEW RESONANCES IN NONLINEAR WAVE MIXING

The above results for the linear signal can be easily extended
for nonlinear signals. In the following we present expressions
for three-wave mixing (TWM) and four-wave mixing (FWM)
signals from an initial superposition state. The electric field Ẽ is
a sum of two (for TWM) or three (for FWM) monochromatic
field modes Ẽi ,i = 1,2,3. Because all the frequency modes
overlap in time, we must include all possible permutations
of these modes to calculate the full signal. We first write the
TWM signal in terms of the total field Ẽ ,

S(2)(ω) = 2

�
Im

[ ∫ ∞

−∞

dω′
1

2π

∫ ∞

−∞

dω′
2

2π
E∗(ω)

× Ẽ(ω′
1)Ē(ω′

2)χ̃ (2)(−ω,ω′
1,ω

′
2)

]
, (26)

where the second-order generalized susceptibility is

χ̃ (2)(−ω,ω′
1,ω

′
2)=

∑
ab

〈VLG(ω)V−G(ω − ω′
1)V−〉ρab

δ(ω−ω′
1−ω′

2−ωab). (27)

This can be alternatively recast as

χ̃ (2)(−ω,ω′
1,ω

′
2) = i

2π

∑
ab

ρab〈〈I |VLG(ω)V−G(ω − ω′
1)V−[G(ω−ω′

1−ω′
2) − G†(ω−ω′

1−ω′
2)]|ab〉〉. (28)

Expanding the matter correlation function in system eigenstates gives

〈VLG(ω)V−G(ω − ω′
1)V−〉ρab

=
∑
cd

ρab[μ̄dcμ̄caGcb(ω − ω′
1)(μ̄bdGdb(ω) − μ̄dbGcd (ω)) + μ̄daμ̄cbGac(ω − ω′

1)(μ̄dcGad (ω) − μ̄cdGdc(ω))]. (29)

By extending these results to FWM we can similarly write

S(3)(ω) = 2

�
Im

[ ∫ ∞

−∞

dω′
1

2π

∫ ∞

−∞

dω′
2

2π

∫ ∞

−∞

dω′
3

2π
E∗(ω)Ẽ(ω′

1)Ẽ(ω′
2)Ē(ω′

3)χ̃ (3)(−ω,ω′
1,ω

′
2,ω

′
3)

]
, (30)

where

χ̃ (3)(−ω,ω′
1ω

′
2,ω

′
3)=

∑
ab

〈VLG(ω)V−G(ω−ω′
1)V−G(ω−ω′

1−ω′
2)V−〉ρab

δ(ω−ω′
1 −ω′

2 −ω′
3 −ωab),

= i

2π

∑
ab

ρab〈〈I |VLG(ω)V−G(ω−ω′
1)V−G(ω−ω′

1−ω′
2)V−[G(ω−ω′

1−ω′
2−ω′

3)−G†(ω−ω′
1−ω′

2 − ω′
3)]|ab〉〉.

(31)
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Expanding in eigenstates finally gives

〈VLG(ω)V−G(ω − ω′
1)V−G(ω−ω′

1−ω′
2)V−〉ρab

=
∑
cde

ρab[μ̄caμ̄dcμ̄beμ̄ed Gcb(ω−ω′
1−ω′

2)Gdb(ω−ω′
1) (Geb(ω) − Gde(ω))

+ μ̄caμ̄bdμ̄ecμ̄de Gad (ω−ω′
1−ω′

2)Gcd (ω−ω′
1) (Ged (ω) − Gce(ω))

+ μ̄ecμ̄deμ̄bd μ̄ac Gcb(ω−ω′
1−ω′

2)Gcd (ω−ω′
1)(Ged (ω) − Gce(ω))

+ μ̄eaμ̄deμ̄cd μ̄bc Gac(ω−ω′
1−ω′

2)Gad (ω−ω′
1) (Gae(ω) − Ged (ω))].

The equilibrium limit for TWM and FWM signals can be
obtained in a similar way as was done in Eq. (11).

Below we present the FWM signal for the three-level model
system, shown in Fig. 1(a). The complex field amplitude
contains three monochromatic modes and a spectrally broad
Gaussian probe field. E(t) = ∑3

j=1 Ej exp(ikj rj − iωj t) +∫
dω
2π
E4(ω) exp(ikr − iωt), where the probe field E4(ω) =√

2π
σ

exp[(ω − ω̄c)2/2σ 2]. We select the following phase
matching direction for the signal k = k1−k2+k3. The signal
is calculated using Eq. (30). As before, we assume that the
system is in a maximally coherent state. Various Liouville
space pathways and corresponding expressions for the FWM
signal are given in Appendix A. In Fig. 2(a) we display the
signal starting with a population S(3)

pop(ω) vs the detuning � =
ω−ω1+ω2−ω3. Various peaks correspond to the different
quantum pathways of matter represented by frequency-domain
propagators, which depend on some frequency combinations
of the incoming field. The � = 0 peak corresponds to a
detected frequency ω = 1.35 eV and is marked by an arrow.
For the system initially prepared in a coherence, the original
peak at � = 0 splits into two peaks at � = ±ωab, as marked
by two arrows in Fig. 2(b). The spectra in (a) and (b) are
not identical, as different matter pathways contribute to the
signal if the system is initially prepared in a population

FIG. 2. (Color online) Plot for four FWM signal vs the detuning
from the phase matching � = ω −ω1 +ω2 −ω3 for different initial
conditions: S(3)

pop – (a), S
(3)
coh – (b), S

(3)
total (black) and S(3)

pop (red, dotted)
– (c), and S(3)

pop (black) and S(3)
eq (red, dotted) – (d). A single arrow

in (a) and two arrows in (b) correspond to the splitting of a single
peak in population in two new resonant peaks in the presence of
coherence as � = 0 is replaced by � = ±ωab. The parameters are
given as follows: ωa = 0 eV, ωb = 0.4 eV, ωc = 1.2 eV, ω1 = 1.1 eV,
ω2 = 0.75 eV, ω3 = 1.0 eV, ω̄c = 0.5 eV, σ = 10 eV, η = 0.002 eV.

or in coherence. In Fig. 2(c) we compare the total signal
S

(3)
tot (ω) = S(3)

pop(ω) + S
(3)
coh(ω) with the signal coming only due

to the population S(3)
pop(ω). The effect of initial coherence in the

total signal is significant and many single-photon resonances
appear much stronger in the presence of coherence. In Fig. 2(d)
we compare the signal obtained for a system initially prepared
in a nonequilibrium population state vs equilibrium state. Note
that the data for the population is scaled. The signal contain
the same number of peaks but with different magnitude. The
difference is solely due to the nonequilibrium preparation
of the initial state. The two spectra coincide in the limit
τ0 → −∞, whereby Ē → Ẽ .

IV. LINEAR RESPONSE OF A STRONGLY
DRIVEN SYSTEM

A. Dressed state description for a strongly
driven three-level system

So far we did not specify how the system has been prepared
in the stationary superposition of quantum states. We now
consider a specific type of preparation using a strong driving
field. We examine the linear absorption of a three-level system,
shown in Fig. 3, which is first prepared in a nonstationary
state by driving the two lower levels |a〉 and |b〉 with a
strong monochromatic field of frequency ω0. The system is
further in contact with a thermal bath that causes dephasing
and relaxation. We consider a linear measurement taking this
nonstationary state as an initial state. The system plus bath is
described by the Hamiltonian

H (t) = H0(t) + HB + HSB,

H0(t) =
∑

i=a,b,c

�ωi |i〉〈i| − μE0

2
[eiω0t |a〉〈b| + e−iω0t |b〉〈a|],

HB =
∑

k

�ωka
†
kak,

HSB = �

∑
i �=j=a,b,c,i<j

a
†
k|i〉〈j | + H.c., (32)

where H0(t) is the Hamiltonian for the system including the
interaction due to the driving field. ak(a†

k) is the bosonic
annihilation (creation) operator for the bath, represented by
the Hamiltonian HB and HSB as the system-bath coupling
Hamiltonian. The driving electric field Ed (t) = E0 cos(ω0t),
and ω0 is near resonant with the low-energy states |a〉 and
|b〉. The Schrödinger picture evolution of the reduced density
matrix in the laboratory frame is given by the Bloch equations
ρ̇(t) = L(t)ρ(t) (see Appendix B). The driving field couples
the population of the two low-energy states, i.e., ρaa and
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FIG. 3. (Color online) Level scheme: Three-level system with
two lower states |a〉 and |b〉 and one upper state |c〉. The states |a〉
and |b〉 are driven by a strong monochromatic field with frequency
ω0. The optical transitions are allowed between levels |a〉 → |c〉 and
|b〉 → |c〉.

ρbb, with its coherence ρab and maintains a finite long-time
coherence.

We shall probe this system prepared in a nonstationary
state at time τ0 with a weak optical field E(t) which allows
transitions between the states |a〉 → |c〉 and |b〉 → |c〉. We
write the light-matter interaction Hamiltonian in the RWA as

Hint(t) = E(t)V † + E∗(t)V, (33)

where V = ∑
i=a,b μic|i〉〈c| is now the deexcitation operator.

The contribution to the signal comes from various Liouville
space pathways starting with populations and coherences.
Corresponding expressions can be obtained from the dia-
grams shown in Fig. 4 following standard diagrammatic
rules [30]. The total signal is S

(1)
tot (ω; ω0,�) = S(1)

pop(ω; ω0,�) +
S

(1)
coh(ω; ω0,�). It depends parametrically on the optical fre-

quency ω0 and the Rabi frequency � = μE0/2� of the driving
field. For a system initially prepared in a population state
[diagrams (a1)–(a8) in Fig. 4] we obtain (see Appendix B)

S(1)
pop(ω; ω0,�)

= 2

�

(
ρ̃ss

aa − ρ̃ss
cc

)
Im[E∗(ω)(E(ω)μacμcaG̃ca;ca(ω−ω0)

+ E(ω+ω0)μbcμcaG̃cb;ca(ω))]

+ 2

�

(
ρ̃ss

bb − ρ̃ss
cc

)
Im[E∗(ω)(E(ω)μbcμcbG̃cb;cb(ω)

+ E(ω−ω0)μacμcbG̃ca;cb(ω−ω0))], (34)

and for initial coherences [diagrams (a9)–(a12) in Fig. 4] we
get

S
(1)
coh(ω; ω0,�) = 2

�
Im

[
E∗(ω)

(
[E(ω+ω0)μbcμcaG̃cb;cb(ω)

+ E(ω)μacμcaG̃ca;cb(ω−ω0)]ρ̃ss
ab

+[E(ω − ω0)μacμcbG̃ca;ca(ω−ω0)

+ E(ω)μbcμcbG̃cb;ca(ω)]ρ̃ss
ba

)]
, (35)

where the propagator G̃kl;mn(ω) = 〈〈kl|(ωI − iL̃)−1|mn〉〉,
and I is the identity matrix in Liouville space. L̃ is defined in
Appendix B. In the expression for the signal the ω0 dependence
enters through the field as well as the retarded propagator.
The presence of ω0 makes the signal phase dependent. When

FIG. 4. Ladder diagrams for a three-level model system driven by
a monochromatic field. Diagrams [(a1)–(a8)] are for initial conditions
starting with population states. Diagrams [(a9)–(a12)] are for initial
conditions with coherence states. Time is increasing from bottom to
top.

ω0 = � = 0 we recover the equilibrium result [diagrams (a1),
(a3), (a5) and (a7)] and the signal reduces to

S(1)
eq (ω) = 2

�
Im

[
|E(ω)|2

∑
i=a,b

(
ρss

ii − ρss
cc

)
μicμci G̃ci;ci(ω)

]
,

(36)

which solely depends on the power spectrum of the field and
is independent of its phase.

B. Simulations of the linear response of a strongly
driven three-level system

In the following numerical calculations we first solve
for the steady state ρ̃ss using the master equation given in
Appendix B [see Eq. (B1)] and then calculate the linear
signal using Eqs. (34) and (35). We use the linearly chirped
Gaussian electric field E(ω) given in Eq. (21). Figure 5(a)
shows the equilibrium case when there is no driving, i.e.,
ω0 = � = 0. The signal then shows two peaks for the dipole
transitions between the states |a〉 → |c〉 and |b〉 → |c〉. The
peak at ω = ωac is much stronger compared to the one at
ωbc, since ρaa − ρcc � ρbb − ρcc at equilibrium. Figure 5(b)
depicts the static situation with ω0 = 0 but finite �. This
static coupling between states |a〉 and |b〉 renormalizes
the energy values for these levels. These new energies
are given by ω′

a = 1
2 (ωa + ωb) − 1

2 (4�2 + ω2
ba)

1
2 and ω′

b =
1
2 (ωa + ωb) + 1

2 (4�2 + ω2
ba)

1
2 , with the gap between the two

energy states being (4�2 + ω2
ba)

1
2 (see Fig. 6 at ω0 = 0). Here
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FIG. 5. Linear transmission signal S(1)(ω) for a strongly driven
three-level model system as a function of detected frequency ω for
two different cases: (a) no driving � = 0, ω0 = 0; (b) static coupling,
ω0 = 0, � = 0.05 eV. Other parameters are ωa = 0 eV, ωb = 0.01 eV,
ωc = 1.0 eV, kBT = 0.025 9 eV, γba = 0.004 eV, γca = 0.000 1 eV,
γcb = 0.000 2 eV. Parameters for the electric field are T0 = 0.14 fs,
ω̄c = 0.5 eV, φ′′ = 0.

ωba = ωb − ωa . The signal shows two peaks at ω = ωc − ω′
b

and ω = ωc − ω′
a .

We next turn to the case of periodic driving with finite ω0.
Figure 7(a) depicts the signal S(1)

pop(ω) generated by the system
prepared initially in the population state given by a field with
moderate strength � < ω0. In the presence of a monochro-
matic field the atomic wave function oscillates with four
different frequencies [9] (see Fig. 6): ωa − 1

2 (�ab ± �′) and
ωb + 1

2 (�ab ± �′), where �ab = ω0 − ωba and �ac =ω0−
ωca are the detuning frequencies and �′ = (4�2 + �2

ab)
1
2 . To

that end we observe four peaks in the signal, which corresponds
to following resonance frequencies: ωca − 1

2 (�ab ± �′) and

ωcb + 1
2 (�ab ± �′). Similarly, we obtain the signal S(1)

coh(ω) for
the system initially prepared in coherence. Figure 7(b) contains
the same four peaks as in Fig. 7(a) but with the different
intensity profile compared to the population contribution, due
to different quantum pathways contributing to the signal. The
overall intensity is suppressed, as coherence contribution is
always weaker than the population. The total signal S

(1)
tot (ω)

is depicted in Fig. 7(c) and is dominated by the population
contribution.

So far we discussed moderate driving �′ < ω0. In this
case the gap between peaks 1 and 2 and between peaks 3
and 4 is �′, whereas the gap between peaks 1 and 3 and
between 2 and 4 is ω0 (see Fig. 6). For strong driving �′ > ω0,

FIG. 6. Frequency spectrum for the three-level system with
lower two levels driven by a strong field with frequency ω0. Here
�ab = ω0 − ωba and �′ = (4�2 + �2

ab)
1
2 . For details see Ref. [9].

FIG. 7. Left column: S(1)
pop(ω) – (a), S(1)

coh(ω) – (b), S(1)
tot (ω) – (c) for

moderate driving � = 0.005 eV, ω0 = 0.01 eV. Right column: the
same as the left but for the strong driving � = 0.05 eV, ω0 = 0.01 eV.
Other parameters are the same as in Fig. 5.

due to the level crossing of the energy spectrum the gap
between peaks 1 and 2 and between 3 and 4 becomes ω0,
whereas the gap between 1 and 3 and between 2 and 4 is
�′. The corresponding signals generated from the system
initially prepared in the population state are shown in Fig. 7(d).
The coherence contribution is shown in Fig. 7(e) and the
total signal is plotted in Fig. 7(f). Strong driving results in
a higher frequency resolution in the spectra where all four
peaks are well separated in frequency. Furthermore, the strong
driving enhances the population contribution and suppresses
the coherence contribution to the signal.

The effect of level crossing and dependence of the signal
with respect to ω0 and � for a broad range of parameters
is shown in Fig. 8. Figure 8(a) depicts the absolute value
of the signal |S(1)(ω)| vs the detected frequency ω and the
Rabi frequency � for a fixed value of ω0 = 0.02 eV. The
signal clearly shows four peaks with fixed splitting equal to
ω0 between the nearest peaks (1 and 2) and (3 and 4). At the

FIG. 8. (Color online) (a) Absolute value of linear transmission
signal |S(1)(ω)| for three-level model system vs ω and � at fixed ω0 =
0.02 eV. (b) The same signal but vs ω and ω0 at fixed � = 0.1 eV.
Other parameters are the same as in Fig. 5.
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FIG. 9. (Color online) (a) 2D contour plot of absolute value linear transmission signal |S(1)(ω)| vs detected frequency ω and chirp rate
φ′′ starting with initial population, (b) starting with coherence, and (c) the total signal. The values of the parameters are ωba = 0.05 eV,
ωca = 1.0 eV, ω0 = 0.05 eV, � = 0.15 eV, ω̄c = 0.3 eV. Other parameters are the same as in Fig. 5.

same time the gap between peaks 1 and 3 and between 2 and 4
is �′, which increases linearly with �. Figure 8(b) represents
the signal vs ω and field frequency ω0 for a fixed value of
� = 0.1 eV. For small ω0 the separations between the the peaks
are not well resolved. However, for higher ω0 the separation
between the nearest peaks increases linearly with ω0.

In Fig. 9 we display the chirp rate dependence of the linear
signal. If the system is initially prepared in the population,
the signal S(1)

pop shows oscillatory behavior for all four peaks
with respect to the chirp rate due to the error function in
the field Ē . The period of oscillations for the (1 and 2) pair
of states with high energy is slightly shorter than for the (3
and 4) pair of states with low energy. This is due to the central
frequency of the pulse (ω̄c = 0.3 eV) which results in the
faster oscillation of ωca compared to ωcb. This asymmetry is
enhanced for the case when the system is prepared initially
in coherence. Figure 9(b) depicts the S

(1)
coh, where in addition

to the error function, the nonlinear phase dependence comes
from the oscillating exponent. However, since the total signal
S

(1)
tot is dominated by the population contribution, the spectra

in Fig. 9(c) is nearly indistinguishable from the population
contribution alone. Similar population-dominating behavior
of the total signal was observed in Fig. 1. However, unlike
Fig. 1, where we did not address the details of the preparation
in a driven system, the initial conditions can be controlled
by the driving field. In fact, the steady-state populations and
coherences depend differently on the parameters of the driving
field [8] such as � and ω0, which makes it possible, in principle,
to control relative contributions of populations and coherence
and extract a pure coherence contribution.

To demonstrate the effect of the control of the population
or coherence contributions to the signal, we examine first
the steady-state density matrix elements as a function of
� and ω0. Figures 10(a) and 10(b) show the steady-state
populations ρaa and ρbb, respectively, as a function of ω0

for the fixed value of the Rabi frequency �. For given
parameters ρaa (ρbb) are symmetric functions of its argument
which reaches its minimum (maximum) at the resonance
frequency ω0 = 0.05 eV. Both populations are concentrated
around the value of 0.5, as the total populations of all states
are always unity and ρcc = 0 in the steady state. The same
applies to the imaginary part of the coherence Im[ρab], as

shown in Fig. 10(d) with the value changing from −0.01
to −0.07. On the other hand, the real part of the coherence
Re[ρab] is an asymmetric function of its argument ranging
from 0.2 to −0.2 and reaches zero at ω0 = 0.05 with the
maximum value around ω0 = 0.035 eV and ω0 = 0.055 eV.
Therefore we have identified two parameter regimes when
the coherence contribution is substantial with the steady-state
value of 0.2 (� = 0.01 eV, ω0 = 0.035 eV – parameter regime
I) and a regime when it can be neglected (� = 0.01 eV,
ω0 = 0.05 eV – parameter regime II). Figure 10(e) shows the
oscillations of the population contribution with respect to the
nonlinear phase φ′′ used for parameter regime I. Due to weak
driving � = 0.01, not all four peaks depicted previously in
Fig. 9 are well resolved. In fact, there is one strong peak
at ω = 0.98 eV and two weak peaks at ω = 0.94 eV and
ω = 1.0 eV. Coherence contribution to the signal is shown in
Fig. 10(f). In this case all three peaks are manifested much
stronger. Finally, for the total signal shown in Fig. 10(g) we
see that out of three peaks the strong peak at ω = 0.98 eV and
weak peak at ω = 0.96 are suppressed, whereas the weak peak
at ω = 1.0 eV is enhanced compared to the pure population
contribution shown in Fig. 10(e). This is a manifestation of
the strong coherence. In the parameter regime II the field
frequency is ω = 0.05 eV and the corresponding value of the
steady-state coherence drops by roughly a factor of 3. In this
case the population contribution shown in Fig. 10(h) dominates
over the coherence contribution shown Fig. 10(i), and the total
signal in Fig. 10(j) is completely dominated by the population
contribution. Therefore, a driven preparation allows one to
selectively manipulate the initial conditions of the system
and separate the quantum pathway contributions from initial
populations and coherences to the linear absorption signal.
Note that similar analysis can be performed if we instead fix the
value of ω0 and change the intensity of the driving field via �.

V. CONCLUSIONS

We have calculated the linear and nonlinear frequency-
domain optical signals for systems prepared in a nonequilib-
rium state. The generalized nth-order susceptibility χ̃ (n) then
depends on n + 1 independent frequency variables rather than
n, which is the case for systems initially in equilibrium. This
nonequilibrium state results in a nontrivial phase dependence
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FIG. 10. (Color online) First row: Density matrix elements vs ω0 for � = 0.01 eV, population ρaa – (a), ρbb – (b), coherence Re[ρab] – (c),
and Im[ρab] – (d). Second row: 2D plots for the linear transmission signal |S(1)(ω)| vs detected frequency ω and chirp rate φ′′, starting with
initial population – (e), starting with coherence – (f), and the total signal – (g) for � = 0.01 eV and ω0 = 0.035 eV. Third row: The same as
second row but for � = 0.01 eV and ω0 = 0.05 eV. Here ωba = 0.05 eV, ωca = 1.0 eV. Other parameters are the same as in Fig. 5.

of the electric field, already in the linear signal, even if the
system is initially in a population state. This phase dependence
is strongly enhanced by initial coherences. Furthermore, we
predict the new resonances in nonlinear signals that depend
on the frequency difference between the initially prepared
coherent superposition of molecular states. We then addressed
a particular case of the initial preparation of the system.
We investigated a three-level system with two lower-energy
states strongly driven by a monochromatic field. In this case
the driving field frequency ω0 generates a phase-dependent
linear signal. Performing numerical simulations, we show that
depending on the strength of the driving field via its Rabi
frequency, the relative contributions to the signals due to initial
populations and coherences can be controlled and even a pure
coherence contribution can be extracted.

The new resonances and phase dependence demonstrated
in the present work are closely related to quantum coherences.
For instance, the atomic gas strongly driven with microwave
radiation allows one to alter detailed balance conditions and
change the transmission properties of the optical pulses under
certain conditions for electronic transitions and parameters of

the driving and probe fields. These effects have been studied
in cold alkali gases, where effects such as lasing without
population inversion [13–15], electromagnetically induced
transparency [31], and slow light [32,33] were observed.
These effects have also been observed in semiconductor
quantum dots [34,35] and heterostructures [36,37]. These
fundamental effects are typically examined through simple
linear transmission or absorption experiments well described
by our formalism. Furthermore, the parameter regime for
observation of coherence effects is very similar to the one
used in the simulations in Figs. 5–10. The power of the
approach presented in this paper is not limited to linear
experiments. The results of Eqs. (26)–(31) are described in
terms of Liouville space electronic Green’s functions and thus
allow one to extend quantum coherence effects to higher-order
nonlinear optical measurements exploring interplay between
coherence and many-body effects in atomic, molecular, and
solid-state systems. These include electron and nuclear dy-
namics, nonadiabatic dynamics, chemical reactions, and other
many-body effects. We examined a series of measurements
and their understanding in the context of spectroscopy of,
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e.g., strongly driven systems. We demonstrated how electronic
and vibrational structure and the dynamics of molecules are
influenced by strong driving fields. The practical applications
of our formalism in the context of quantum coherence effects
discussed above have great potential in solid-state technology.
In particular, in recent years quantum coherence in nitrogen va-
cancy (NV) defect centers in diamond show great promise for
quantum information processing [38], magnetometry [39–41],
and electrometry [42]. The recently measured temperature de-
pendence of the zero-field splitting constant [43,44] indicates
that it may also be used as an atomic temperature sensor.
The broadband excitation of the NV centers in diamond with
chirped pulses [45] allow quantum control of the phases of
single electron spins. The phase dependence of the optical
signals shown by the authors in Fig. 5 of Ref. [45] yields
similar features to our Fig. 7 of the present paper. The
predicted resonances and phase control along with nonlin-
ear optical measurements can be tested in these solid-state
systems.
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APPENDIX A: FOUR-WAVE MIXING SIGNALS

In Fig. 11 we draw all possible Liouville space pathways
(for both initial populations and initial coherences) that
contribute to the FWM signal for the three-level model system
in Fig. 1(a). For diagrammatic rules we refer to Ref. [30]. The
signal is calculated using Eq. (30), considering three incoming
fields Ei ,i = 1,2,3 as monochromatic continuous waves and
the probe field E4 as a spectrally broad pulse. The expression
for the signal for these pathways is given as

S
(3)
a1 (ω; ω1,ω2,ω3)= 2

�
Re

∑
i,j,k∈a,b

ρij

[ E∗
4 (ω)E3E∗

2E1

(ω−ω1+ω2−ω3−ωij + iη)
× μjcμ

∗
kcμkcμ

∗
ic

(ω−ωcj +iη)(ω−ω3−ωkj +iη)
× 1

ω+ω2−ω3−ωcj +iη

]

+ (ω1 ↔ ω3), (A1)

S
(3)
a2 (ω; ω1,ω2,ω3)= 2

�
Re

∑
i,j,k∈a,b

ρij

[ E∗
4 (ω)E3E∗

2E1

(ω−ω1+ω2−ω3−ωij + iη)
× μkcμcjμ

∗
kcμ

∗
ic

(ω−ωck+iη)(ω−ω3+iη)
× 1

ω+ω2−ω3−ωcj +iη

]

+ (ω1 ↔ ω3), (A2)

S
(3)
a3 (ω; ω1,ω2,ω3)= 2

�
Re

∑
i,j,k∈a,b

ρij

[ E∗
4 (ω)E3E∗

2E1

(ω−ω1+ω2−ω3−ωij + iη)
× μkcμcjμ

∗
kcμ

∗
ic

(ω−ωck+iη)(ω−ω1−ωik+iη)
× 1

ω−ω1−ω3−ωic+iη

]

+ (ω1 ↔ ω3), (A3)

S
(3)
a4 (ω; ω1,ω2,ω3)= 2

�
Re

∑
i,j,k∈a,b

ρij

[ E∗
4 (ω)E3E∗

2E1

(ω−ω1+ω2−ω3−ωij + iη)
× μkcμcjμ

∗
kcμ

∗
ic

(ω−ωcj +iη)(ω−ω3+iη)
× 1

ω−ω1−ω3−ωic+iη

]

+ (ω1 ↔ ω3). (A4)

The total signal is S
(3)
total = S

(3)
a1 + S

(3)
a2 + S

(3)
a3 + S

(3)
a4 .

MASTER EQUATION FOR A DRIVEN THREE-LEVEL SYSTEM AND THE LINEAR RESPONSE SIGNAL

In this section we give the details regarding the master equation for the driven three-level system described by the
Hamiltonian given in Eq. (32). We follow the standard set of approximations, such as weak system-bath coupling (second order),
large reservoirs, a wide band of the leads [8,9,30,46], to derive the equations of motion for populations and coherences.

We define a new set of variables (denoted by the tilde symbol) in the rotating frame ρ̃ab(t) = e−iω0t ρab(t), ρ̃ac(t) = e−iω0t ρac(t),
ρ̃bc = ρbc, and ρ̃ii = ρii,i = a,b,c, to obtain the Bloch equation:

˜̇ρaa = i�(ρ̃ba − ρ̃ab) − (γab + γac)ρ̃aa + γbaρ̃bb + γcaρ̃cc,

˜̇ρbb = −i�(ρ̃ba − ρ̃ab) − (γba + γbc)ρ̃bb + γabρ̃aa + γcbρ̃cc,

˜̇ρab = −i�abρ̃ab + i�(ρ̃bb − ρ̃aa) − 1
2 (γab + γba + γac + γbc)ρ̃ab,

˜̇ρac = −i�acρ̃ac + i�ρ̃bc − 1
2 (γac + γca + γab + γcb)ρ̃ac,

˜̇ρbc = −i(ωb − ωc)ρ̃bc + i�ρ̃ac − 1
2 (γbc + γcb + γba + γca)ρ̃bc, (B1)
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FIG. 11. Ladder diagrams for three-level system shown in
Fig. 1(a). Here the states |i〉,|j〉,|k〉 represent two lower-energy states
|a〉 and |b〉 of a three-level system.

where γij ,i,j = a,b,c are the decay rates from the state i

to state j . Note that the driving field couples the population
of the lower two states with its coherence. The crucial
advantage of working with the rotating frame is that the
Liouville operator in this frame L̃ becomes time independent
and the steady-state solution can be obtained. We write
the above equation in matrix form as ˙̃ρ(t) = L̃ρ̃(t), where
ρ̃T = (ρ̃aa,ρ̃bb,ρ̃cc,ρ̃ab,ρ̃ba,ρ̃ac,ρ̃ca,ρ̃bc,ρ̃cb). The transforma-
tion matrix between the laboratory and the rotating frame is
diagonal,

U (t) = diag(1,1,1,eiω0t ,e−iω0t ,eiω0t ,e−iω0t ,1,1), (B2)

where diag represents the diagonal elements of the matrix.
Since ρ(t) = U (t)ρ̃(t), this implies that the propagators in the
two frames are related via

G(t,t ′) = U (t) G̃(t − t ′) U−1(t ′), (B3)

where G̃(t,t ′) = − i
�
θ (t − t ′)eL̃(t−t ′) and G(t,t ′) = − i

�
θ (t −

t ′) T e
∫ t

t ′ dτL(τ ) for t > t ′. We first solve for the steady state
in the rotating frame by demanding ˙̃ρss = 0. Then in the
laboratory frame the solution for nonstationary state ρnss at

a particular time τ0 (taken as the preparation time) is given
as ρnss(τ0) = U (τ0)ρ̃ss , which also means that the coherence
elements oscillate with the driving field frequency ω0, even in
the long-time limit.

We probe the system, prepared in the state ρnss(τ0), with
a weak probe field E(t) which allows transitions between the
states |a〉 → |c〉 and |b〉 → |c〉. We impose the RWA and write
the light-matter interaction Hamiltonian as

Hint(t) = E(t)V † + E∗(t)V, (B4)

where V = ∑
i=a,b μic|i〉〈c|. Given the initial state ρnss(τ0),

we write the expression for the linear signal following Eq. (5)
as

S(1)(ω; ω0,�) = 2

�
Im

[
i� E∗(ω)

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1 E(τ1)

× Tr[VLG(t,τ1)V †
−G(τ1 − τ0)ρnss(τ0)]

]
.

(B5)

Using the relation between the propagators G(t,t ′) and G̃(t −
t ′) given in Eq. (B3) we obtain

S(1)(ω; ω0,�) = 2

�
Im

[
E∗(ω)

∫ ∞

−∞
dteiωt

∫ t

−∞
dτ1 E(τ1)

×〈VLU (t)G̃(t − τ1)U−1(τ1)V †
−U (τ1)〉ρ̃ss

]
.

(B6)

Note that in the last line the average is expressed with respect
to ρ̃ss , which is obtained by using the relation G̃(τ1 − τ0)ρ̃ss =
− i

�
ρ̃ss . By performing Fourier transformation for the field

and the propagator and writing down the matter correlation
function explicitly by reading the diagrams for population and
coherence in Fig. 4 we obtain Eqs. (34) and (35).
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