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Based on studies of four specific networks, we conjecture a general relation between the walk dimensions
dw of discrete-time random walks and quantum walks with the (self-inverse) Grover coin. In each case, we
find that dw of the quantum walk takes on exactly half the value found for the classical random walk on the
same geometry. Since walks on homogeneous lattices satisfy this relation trivially, our results for heterogeneous
networks suggest that such a relation holds irrespective of whether translational invariance is maintained or not.
To develop our results, we extend the renormalization-group analysis (RG) of the stochastic master equation to
one with a unitary propagator. As in the classical case, the solution ρ(x,t) in space and time of this quantum-walk
equation exhibits a scaling collapse for a variable xdw/t in the weak limit, which defines dw and illuminates
fundamental aspects of the walk dynamics, e.g., its mean-square displacement. We confirm the collapse for ρ(x,t)
in each case with extensive numerical simulation. The exact values for dw themselves demonstrate that RG is
a powerful complementary approach to study the asymptotics of quantum walks that weak-limit theorems have
not been able to access, such as for systems lacking translational symmetries beyond simple trees.
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I. INTRODUCTION

Like random walks, quantum walks are rapidly gaining a
central role in describing a considerable range of phenomena,
from experiments in quantum transport [1–4] to universal
models of quantum computing [5,6]. Quantum walks are
the “engine” that drives quantum search algorithms [7],
with the prospect of a quadratic speedup over classical
search algorithms. However, despite considerable efforts, our
understanding of quantum walks still lags behind that of
random walks [8–11], as quantum walks exhibit a much
broader spectrum of behaviors awaiting categorization and
context, even for simple lattices [12–21].

For random walks, the probability density ρ(�x,t) to detect
a walk at time t at site �x, a distance x = |�x| from its origin,
obeys the scaling collapse [9],

ρ(�x,t) ∼ t−
df

dw f
(
x/t

1
dw

)
, (1)

with the scaling variable x/t1/dw , where df is the (possibly
fractal) dimension of the network. On a translationally in-
variant lattice in any spatial dimension d(=df ), it is easy to
show that the walk is always purely “diffusive”, dw = 2, with
a Gaussian scaling function f , which is the content of many
classic textbooks on random walks and diffusion [10,22]. The
scaling in Eq. (1) still holds when translational invariance is
broken in certain ways or the network is fractal (i.e., df is
noninteger). However, anomalous diffusion with dw �= 2 may
arise in many transport processes [9,23,24].

For quantum walks, the only known value for a finite walk
dimension is that for ordinary lattices [25], where Eq. (1)
generically holds with dw = 1, indicating a “ballistic” spread-
ing of the quantum walk from its origin. This value has been
obtained for various versions of one- and higher-dimensional
quantum walks, for instance, with so-called weak-limit theo-
rems [17,20,25–27]. The renormalization-group (RG) method
we have introduced recently [28] provides an alternative
approach, expanding the analytic tools to understand quantum

walks, since it works for networks that lack translational
symmetries. While still short of the mathematical rigor of
existing limit theorems, RG provides principally exact results
in terms of the asymptotic scaling variable x/t1/dw (or
pseudovelocity [29]) whose existence allows us to collapse all
data for the probability density ρ(�x,t), aside from oscillatory
contributions (“weak limit”), as in Eq. (1).

Here we propose a relation bridging random and quantum
walks that elucidates their scaling properties at long times and
distances on arbitrary networks, which is intimately linked
to the dynamics of their spread as well as their algorithmic
performance [30,31]. We find that the walk dimension dw for a
discrete-time quantum walk with a Grover coin is half of that
for the corresponding random walk,

dQW
w = 1

2 dRW
w . (2)

Abstracting from four specific examples used in this paper, this
relation might be rather general, and we show that it holds even
if the walks are anomalous and the geometry lacks translational
symmetry. A similar relation has been obtained for the return
probability of a continuous-time quantum walk [32], where it is
traced to the generic long-time dominance of the ground-state
eigenvalue and the fact that ρ is based on the modulo square
of the site amplitude, instead of linearly in the random-walk
case. However, such a simple connection is not obvious here,
as Eq. (2) is strongly coin dependent.

This ability to explore a given geometry that much faster
than diffusion is essential for the effectiveness of quantum
search algorithms [30,31]. While this value satisfies Eq. (2),
it does little to justify it. [None of the existing theories, for
instance, can distinguish Eq. (2) from, say, dQW

w = dRW
w − 1.]

The simplicity and robustness of the value of dw is surprising,
even on a simple line, d = 1. We can picture ρ(�x,t) as resulting
from the superposition of all paths that lead from the origin
�x0 = 0 to site �x in t steps, weighted by the probability of each
path. Classically, each path merely receives a factor 1

2 for the
probability to branch left or right at every step (in the simplest
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case). Then, all paths have the same weight 2−t , and ρ(�x,t)
becomes distinguished only by the number of paths that can
reach �x, with its variance after t steps, 〈�x2〉 ∼ t , providing
dw = 2. For the widely used description of a discrete-time
quantum walk [13], ρ(�x,t) becomes the modulo squared of
the weighted sum over the very same paths. At any branch,
each path receives a different complex factor to its weight. It
is then the subtle superposition of these complex weights and
their interference in the square modulus that determine the
spread of ρ(�x,t). Although quantum walks may possess extra
internal degrees of freedom, asymptotically, they invariably
result in dw = 1.

The distinct manner in which random walks and quantum
walks attain their respective probability densities ρ(�x,t)
suggests that a relation between their walk dimensions, dRW

w

and dQW
w , should be purely accidental. Any relation would

be limited to a few geometries with special constraints
on quantum interference effects, such as those imposed by
translational invariance. Instead, based on a number of diverse
fractal networks for which we have calculated nontrivial
values of dw for a widely used description of quantum walks,
we find the succinct relation in Eq. (2), without exception,
satisfied. This suggests that the common geometry leaves a
deeper imprint on the long-time behavior of both random
and quantum walks than might have been expected from their
rather distinct dynamics. Such insight could make quantum-
walk-based algorithms more predictable for networks [33].

This paper is organized as follows: In the next section, we
introduce the formulation of the discrete-time quantum walk
that we will use in the RG analysis. In Sec. III, we discuss
the RG procedure using the example of the simplest of our
networks, and we use it to discuss the results for all networks,
with details of the calculations for most of those networks
provided in the Appendix. In Sec. IV we conclude, discussing
the implication of our results for universality, and give an
outlook on future studies.

II. DISCRETE-TIME QUANTUM WALKS

The dynamics for a discrete-time walk with a coin, classical
or quantum, is determined by the master equation,

|�t+1〉 = U |�t 〉. (3)

In the site basis |�x〉 of any network, we can describe the state
of the system in terms of the site amplitudes ψ�x,t = 〈�x|�t 〉.
For a classical random walk, the probability density in Eq. (1)
is simply given by the site amplitude itself, ρ(�x,t) = ψ�x,t ,
while for the quantum walk it is ρ(�x,t) = |ψ�x,t | 2. Accordingly,
the propagator U is a stochastic Bernoulli coin for a random
walk, while it must be unitary for a quantum walk, usually
composed as

U = S(I ⊗ C), (4)

with coin C and shift S. Unitarity, U†U = I, demands [34,35]
that the coin be a unitary matrix of rank r > 1, such that the
site amplitudes ψ�x,t become complex r-dimensional vectors in
“coin” space. For simplicity, this quantum walk is commonly
studied on networks of regular degree r for all �x, so that the
same coin can be applied at every site. Every step consists of a
“coin flip,” the multiplication of ψ�x,t with C, followed by the

TABLE I. Fractal and walk dimensions for the networks con-
sidered here. The classical values for df and dRW

w are known for
DSG [9] and HN3 [38] and are derived here for MK. The values for
dQW

w are determined with the RG. Each case satisfies Eq. (2). We also
provide the values for translationally invariant hypercubic lattices for
reference.

Network df dRW
w dQW

w

Lattice d 2 1
MK3 log4(7) log4(21) ≈ 2.196 1.098079 . . .

MK4 log4(13) log4

(
247
7

) ≈ 2.571 1.285253 . . .

HN3 2 log2(24 − 8
√

5) ≈ 2.612 1.305758 . . .

DSG log2(3) log2(5) ≈ 2.322 1.160964 . . .

shift S that transfers each component of C · ψ�x,t to exactly one
of the r neighbors of �x.

To test Eq. (2) for nontrivial values of dw, we study the
quantum walk on four fractal networks of degrees r = 3 and
4, with the widely used Grover coin [7,21], i.e., the r × r

matrix

C(r)
G = 2

r

⎛
⎜⎜⎜⎜⎝

1 − r
2 1 . . . 1

1
. . .

...
...

. . . 1
1 . . . 1 1 − r

2

⎞
⎟⎟⎟⎟⎠

. (5)

Namely, we study two Migdal-Kadanoff networks [36,37]
(MK3 and MK4), the dual Sierpinski gasket [9,11] (DSG),
and the Hanoi network [38] (HN3). These networks lack
translational invariance but exhibit self-similarity instead.
DSG more closely resembles a 2d lattice, MK networks have
a hierarchical structure, and HN3 is a hyperbolic [39] small-
world network. For each network, the anomalous classical
result for dw of the random walk and its fractal dimension df

are easily obtained via the RG method, which is discussed in
many textbooks on statistical physics [11,37] and on transport
properties [24]. (We have provided a simple primer in the
context of quantum walks in [40].) We describe the application
of RG below for MK3; the RG for MK4, DSG, and HN3
is discussed in the Appendix. By extending RG to quantum
walks [28], we obtain the first exact scaling exponents for
quantum walks on heterogeneous structures. All results are
summarized in Table I.

III. QUANTUM-WALK RENORMALIZATION FOR MK3

The fractal dimension [9,11] is defined via the scaling N ∼
Ldf , where N stands for the number of sites that are at most L

hops away from a given site. For MK3, as shown in Fig. 1, the
number of edges (and hence sites) changes sevenfold between
iterations, while distances between two sites changes fourfold,
implying df = log4(7).

To calculate the walk dimension with RG, we first apply
the Laplace transform [10,11,24],

|�̃(z)〉 =
∞∑
t=0

zt |�t 〉, (6)

to Eq. (3), providing algebraic equations with generalized
hopping operators that now depend on z. For instance, after
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FIG. 1. (Color online) Iterative scheme for the decimation of the
Migdal-Kadanoff network MK3. Interior sites 3, . . . ,6 in the graphlet
(top) are algebraically eliminated [see Eq. (7)] and replaced by a
single edge (bottom) with an effective (“renormalized”) hopping
operator A′ by which the terminal site amplitudes 1,2 on either end
of the edge shift their components between each other. (Edges from
sites 1,2 to sites in equivalent neighboring structures are indicated
by overbars.) While renormalization is shown only for an edge
of type A, types B and C are obtained via cyclic permutation
A → B → C → A. Constructing MK3 for simulations proceeds by
replacing every edge (bottom) by the corresponding graphlet (top)
recursively for k iterations, as discussed in the Appendix.

any number of iterations, MK3 entirely consists of graphlets,
as depicted in the top panel of Fig. 1. For sites 3, . . . ,6, it
represents the linear system of equations [41]

⎛
⎜⎜⎜⎝

ψ̃3

ψ̃4

ψ̃5

ψ̃6

⎞
⎟⎟⎟⎠ =

⎡
⎢⎣

A 0 M B C 0
0 0 B M A C

0 0 C A M B

0 A 0 C B M

⎤
⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃1

ψ̃2

ψ̃3

ψ̃4

ψ̃5

ψ̃6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

with hopping operators A, B, C, and M , where M allows for
self-interaction at each site. (In the original graph M = 0.)
Taking advantage of self-similarity, we express one iteration
of the network in terms of the next smaller one but with
“renormalized” values for the hopping operators. To that end,

we solve for ψ̃3, . . . ,ψ̃6 in terms of ψ̃1 and ψ̃2 and insert the
result into the equations for the remaining site amplitudes,
such that

ψ̃1,2 = Mψ̃1,2 + Aψ̃3,6 + Bψ̃3,6 + Cψ̃
3,6

= M ′ψ̃1,2 + A′ψ̃2,1 + B ′ψ̃2,1 + C ′ψ̃
2,1

, (8)

where primes indicate the renormalized hopping operators
as depicted in the bottom panel of Fig. 1. Repetition then
relates the k + 1 (primed) iterate to the kth (unprimed) iterate,
yielding the RG flow [24,37]

(Ak+1,Bk+1,Ck+1,Mk+1) = RG(Ak,Bk,Ck,Mk), (9)

which characterizes the effective dynamics between domains
of sites of width Lk and Lk+1 by renormalized hopping
operators.

In the case of the unbiased random walk, all the hopping
operators become simple scalars, A = B = C = a, and setting
M = 1 − b, Eq. (9) provides

ak+1 = 2a4
k

b3
k − 4a2

kbk − akb
2
k

,

bk+1 = bk + 3a2
k (2ak − bk)(ak + bk)

b3
k − 4a2

kbk − akb
2
k

,

(10)

with the initial conditions a0 = z/3 and b0 = 1. For z → 1,
the relevant fixed point (describing the infinite system, k →
∞) is a∞,b∞ → 0; the width of the domains grows as Lk ∼
4k which is faster than the reach of the diffusive transport
between them, as represented by ak . With the scaling ansatz
ak = 3−kαk and bk = 3−kβk , we resolve this boundary layer to
find the fixed point β∞ = 3α∞ with the Jacobian eigenvalue
λ = 21 that relates to the rescaling of time, Tk+1 = λTk , via
the Tauberian theorems [10,11,24]. Then, Lk+1 = 4Lk and
Tk ∼ L

dw

k from Eq. (1) finally yield dRW
w = log4(21).

For the quantum walk, the hopping operators now are matri-
ces in coin space, and the algebra gets more involved. Iterating
the matrix-valued RG flow in Eq. (9) numerically suggests that
all matrices can be parametrized with merely two scalars, most
conveniently in the form {A,B,C} = a+b

2 (P{1,2,3} · CG) and
M = a−b

2 (I · CG), where the 3 × 3 matrices [Pν]i,j = δi,νδν,j

(with
∑3

ν=1 Pν = I) facilitate the shift of the νth component
to a neighboring site. The RG flow closes for

ak+1 = −9ak + 5a3
k + 9bk + 3akbk − 17a2

kbk − 3a3
kbk + 3b2

k + 14akb
2
k − 3a2

kb
2
k − 18a3

kb
2
k

−18 − 3ak + 14a2
k + 3a3

k − 3bk − 17akbk + 3a2
kbk + 9a3

kbk + 5b2
k − 9a2

kb
2
k

,

bk+1 = −3ak − a2
k + 3bk + 4akbk − 3a2

kbk − b2
k + 3akb

2
k + 6a2

kb
2
k

6 + 3ak − a2
k − 3bk + 4akbk + 3a2

kbk − b2
k − 3akb

2
k

,

(11)

with a0 = b0 = z. It can be shown that |ak| = |bk| ≡ 1 for all
k, reducing the RG parameters to just two real phases for ak,bk .

As explained in Ref. [28], the classical fixed-point anal-
ysis above fails for the quantum walk. Unitarity demands
that information about ρ(�x,t) has to be recovered from an
integral involving ψ̃�x[ak(z),bk(z)] around the unit circle in
the complex-z plane. It is the scaling collapse of {a,b}k(z) ∼

f{a,b}(λk arg z), and, consequently, of any observable function
of ψ̃�x , over a finite support that allows us to approximate
dw recursively with arbitrary accuracy. An illustration of the
collapse for, say, the phase of bk is shown in Fig. 2. Equivalent
plots can be found in the Appendix for MK4, HN3, and DSG.

To justify these RG predictions for dw, we resort to direct
simulation of quantum walks to test Eq. (1). Those simulations
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FIG. 2. (Color online) Scaling collapse for MK3 of the phase of
bk in Eq. (11) near the fixed point z = 1 with λ = √

21. The inset
shows the region around the first intersection. In the main panel,
k = 4,6, . . . ,14, while k = 50,52, . . . 60 for the inset, corresponding
to a system size of MK3 with up to N ≈ 760 ≈ 1051 sites.

cannot reach as extreme a system size as RG, but the collapse
of the probability density ρ(x,t) over the entire network
illustrates the consistency with the RG predictions, as shown
in Fig. 3 for all four networks considered here.

IV. CONCLUSIONS

We have shown how to apply RG to obtain the scaling
for the limit distribution in Eq. (1) for discrete-time quantum
walks on several network for which RG is exact. This study
demonstrates that RG can deliver unprecedented insights into
the dynamics of quantum processes on systems that lack
those symmetries familiar from lattices, hypercubes, trees,
etc., such as translational invariance. While RG is limited
to specific networks such as those considered here (which
may not themselves be of technical importance), conceptually,
the accumulation of the obtained results suggests a larger
picture. Our findings hint at a deep, residual connection
between classical and quantum walks based on the geometry
of the network they share, which is surprising in light of the
often dramatic quantum interference effects that distinguish
quantum walks from random walks. The conjecture in Eq. (2)
is likely not a trivial result. We have evidence that this simple
relation holds only for the Grover coin, which has the property
of being reflective, making it its own inverse. Other coins
without that property, indeed, lead to different asymptotic
limits, as we will describe elsewhere. This raises interesting
questions regarding the range of possible universality classes
of these results and their origin, a central concern of RG [37]
that has remained largely unexplored for quantum walks [28].
In turn, it is straightforward to show that, asymptotically,
random walks on these networks are independent of the
specific choices for a Bernoulli coin. However, for quantum
walks, the most general unitary coin matrix C for r = 3 would
already contain six free parameters that could impact the
dynamics in unforeseen ways and could lead to significant
means of control.
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FIG. 3. (Color online) Data collapse of the probability density
ρ(|�x|,t) according to Eq. (1) with df and dw given in Table I. The
data are obtained by direct simulations of quantum walks on the
four different networks in this study. The inset of each panel shows
the raw data, from left to right for increasing time in each case.
The first panel concerns MK3 with N = 2 × 78 ≈ 107 sites at times
t = 2j , j = 13, . . . ,16. In the main panel, the data are collapsed
with df = log4(7) and dQW

w = log4(21)/2. The second panel concerns
MK4 with N = 2 × 136 ≈ 107 sites at t = 2j , j = 12, . . . ,15,
collapsed with df = log4(13) and dQW

w = log16(247/7). The third
panel concerns HN3 with N = 224 ≈ 1.7 × 107 sites at t = 2j , j =
11, . . . ,14, collapsed with df = 2 and dQW

w = log4(24 − 8
√

5). The
fourth panel concerns DSG with N = 315 ≈ 1.4 × 107 sites at t = 2j ,
j = 11, . . . ,14, collapsed with df = log2(3) and dQW

w = log2(5)/2.
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APPENDIX

While the methods presented for MK3 in the main text
directly transfer to the other networks, we shall outline the
procedure for them in more detail here. First, we consider
the case of MK4, then we will discuss HN3 and DSG, which
has been discussed previously [28]. MK4 is similar to MK3
except that it features a different degree for each site and
thus establishes the conjecture for a different (rank r = 4)
Grover coin than for the other networks considered here, which
all use a Grover coin of rank r = 3. We have focused on
the lowest-rank coins because higher-ranked coins generally
make the algebra more complex. However, this r = 4 result
demonstrates that the conjecture is likely robust, irrespective
of the degree of sites.

RG for MK4. MK4 follows the same idea as MK3 as
every edge is replaced by multiple nodes and edges from one
generation to the next. The smallest four-regular graph that
can be consistently labeled with four different edge types such
that every node is connected to one of each kind contains six
nodes (see Figs. 4). From the graphical representation, we can
directly read off the linear system for the Laplace-transformed
amplitudes on the interior nodes:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃3

ψ̃4

ψ̃5

ψ̃6

ψ̃7

ψ̃8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

A 0 M B 0 0 D C

0 0 B M D C 0 A

0 A 0 D M B C 0
0 0 0 C B M A D

0 0 D 0 C A M B

0 0 C A 0 D B M

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃1

ψ̃2

ψ̃3

ψ̃4

ψ̃5

ψ̃6

ψ̃7

ψ̃8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)
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FIG. 4. (Color online) Iteration scheme for MK4. The six interior
nodes 3, . . . ,8 and all their connections (top) are replaced by direct
connection between nodes 1 and 2 (bottom). The renormalized
hopping parameter A′ depends on all hopping matrices in the previous
step. The construction of the network can be seen as the reverse
process, inserting six nodes into every edge leaving the hopping
parameter unchanged. The nodes labeled with overbars represent
analogous nodes where the same rule is applied. The scheme for
B, C, and D is obtained by cyclic permutation of the shown
graphlets.

Once the solution in terms of ψ̃1 and ψ̃2 is found, we can plug
it into the equations for, say, ψ̃1,

ψ̃1 = Aψ̃3 + Bψ̃3̄ + Cψ̃ ¯̄3 + Dψ̃ ¯̄̄3
, (A2)

to find the renormalized system

ψ̃1 = A′ψ̃2 + B ′ψ̃2̄ + C ′ψ̃ ¯̄2 + D′ψ̃ ¯̄̄2
. (A3)

By studying the first few iterations, we choose the ansatz

Ak = a + b

2
(P1 · CG) , Bk = a + b

2
(P2 · CG) ,

Ck = a + b

2
(P3 · CG) , Dk = a + b

2
(P4 · CG) ,

Mk = a − b

2
· (I · CG),

(A4)

capturing the evolution of all matrices. Pν are the 4 × 4
equivalents of the previously defined matrices [see Eqs. (A4)].

Here the recursions for the parameters read

ak+1 = −8ak + 5a3
k + a4

k + (
8 + 4ak − 22a2

k − a3
k + 5a4

k

)
bk+

(
4 + 21ak + 3a2

k − 30a3
k − 4a4

k

)
b2

k + ak

(
5 + 13ak − 4a2

k − 16a3
k

)
b3

k

−16 − 4ak + 13a2
k + 5a3

k + (−4 − 30ak + 3a2
k + 21a3

k + 4a4
k

)
bk + (

5 − ak − 22a2
k + 4a3

k + 8a4
k

)
b2

k + (
1 + 5ak − 8a3

k

)
b3

k

,

bk+1 = −8bk + b3
k + a3

kbk

(
5 + 4bk − 16b2

k

)+ a2
k

(
4 + 13bk − 26b2

k − 12b3
k

) + ak

(
8 − 12bk − 18b2

k + b3
k

)

−16 − 12ak + a2
k + a3

k + 2
(
2 − 13ak − 9a2

k

)
bk + (

5 + 13ak − 12a2
k − 8a3

k

)
b2

k + 4ak(1 + 2ak)b3
k

, (A5)
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FIG. 5. (Color online) Rescaling for MK4 of the phase of the
first RG parameter ak in Eq. (A5) around the fixed point z = 1 with

λ =
√

247
7 . The insets show a magnification to illustrate the conversion

towards a step function. In the main panel, k = 2,6,...,14 while k =
20,22,...30 for the inset. This corresponds to a system size of N =
1330 ≈ 1034.

with a0 = b0 = z as the initial conditions. These recursions
resemble those in Eqs. (11), but the degrees of the polynomials
in numerator and denominator are higher. This is a direct
consequence of the higher number of sites eliminated during
one iteration. Again, we have chosen a parametrization where
|ak+1| = |bk+1| = 1 if |ak| = |bk| = 1. The rescaling of the
phase of ak is shown in Fig. 5. The direct simulation for MK4
in Fig. 3 again confirms the RG prediction.

RG for HN3. The derivation of RG equations for HN3 (see
Fig. 6) is slightly more complicated than the above calculations
for MK3 and MK4 for three reasons. First, the recursion on
HN3 requires the introduction of a fourth hopping parameter
D, which is not present in the actual graph but becomes
necessary to close the RG flow. Second, the symmetry of the
hoppings is not preserved by the recursions. This means, after
one decimation step, the matrix representing the hop from site
1 to site 2 is no longer identical to the one from site 2 to
site 1. Third, the rules leading to HN3 inherently distinguish
between even and odd sites. As a result, the self-interaction
terms become different for those two groups. If we make the
ansatz

A =
⎡
⎣

b−a
4

a+b+2c
4 0

0 0 0
0 0 0

⎤
⎦ · CG C =

⎡
⎣

0 0 0
0 0 0
0 0 z

⎤
⎦ · CG

B =
⎡
⎣

0 0 0
a+b+2c

4
b−a

4 0
0 0 0

⎤
⎦ · CG D =

⎡
⎣

0 b−a
4 0

0 0 0
0 0 0

⎤
⎦ · CG

M1 =
⎡
⎣

a+b−2c
4

b−a
4 0

b−a
4

a+b−2c
4 0

0 0 0

⎤
⎦ · CG

M2 =
⎡
⎣

a+b−2c
4 0 0

0 a+b−2c
4 0

0 0 0

⎤
⎦ · CG, (A6)

1 2 34 51

2

3A B

C

C

C
D

FIG. 6. (Color online) Illustration of the decimation scheme for
HN3. Growing the network means inserting new nodes (4 and 5)
and connecting them accordingly (top row). The graph at generation
k = 5 is shown in the lower panel. The RG decimation requires an
extra set of hopping matrices [D, orange (light gray)] in order to close
the recursions, but these are not present in the actual network.

we can take everything into account by writing the linear
system corresponding to the top right graphlet in Fig. 6:

ψ̃4 = AT ψ̃1 + BT ψ̃2 + M1ψ̃4 + Cψ̃5,

ψ̃5 = AT ψ̃2 + BT ψ̃3 + CT ψ̃4 + M1ψ̃5.
(A7)

Here AT represents the transpose of A. As it turns out, this
correctly describes the hopping in different directions (left or
right in the figure).

By solving these equations for ψ̃4 and ψ̃5 and inserting the
result into the equations for the remaining sites,

ψ̃1 = M2ψ̃1 + Dψ̃2 + DT ψ̃ ′
2 + Aψ̃4 + BT ψ̃ ′

5 + Cψ̃∗,
(A8)

ψ̃2 = Dψ̃1 + M2ψ̃2 + DT ψ̃3 + BT ψ̃4 + Aψ̃5 + Cψ̃∗,

where we omitted the equation for ψ̃3 because it is identical to
the first one. Every node is connected to a node of unknown
index ψ̃∗, but the corresponding hopping matrix C does not
change. After some algebra, we find the following recursion
equations for the three RG variables:

ak+1 = ck(−3 + z) − bk[−3 + z + ck(−2 + 6z)]

6 − bk + ck + (−2 + 3bk − 3ck)z
,

bk+1 = ck(3 + z) − bk[3 + z + ck(2 + 6z)]

−6 + bk − ck + (−2 + 3bk − 3ck)z
,

ck+1 = ck + ak(−1 + 2ck)

2 + ak − ck

,

(A9)

with the initial conditions

a0 = z2(1 − 3z)

3 − z
, b0 = z2(1 + 3z)

3 + z
, c0 = z2 . (A10)
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FIG. 7. (Color online) Rescaling for HN3 of the phase of the
first RG parameter ak in Eq. (A9) around the fixed point z = 1.
The inset shows a magnification to illustrate the conversion towards
a step function. In the main panel, k = 10,12, . . . ,30, while k =
60,62, . . . 80 for the inset. This means the largest system size
is N ≈ 1024. Here λ = 21−log2(ϕ)/2, where ϕ = (

√
5 + 1)/2 is the

“golden section” [42].

Again, we have chosen our ansatz such that the variables
remain modulus 1 when they start out that way. This time
we show the rescaling of the argument of the first RG
parameter in Fig. 7. As verification, we have also scaled
the numerically obtained probability density function in
Fig. 3.

RG for DSG. Finally, we consider the DSG again [28] with
this approach (see Fig. 8). In order to make it renormalizable,
we have to introduce a directionality represented by the arrows
for A and B. This just means that applying one hopping matrix,
say A, twice describes the hopping from site 1 to 2 (over site
3), and not site 1 to 3 back to 1. The matrix C is not affected
by this.

The linear system we need to solve in this case reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃4

ψ̃5

ψ̃6

ψ̃7

ψ̃8

ψ̃9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎣

B 0 0 M A 0 0 0 C

A 0 0 B M C 0 0 0
0 B 0 0 C M A 0 C

0 A 0 0 0 B M C 0
0 0 B 0 0 0 C M A

0 0 A C 0 0 0 B M

⎤
⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃1

ψ̃2

ψ̃3

ψ̃4

ψ̃5

ψ̃6

ψ̃7

ψ̃8

ψ̃9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A11)
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FIG. 8. (Color online) The well-known recursion generating the
DSG (top row). To make the positions of the hopping matrices
also self-similar, we have to introduce directionality of the hopping
matrices A and B. The third one, C, is still symmetric. The lower
panel shows the system at generation 4.

The results then have to be plugged into the equations for
ψ̃1, . . . ,ψ̃3:

ψ̃1 = Aψ̃4 + Bψ̃5 + Cψ̃ ′
2,3,

ψ̃2 = Aψ̃6 + Bψ̃7 + Cψ̃ ′′
1 ,

ψ̃1 = Aψ̃8 + Bψ̃9 + Cψ̃ ′′′
1 .

(A12)

Here the algebra is very involved, and we have shown
elsewhere [28] how it can done. There, we showed the scaling
of the parameters and deduced dQW

w from it using the RG. The
scaling plot obtained by direct simulations in Fig. 3 confirms
again the conjecture.
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