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In this paper, we show how to use low-fidelity operations to control the dynamics of quantum systems. Noisy
operations usually drive a system to evolve into a mixed state and damage the coherence. Sometimes frequent
noisy operations result in the coherent evolution of a subsystem, and the dynamics of the subsystem is controlled
by tuning noisy operations. Based on this, we find that universal quantum computation can be carried out by
low-fidelity (fidelity <90%) operations.
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I. INTRODUCTION

Manipulating quantum systems coherently is important for
quantum computation [1], which is believed to have nontrivial
advantages over classical computation. In recent years, per-
sistent quantum memories (e.g., [2]) and precise quantum
operations have been demonstrated with individual qubits or
clusters of a few qubits [3–5]. However, quantum computation
is still a challenge, and one of the main obstacles is the
difficulty to maintain the fidelity of quantum operations when
many qubits are assembled together. Some alternative models
other than the standard model of quantum computation have
been proposed to exploit different mechanisms of processing
quantum information, e.g., adiabatic quantum computation [6],
measurement-based quantum computation [7], and dissipation
quantum computation [8]. In this paper, we will show a
protocol of quantum computation utilizing noisy operations,
i.e., the fidelity of operations is lower than 90%.

Decoherence and operation imperfections always induce
some errors on qubits. The number of errors increases with
the time, the number of operations, and the number of qubits
without error correction, which could finally cause failures
of quantum computing. The theory of fault-tolerant quantum
computation (FTQC) predicts a threshold of the error rate:
if errors occur with a rate below the threshold, errors are
correctable and the computation is reliable [9]. For topological
codes, the error rate threshold is about 1% (one error in a
hundred operations) [10,11], which is among the best records
of the threshold. By combining the idea of noisy-operation
quantum computation proposed in this paper and a topological
code, we find that a high error rate >10% is tolerable for
realistic frequency of operations and coherence time.

In our proposal of quantum computing with noisy op-
erations, we consider a system composed of two coupled
subsystems A and Q, in which subsystem A (actuator) directly
suffers noisy operations, and subsystem Q is a register storing
the quantum state for processing. By frequently performing
noisy operations, subsystem A is decoupled from subsystem
Q and fixed in a mixed state. In this case, subsystem Q
evolves solely and coherently; however, its dynamics depends
on the fixed state of subsystem A [12]. Therefore, by changing
noisy operations to alter the fixed state of subsystem A, one
can effectively tune the dynamics of subsystem Q. Based
on this idea of the control of a quantum system, we will
show that universal and scalable quantum computing can
be achieved with noisy operations. By investing the fault-

tolerance thresholds, we find that these operations can be very
noisy.

The idea of indirect control using projective measure-
ments [13], completely controlled dynamics [14,15], or ini-
tializations [16] of an ancillary system has been studied
theoretically and has applications in hybrid systems composed
of electron spins and nuclear spins [17–21]. If those frequent
operations performed on the actuator subsystem are unitary
rather than noisy, both subsystems can evolve independently
and coherently, which is known as the dynamical decou-
pling [22]. In this paper, we first propose to use noisy
operations with low fidelities rather than high-quality quantum
operations as the resource for processing quantum information.
In this scenario, the actuator subsystem is always fixed in a
mixed state independent of the register subsystem.

II. QUANTUM GATES BASED ON NOISY OPERATIONS

We suppose that the free time evolution of the system is
given by the Hamiltonian H , in which two subsystems are
coupled with each other. The set of operations that can be
performed on the actuator subsystem includes the initialization
operation I(·) = ∑

j |0〉〈j |A · |j 〉〈0|A and unitary operations
{U(·) = U · U †}. Here, {|j 〉A} are the basis states, and {U} are
unitary operators of the actuator subsystem. With imperfec-
tions, operations actually performed, which are respectively
denoted by I ′ and {U ′} for the initialization and unitary
operations, are different from those ideal operations I and {U}.
An imperfect initialization prepares the actuator in a mixed
state rather than the pure state |0〉A, and an imperfect unitary
operation corrupts as well as rotates the state of the actuator
subsystem.

When operations are ideal, by frequently repeating the
initialization I followed by a unitary operation U , the actuator
subsystem is frozen in the state |ψ〉A = U |0〉A. Because
only the actuator subsystem is completely frozen, the whole
system evolves in a subspace with an effective Hamiltonian
Hπ (U ) = |ψ〉〈ψ |AH |ψ〉〈ψ |A as predicted by the quantum
Zeno effect theory [23,24]. Here, the combination of the
initialization and the unitary operation is similar to a projective
measurement with |ψ〉A as the output state.1 When operations
are imperfect, by frequently repeating the noisy initialization

1In the limit of high frequency, both initialization operation
and projective measurement can froze the actuator system in the
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I ′ followed by a noisy unitary operation U ′, the actuator
subsystem is frozen in a mixed state ρU = U ′I ′(1A/dA) rather
than a pure state, where 1A is the identity of the actuator
subsystem, and dA is the dimension of the Hilbert space. Here,
the combined operationU ′I ′ is a projector in the operator space
(U ′I ′U ′I ′ = U ′I ′), which leads to the operator quantum Zeno
effect [12]. Then the whole system evolves, similar to the
normal quantum Zeno effect, with an effective Hamiltonian
H�(U ) = 1A ⊗ TrA(ρUH ). In this effective Hamiltonian, two
subsystems are decoupled, and the effective Hamiltonian
of the register subsystem is given by HQ(U ) = TrA(ρUH ).
Therefore, by changing the noisy unitary operation U ′, i.e.,
changing the fixed state ρU of the actuator subsystem, we
can control the dynamics of the register subsystem. We
would like to remark that, in order to precisely control the
register subsystem, both the system Hamiltonian and noise
in operations, i.e., the map between the operation U and the
effective Hamiltonian HQ(U ), must be known.

In the standard model of quantum computation, a universal
set of quantum gates includes a set of single-qubit gates and
at least one two-qubit entangling gate such as the controlled-
phase gate [1]. In the following, we will give some examples of
implementing gate operations on the register subsystem with
noisy operations on the actuator subsystem. In Sec. III B, we
will show how to prepare and measure the register subsystem.

A. Single-qubit gate

As the first example, we consider two qubits coupled via
the Heisenberg interaction HH = J (σx

Aσ x
Q + σ

y

Aσ
y

Q + σ z
Aσ z

Q).
These two qubits are the actuator subsystem A and the
register subsystem Q, respectively. We model imperfect
operations as a combination of ideal operations and depo-
larizing noise. An operation with depolarizing noise reads
O′ = EεO, where O is the ideal operation, and Eε(·) = (1 −
3ε/4) · + (ε/4)(σx · σx + σy · σy + σ z · σ z) is the depolariz-
ing operation. In this model of noise, the ideal operation is
performed with the probability 1 − ε, while the state of the
qubit is completely destroyed, i.e., turns into the maximally
mixed state, with the probability ε. Under frequent noise
operations, the fixed state of the actuator qubit can always be
written as ρU = (1/2)1A + pxσ

x
A + pyσ

y

A + pzσ
z
A. Then, the

corresponding effective Hamiltonian of the register qubit is
HQ(U ) = J (pxσ

x
Q + pyσ

y

Q + pzσ
z
Q). If only the initialization

is performed, the fixed state is ρ1 = (1 − εi/2)|0〉〈0|A +
εi/2|1〉〈1|A, and the corresponding effective Hamiltonian is
HQ(1) = (1 − εi)Jσ z

Q, where εi is the depolarizing rate of
the noisy initialization. By combining the initialization with
a Hadamard gate, the fixed state is changed to ρH = (2 −
εi − εh + εiεh)/2|+〉〈+|A + (εi + εh − εiεh)/2|−〉〈−|A, and
the corresponding effective Hamiltonian is HQ(H ) = (1 −
εi)(1 − εh)Jσx

Q. Here, |±〉A = (1/
√

2)(|0〉A ± |1〉A), and εh is
the depolarizing rate of the noisy Hadamard gate. Therefore,
in this example, the initialization and Hadamard gate on the

state |ψ〉A. Therefore, although the initialization operation is different
from projective measurement, we still can use the theory of quantum
Zeno effect to predict the effective Hamiltonian.

FIG. 1. (Color online) Error rate of a single-qubit phase gate σ z

on the register qubit implemented with frequent noisy operations on
the actuator qubit. F is the entanglement fidelity [25] of the phase
gate. The error rate (1 − F ) always increases with the depolarizing
rate and decreases with the frequency of noisy operations. Three
contour lines correspond to phase-gate fidelities 99%, 99.9%, and
99.99%, respectively. See Appendix A for details.

actuator qubit are enough for universal single-qubit gates on
the register qubit.

When the frequency of noisy operations is finite, the evo-
lution of the register subsystem is not exactly described by the
effective Hamiltonian, which may result in errors in the register
subsystem. In the previous example of implementing single-
qubit gates, a phase gate σ z

Q on the register qubit is equivalent
to the time evolution described by exp[−iHQ(1)t/�] with
t = �π/[2(1 − εi)J ]. When the frequency of noisy operations
is finite, the fidelity of the phase gate decreases with the
depolarizing rate and increases with the frequency of noisy
operations as shown in Fig. 1. We find that even if the
depolarizing rate is very high (e.g., 80%), a high-fidelity (e.g.,
99%) phase gate can still be achieved (e.g., with the frequency
∼1.5 × 104J/h). Actually, when the frequency approaches
infinite, the depolarizing rate only affects the time cost of
implementing the phase gate, i.e., is limited by the coherence
time.

B. Two-qubit gate

For the two-qubit entangling gate, we consider three qubits
coupled via a three-qubit Ising interaction HI = Jσ z

Aσ z
Q1σ

z
Q2,

where qubits Q1 and Q2 form the register subsystem, and qubit
A forms the actuator subsystem. With frequently initializing
the actuator qubit, the dynamics of two register qubits is
given by the effective two-qubit Ising interaction HQQ(1) =
J (1 − εi)σ

z
Q1σ

z
Q2. And the time evolution exp[−iHQQ(1)t/�]

with t = �π/[4(1 − εi)J ] gives the two-qubit phase gate
RZZ = (1 − iσ z

Q1σ
z
Q2)/

√
2, which can maximally entangle

two register qubits and is identical to the standard controlled-
phase gate up to single-qubit phase gates. In Sec. III A, we will
show how to implement a two-qubit gate with only two-body
interactions.

052328-2



QUANTUM COMPUTATION WITH NOISY OPERATIONS PHYSICAL REVIEW A 91, 052328 (2015)

registers: 

(a) (b) 

core port 
actuators: 

FIG. 2. (Color online) Networks for universal quantum compu-
tation with noisy operations. (a) A network that allows universal
quantum computation. Each register qubit (round) is coupled with
one actuator qubit (triangle) for controlling single-qubit gates and
four actuator qubits (squares) for controlling two-qubit gates. (b) A
network with only two-body interactions. Each double-round register
represents a four-state system encoding two qubits. The triangle
actuator is coupled with only one qubit of the register (the core
qubit), and the square actuator is coupled with both qubits (the core
qubit and the port qubit). Double-round registers are connected by
two-body interactions with actuator qubits (rings) for controlling the
state transfer.

III. UNIVERSAL QUANTUM COMPUTATION WITH
NOISY OPERATIONS

To have a universal quantum computer, we need to integrate
single-qubit gates and two-qubit gates in the same scalable
network. For example, in the two-dimensional network shown
in Fig. 2(a), each register qubit (round) is coupled with an
actuator qubit (triangle) via the Heisenberg interaction HH

for single-qubit gates, and each pair of neighboring register
qubits are coupled with an additional actuator qubit (square)
via the three-qubit Ising interaction HI for two-qubit gates. In
this network, all register qubits form the register subsystem,
and all actuator qubits form the actuator subsystem. We
have discussed how to implement single-qubit gates and the
two-qubit phase gate via the Heisenberg interaction and the
three-qubit Ising interaction, respectively. Gate operations on
register qubits are switched off (switched to 1) by frequently
performing the single-qubit twirling operation E1 (a depolar-
izing operation with the rate 1) on corresponding actuator
qubits. The twirling operation is equivalent to randomly
performing Pauli gates. With frequent twirling operations, an
actuator qubit is frozen in the maximally mixed state ρ =
(|0〉〈0|A + |1〉〈1|A)/2, and then the corresponding effective
dynamics is switched off (the effective Hamiltonian ∝1).
By changing between twirling operations and other noisy
operations, i.e., initialization and unitary-gate operations, a
quantum circuit can be implemented in this network.

A. Two-body-interaction model

The network for universal quantum computation can also be
built with only two-body interactions. In the network shown
in Fig. 2(b), the elementary unit is a complex composed of
two actuator qubits (triangle and square) and a four-state
register particle (double round), e.g., a spin-3/2 particle. Here
two qubits are encoded in each register particle, which are
respectively called the core qubit and the port qubit. The
triangle actuator qubit is coupled to the core qubit via HH.
And the square actuator qubit is coupled to both qubits
via HI, which, however, is a two-body interaction because

core-1 

port-1 

core-2 

port-2 

SW
A

P 

SW
A

P 

Phase G
ate (a) (b) 

I

data qubit 

ancillary qubit + X + X+ X
(c) 

FIG. 3. (Color online) Circuits for (a) the effective two-qubit
phase gate on neighboring complexes, (b) the corresponding op-
erations on actuator qubits, and (c) the measurement distillation.
In (b), zigzag lines represent frequent twirling operations E1, 1
denotes turning off the twirling operation, and I ′ denotes frequent
initialization operations. In (c), both the data qubit and the ancillary
qubit are register qubits, and controlled-phase gates are implemented
with frequent noisy operations on the actuator subsystem. In each
round of the distillation, the ancillary qubit is initialized in the state
|+〉 and measured in the σ x basis.

two qubits are in the same particle. Register particles are
connected via the third kind of actuator qubit (rings). The
coupling between a pair of neighboring register particles and a
ring actuator qubit is the XY-interaction HXY = J [σx

A(σx
C1 +

σx
P 2) + σ

y

A(σy

C1 + σ
y

P 2)], where complex 1 and complex 2 are
two neighboring complexes, C1 and P2 are respectively the
core qubit of complex 1 and the port qubit of complex 2, and
A is the ring actuator qubit. In this network, the information
processed in the quantum computing is stored in core qubits.
Single-qubit gates on core qubits are implemented via triangle
actuator qubits. Two-qubit gates are achieved by the state
transfer between core qubits and port qubits in neighboring
complexes. The XY interaction HXY drives a time evolution
ending up with a swap gate between two qubits C1 and P2 at
the time t = �π/2

√
2J . By frequently performing the twirling

operation E1 on the ring actuator qubit, the XY interaction
can be effectively switched off, and complexes are decoupled.
When a two-qubit phase gate on core qubits C1 and C2 is
required, the twirling operation is turned off for the time t .
Then the free time evolution transfers the state from the core
qubit C1 to the port qubit P2. After a local two-qubit phase
gate on qubits C2 and P2 (via the square actuator qubit) and
another swap gate, a two-qubit phase gate on C1 and C2 is
achieved [see the circuit in Figs. 3(a) and 3(b)]. We would like
to remark that each gate given by the time evolution

e− i
�

HXYt = 1
2

(
σ z

Aσ z
C1 + σ z

Aσ z
P 2 + σ z

C1σ
z
P 2 − 1

)
SWAP

has an additional phase to the net swap gate SWAP =
(σx

C1σ
x
P 2 + σ

y

C1σ
y

P 2 + σ z
C1σ

z
P 2 + 1)/2 depending on initial

states of the port qubit P2 and the ring actuator qubit A.
Fortunately, the additional phases attached with two swap
gates are canceled with each other as they commute with the
two-qubit phase gate. Therefore, the overall operation on two
core qubits C1 and C2 is independent of the initial states of
the port qubit P2 and the ring actuator qubit A.

052328-3



YING LI PHYSICAL REVIEW A 91, 052328 (2015)

103 104 105 106

0

0.1

0.2

0.3

frequency of noisy operations (         ) J/h

th
re

sh
ol

d 
of

 d
ep

ol
ar

iz
in

g 
ra

te
 

FIG. 4. (Color online) Thresholds of the depolarizing rate in
noisy-operation quantum computation. From bottom to top the lines
correspond to distilling measurements for 9, 11, 13, 15, and 17
rounds, respectively. Below the threshold, errors on register qubits
can be corrected with the error correction code. We would like to
remark that thresholds could be further improved by considering
higher frequencies and more rounds of distillations. To obtain these
thresholds, we have assumed that operations performed on actuator
qubits and register qubits are all noisy, and noises are depolarized
with the same depolarizing rate.

B. Initialization and measurement of register qubits

Besides gate operations, preparation and readout of the
state of qubits are also required by quantum computing. Here
we suppose that register qubits can be directly initialized
and measured but with a low fidelity. If gate operations on
register qubits can be implemented with high fidelity, we can
measure the state of a register qubit precisely with the help
of a distillation circuit [see Fig. 3(c)]. In the ideal situation
that there is no error in gate operations on register qubits, an
accurate effective measurement on the data qubit can always be
achieved by repeating the circuit for many times, and the state
of the data qubit can be read (in the σ z basis) from the majority
of measurement outcomes of the ancillary qubit. When gate
operations also have errors, the protocol of reading the data
qubit can be adapted to improve its fidelity (see Appendix A).
Once the state of the data qubit is successfully measured, the
data qubit is initialized in the state either |0〉 or |1〉.

IV. FAULT-TOLERANT QUANTUM COMPUTATION
AND THRESHOLDS

Finally, we would like to show FTQC thresholds of noisy
operations in Fig. 4. For these thresholds, we have considered
using a three-dimensional version of the network shown in
Fig. 2(a) to generate a topology-protected cluster state (see
Appendix A for details), in which errors can be corrected if
less than 3% of qubits are affected by errors [26]. We also
have assumed that all operations are noisy, and noises are
depolarized with the same depolarizing rate. In the result,
for a frequency of 104J/h, the depolarizing rate threshold
is about 20.1%, which corresponds to the error rate 10.05%
for the noisy initialization and measurement and the error rate
15.075% for noisy unitary operations. To obtain the thresholds,

we have neglected the environment-induced decoherence. In
the 17-round distillation case, all operations on register qubits
from initialization to measurement are finished within the time
7(J/h)−1. Hence, if the coherence time is much longer than
7(J/h)−1/3% 	 233(J/h)−1, errors induced by decoherence
occur with a rate much lower than 3% and only reduce the
thresholds slightly. We have also neglected the fluctuation of
interactions and operation noises. A small fluctuation (
1%)
of the interaction strength J and the noise parameter ε will not
affect the threshold significantly.

V. DISCUSSIONS AND SUMMARY

A candidate for realizing noisy-operation quantum compu-
tation is the kind of hybrid system composed of electron spins
and nuclear spins [17–21]. Electron spins in quantum dots can
be initialized and manipulated in tens of picoseconds [27,28]
and can play the role of actuators. Nuclear spins are usually
well decoupled from the microwave and optical pumping
for electron-spin operations and can have an extremely long
coherence time (e.g., hours [2]), hence, can play the role
of registers. With the coupling strength of 1 MHz between
electron spins and nuclear spins, provided noisy operations on
electron spins can be performed in 100 ps, one can operate
nuclear spins in ∼1 μs.

In summary, we have discussed how to use noisy oper-
ations to process quantum information and obtained FTQC
thresholds in an example model. We find that fidelities of
operations can be even lower than 90%. Our results provide a
way to achieve quantum computation by boosting the operation
frequency rather than the operation fidelity. However, we
would like to remark that this protocol of noisy-operation
quantum computation cannot replace error correction codes.
Actually, the error correction is an important component of
the overall protocol. Because quantum computation is the
most complicated task among other applications of quantum
technologies, we believe that the same idea can also be used in
quantum communication and quantum sensing. In this paper,
we have focused on isotropic Heisenberg interactions and
Ising-type interactions as examples. The same idea can be
applied to other types of interactions, e.g., interactions between
electron spins and nuclear spins could be anisotropic. Although
we have only discussed depolarizing noise in detail, noises
are not restricted to a specific type. Necessary conditions for
noises are given in Appendix B, and only a small set of noises
in which operations are extremely noisy are not suitable for
noisy-operation quantum computation.
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APPENDIX A: THRESHOLD SIMULATION

1. Model

To obtain the thresholds of fault-tolerant quantum compu-
tation (FTQC) on the noisy-operation quantum computation
(NOQC) architecture, we consider building the topology-
protected cluster state [see Fig. 5(a)], which can tolerate
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FIG. 5. (Color online) A three-dimensional NOQC network for
building the topology-protected cluster state. (a) An elementary cubic
of the topology-protected cluster state. On the cluster state, each
vertex represents a qubit initialized in the state |+〉, and each edge
represents a controlled-phase gate on corresponding qubits. (b) Each
qubit on the cluster state corresponds to a data qubit (DQ) on the
NOQC network. An ancillary qubit (AQ) is associated with every data
qubit for initialization and measurement distillations. (c) Neighboring
data qubits are connected according to the cluster state lattice. Here,
both data qubits and ancillary qubits are register qubits, which are
controlled by noisy operations applied on actuator qubits.

phase errors with a rate of 3% [26]. To build the topology-
protected cluster state, we need a three-dimensional version
of the network shown in Fig. 2(a). On the three-dimensional
network (see Fig. 5), each cluster-state qubit corresponds
to a data register qubit, and an ancillary register qubit is
attached to every data qubit for initialization and measurement
distillations. Each register qubit is coupled with a triangle
actuator qubit for single-qubit gates, and each pair of connected
register qubits are coupled with a square actuator qubit for
two-qubit gates. The interactions between qubits, HH and HI,
are discussed in Sec. II. We suppose that the initialization
and measurement in the σ z basis {|0〉,|1〉}, the Hadamard
gate, and Pauli gates could be applied on actuator qubits, the
initialization and measurement in the σx basis {|+〉,|−〉} could
be applied on register qubits, and all of these operations have
the same depolarizing rate ε and could be repeated with the
same frequency f . Here, a noisy measurement is modeled as
a depolarizing error followed by a perfect measurement.

2. Circuit

The cluster state is prepared and measured with the overall
circuit shown in Fig. 6. First, data qubits are initialized in the σ z

basis by repeating the distillation circuit. After initialization,

data qubits are in states either |0〉 or |1〉 depending on
measurement outcomes in distillation circuits. Flip operations
could be used to align all data qubits to the state |0〉, but they
are not necessary because one can update the basis rather than
physically implement flip operations. Second, data qubits are
further prepared in the state |+〉 via single-qubit gates, and
then a cluster state can be built on the network with two-qubit
phase gates. Finally, data qubits are measured in the σ z basis
by another set of distillation circuits. In Fig. 6, qubits on the
prepared cluster state are effectively measured in the σx basis
because of single-qubit gates between two-qubit phase gates
and measurement distillation circuits.

For each round of the distillation (each blue box in Fig. 6),
ancillary qubits are initialized in the state |+〉 and measured
in the σx basis. The two-qubit gate R′

ZZ = RZAQRZZ = (1 −
σ z

DQ)/2 − i(1 + σ z
DQ)σ z

AQ/2 is a phase gate on the ancillary
qubit depending on the state of the data qubit and equivalent
to the standard controlled-phase gate up to a single-qubit
phase gate on the data qubit. Here, σ z

DQ and σ z
AQ are Pauli

operators of the data qubit and the ancillary qubit, respectively,
RZ = (1 − iσ z)/

√
2 is a single-qubit phase gate, which is

implemented by frequently performing noisy initializations on
the corresponding triangle actuator, and the two-qubit phase
gate RZZ is implemented by frequently performing noisy
initializations on the corresponding square actuator. As RZ and
RZZ commute with each other, the two gates are implemented
at the same time. Each distillation circuit is effectively a
measurement of the data qubit in the σ z basis, hence by
repeating the circuit, data qubits are initialized or measured
in the σ z basis.

The single-qubit gate RZRX could be used to rotate the
data-qubit state from |0〉 (|1〉) to |+〉 (|−〉) for the cluster-
state generation. And the single-qubit gate RXR

†
Z could be

used to rotate the data-qubit state from |+〉 (|−〉) to |1〉
(|0〉) for effective measurements in the σx basis. Here, the
gate RX = (1 − iσ x)/

√
2 is implemented by frequently and

alternatively performing noisy initializations and Hadamard
gates on the corresponding triangle actuator. In the circuit
shown in Fig. 6, RZ and R

†
Z are canceled by each other as they

commute with the two-qubit phase gate RZZ . The standard
controlled-phase gate �Z = (1 − σ z

1 )/2 + (1 + σ z
1 )σ z

2 /2 for
the cluster-state generation is replaced by the two-qubit
phase gate RZZ = (1 − iσ z

1 σ z
2 )/

√
2. There are a total of four

X

R
Z

Z

+

+ X

R
Z

Z

R
Z
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R
Z
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+
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data qubit 
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FIG. 6. (Color online) Overall circuit for the preparation and measurement of a cluster state on the NOQC network. In this circuit, the two
cluster-state qubits are effectively measured in the σx basis, which is the most likely case in the measurement-based quantum computation on
the topology-protected cluster state.
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controlled-phase gates applied on each data qubit, which are
implemented at the same time as they commute with each
other. Because �Z = R

†
Z1

R
†
Z2

RZZ , the four single-qubit phase

gates are canceled as R
†4
Z = 1, and each controlled-phase gate

�Z is replaced by a two-qubit phase gate RZZ .

3. Errors

For preparing the cluster state and measuring cluster-
state qubits in the σx basis, the noisy-operation-controlled
operations (NOCOs) implemented on register qubits include
R′

ZZ , RX, RZZ , and decoupling operations. Because we are
interested in the case that the rate of errors on each cluster-state
qubit is ∼3%, the error rate of each individual NOCO is
�3%. Therefore, the probability of two errors occurring on the
same cluster-state qubit but induced by different operations is
�0.09% 
 3%. In the numerical simulations of error rates,
we will neglect the possibility of the case that two errors occur
on the same cluster-state qubit, i.e., when we study the errors
induced by one NOCO, we suppose all other NOCOs are
perfectly performed.

For a NOCO R implemented with the noisy operation U ′I ′
and the interaction H , the operation actually performed on
register qubits reads R′(·) = TrA[(T U ′I ′)N (· ⊗ ρA)], where
T (·) = e−iH/(f �) · eiH/(f �) denotes the free time evolution, and
f is the frequency of repeating noisy operations. Here, we have
supposed that the time of performing a noisy operation is much
shorter than the time interval between two noisy operations.
ρA is the initial state of the actuator, which could be chosen
as 1A/2. When the unitary operation corresponding to U ′
is U = 1, only I ′ will be performed on actuator qubits. If
HQ is the effective Hamiltonian, and the desired operation
R = e−iHQt/�, the number of noisy operations N is the largest
integer that does not exceed tf . It is similar for decoupling
operations, whereU ′I ′ is replaced by the twirling operation E1.

In the ideal case, i.e., the frequency of noisy operations
is infinitely high, the operation R′ = R, where the ideal
operation R(·) = R · R†. When the frequency is finite, the
actually performed operation is different from the ideal
operation and can always be expressed asR′ = ERR. Here, the
superoperator ER denotes the errors in the NOCO R, which
is found using the Choi-Jamiolkowski isomorphism in our
numerical simulations. We would like to remark that the error
rates of a single-qubit phase gate shown in Fig. 1 are obtained
using the method described in this section.

4. Distillation and error correction

The high-fidelity initialization and measurement of data
qubits could be achieved by repeating the distillation circuit
(blue box in Fig. 6). The initialized state and measurement
outcome of the data qubit are read from measurement
outcomes of the ancillary qubit. If the distillation circuit is
repeated for n times in the measurement (initialization) circuit,
there are n measurements of the ancillary qubit and a total of
2n different sets of outcomes. Corresponding to each set of n

ancillary-qubit measurement outcomes, ō, the input (output)
state of the data qubit is |0〉 with the probability qō and |1〉
with the probability 1 − qō. Then, when the outcomes ō occur,
the input (output) state is likely to be |0〉 if qō > 1 − qō,

or |1〉 if qō < 1 − qō. Therefore, the distillation fails with
the probability pf = ∑

ō pō min{qō,1 − qō}, where pō is the
probability of outcomes ō.

In a FTQC algorithm of the topology-protected cluster
state [26], most of cluster-state qubits (vacuum) are measured
in the σx basis, i.e., proceeded following the circuit shown in
Fig. 6. Except for vacuum qubits, some cluster-state qubits
(defects) are measured in the σ z basis for defining the
computation algorithm, and some other cluster-state qubits
(singular qubits) are measured in the basis of (σx ± σy)/

√
2

for inputting magic states. The circuits for defect qubits and
singular qubits are slight different from Fig. 6, i.e., one more
single-qubit gate on the data qubit needs to be added after the
second RX gate. Although errors on defect qubits and singular
qubits are different from errors on vacuum qubits due to the
additional gate, the different is small and does not affect the
threshold [26]. Therefore, the threshold is mainly determined
by errors generated in the circuit in Fig. 6.

By numerically simulating the errors in the circuit in Fig. 6
and comparing the effective phase error rate, contributed by
both phase errors on the cluster state and errors of effective
data-qubit measurements in the σx basis, with the threshold
3%, we find the FTQC thresholds of NOQC shown in Fig. 4.
We would like to remark that, in our model, phase errors on the
same sublattice [26] are almost independent, i.e., the correlated
errors occur with a rate <0.03% 
 3% near the threshold,
hence the correlations only affect the threshold slightly and
could be neglected.

APPENDIX B: NECESSARY CONDITIONS FOR NOISES

In the main text, we have only discussed depolarizing noise
in detail. Here we will show that NOQC is not restricted to
depolarizing noise. We take the NOQC network shown in
Fig. 2(a) as an example. And we suppose that the noise in
initialization operations on triangle actuator qubits is EI, the
noise in Hadamard gates on triangle actuator qubits is EH, and
the noise in initialization operations on square actuator qubits
is ES. Then, with frequent initialization operations, a triangle
actuator qubit is frozen in the state ρI = EI(|0〉〈0|); with fre-
quent combined (initialization + Hadamard gate) operations,
a triangle actuator qubit is frozen in the state ρH = EH(HρIH );
and with frequent initialization operations, a square actuator
qubit is frozen in the state ρS = ES(|0〉〈0|). To implement
universal single-qubit gates on register qubits, states ρI and
ρH must be polarized in different directions, i.e.,

Tr(σρI) × Tr(σρH) �= 0, (B1)

where

σ = σx i + σyj + σzk. (B2)

To implement the two-qubit phase gate, we need

Tr(σzρS) �= 0. (B3)

Equations (B1) and (B3) are necessary conditions for the
noise in operations. These conditions are not satisfied only in
extreme cases, i.e., (i) a Hadamard gate cannot ever change the
polarization of a qubit initialized in the computational basis,
or (ii) after an initialization operation, states |0〉 and |1〉 still
occur with the same probability.
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