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Optimal Trotterization in universal quantum simulators under faulty control
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Universal quantum simulation may provide insights into those many-body systems that cannot be described
classically and that cannot be efficiently simulated with current technology. The Trotter formula, which
decomposes a desired unitary time evolution of the simulator into a stroboscopic sequence of repeated elementary
evolutions, is a key algorithmic component which makes quantum simulation of dynamics tractable. The Trotter
number n sets the time scale on which a computer running this algorithm is switched from one elementary
evolution to another. In the ideal case, the precision of the simulation can be arbitrarily controlled by increasing
n. We study a more realistic scenario where each gate is applied imperfectly. The resultant trade-off in errors
leads to an ultimate limit on the precision of the simulation. We calculate the optimum Trotter number n∗ that
achieves this limit, which is the minimum statistical distance from the actual simulation to the ideal one.
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I. INTRODUCTION

Simulation involves the control and study of one physical
system (the simulator) in order to provide insight into a
second (the simuland). It is an indispensable tool in modern
science. Under a classical computing paradigm, a huge variety
of simulands are investigated using silicon-based digital
machines, which represent and process classical information
stored as binary data in memory. For a broad class of
problems, the simulation is efficient: the simulator requires
spatial and temporal resources scaling polynomially rather
than exponentially in the size of the simuland. When the
simuland is such that a fully quantum mechanical model is
necessary to describe it, however, the memory requirement
for a direct and exact simulation scales exponentially in the
number of particles. Examples include quantum chemistry
simulations [1] and simulations of condensed-matter systems
[2–4]. Often a mean-field approximation or cutoff in long-
range entanglement can reduce the complexity and make the
problem tractable once more.

The idea of quantum simulation, on the other hand, where
the computer can store and process quantum information,
offers the potential to explore quantum simulands without
making such assumptions. Quantum simulators are typically
thought of as being analog or digital [5]. Analog quantum sim-
ulators are purpose built and have limited reprogrammability.
They often process information stored in continuous variables
and therefore do not benefit from error correction. The concept
is similar to the idea of an orrery or a scale model.

Digital or universal quantum simulators, however, are an-
ticipated to operate under the quantum computation paradigm
[6–9]. Although they may, in fact, have more modest require-
ments, for our purposes they will be thought of as fully fledged
quantum computers. The advantage of this type of simulation
is that a single computer can be reprogrammed to perform any
simulation, as long as it has enough memory. Perhaps more
importantly, the error in the outcome of the calculation can be
controlled by error-correction methods.
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Quantum computers are typically constructed with two-
level systems known as “quantum bits.” Such elements may be
realized with trapped ions [3], superconducting circuits [2,10],
or other candidate systems [11]. The formal requirements for
quantum computation [12] dictate that a fiducial initial state
can be prepared, that a universal set [13–15] of operations can
be applied, and that projective measurement is possible.

Universal quantum simulation, being an instance of quan-
tum computation, is therefore composed of preparation, evolu-
tion, and readout stages. Analyses concerning state preparation
and data extraction can be found elsewhere [16,17]. The aim
of this paper is to quantify the accuracy of the evolution stage
when the control operations are faulty. To that end, in Sec. II
we discuss the algorithms used for quantum simulation and
recap arguments concerning accuracy with ideal operations;
in Sec. III we discuss a general framework for modeling faulty
operations. In Sec. IV we discuss various ways to quantify
the accuracy of a quantum computation. Our main results are
found in Sec. V, where we argue that a trade-off between
Trotter error and gate errors is generic to universal quantum
simulation and exhibit this with several examples. Our results
show how to operate a faulty simulation in the optimal way
and the level of precision expected at this optimum.

II. SIMULATION ALGORITHM

Even when a quantum computer with a universal gate set
is available, one does not generally know how to combine the
gates efficiently to achieve a particular desired evolution.

A. Lloyd’s algorithm

Lloyd’s algorithm [6] is a general but approximate solution
to this problem when the desired evolution is known to be
generated by a local Hamiltonian:

H =
k∑

j=1

Hj, (1)

where each of the k component Hamiltonians Hj has dimen-
sion less than some maximum (call this g). The true evolution
is then approximated through a truncation of the Trotter [18]
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formula:

U = exp[iH t] =
⎛
⎝ k∏

j=1

exp[iHj t/n]

⎞
⎠

n

+ · · · , (2)

where we set � = 1 and take H to be time independent
(although this can be straightforwardly relaxed). Further, we
rescale our units such that time t is dimensionless.

The advantage of Lloyd’s approach is that the number of
operations required is bounded by a number proportional to
t2kg2/ε, where t is the simulation time, g is the maximum
dimension of the local Hamiltonians, and ε is the desired error
[6]. The total number k of component Hamiltonians has a
better-than-polynomial (rather than exponential) dependence
on the particle number, making Lloyd’s method “efficient.”

It is clear that for any finite value of n (the “Trotter
number”), the higher-order terms in the above equation will be
nonzero. Their neglect then leads to an error in the simulation:
the simulator is not driven to the desired final state but to
one that is nearby. As we shall see, “nearby” can be given a
concrete mathematical and operational definition.

Higher Trotter numbers result in trajectories of the simula-
tor that result in a final state that is closer to the ideal. Increasing
n will generally increase the computational complexity, that
is, more control operations. More time may not be required,
however, because the gates are correspondingly shorter,
although this appears not to be the case in error corrected
implementations [19]. Others have considered the dependence
of the number of gates and simulation time on the desired error
[19], but here our only concern is the overall accuracy of the
simulation. Higher-order approximants are available [20,21],
along with other techniques that exploit sparsity [22]. The
common attributes of these approaches are that they reduce
the number of operations to polynomial in the particle number
and that their accuracy is controlled (improved) by increasing
the number of applied operations. The number of Trotter steps
necessary for quantum chemistry simulation was considered
in Refs. [23,24].

Throughout this paper we take Vj = exp[iHj t/n] as prim-
itive operations applied to the simulator, although, ultimately,
these primitives should be understood as being composed from
gates drawn from the particular universal set that is available.

B. Time-energy freedom

Because of the H → aH,t → t/a symmetry of the
Schrödinger equation i ∂

∂t
|ψ〉 = −H |ψ〉, when simulating

closed-system dynamics, one benefits from the freedom to
define

Hsimulator = aHsimuland,

tsimulator = 1

a
tsimuland, (3)

which will preserve the correspondence between the time
evolutions of the simulator and simuland. The simulation time,
therefore, may be chosen to be any duration as long as the
appropriate global scaling of the energy of the control fields is
also performed. Even classical simulators are rarely operated
at a speed commensurate with their respective simulands:
weather patterns of several weeks are simulated in a matter of
hours, and supercomputers spend months calculating chemical

reaction dynamics over time scales many orders of magnitude
smaller. In fact, because each unitary exp[iHj t/n] is decom-
posed into the natural elementary gate set of the simulator,
one generally expects a �= 1. Clearly, this freedom enables the
computation to be sped up (or slowed down) by a constant fac-
tor [25], but more importantly, we imagine that such freedom
may prove very useful for reducing noise in implementations of
quantum simulation, depending on the particular noise which
dominates (see below). It is worth noting that assuming this
freedom is asking more than is necessary for universal quantum
computation, nevertheless, in many quantum computers we
expect there to be at least a limited ability to perform the
primitive operations at different physical speeds.

III. NOISE TYPES

The error in approximating the true evolution with the
first term on the right-hand side of (2) is known to decay
at worst as ∝ n−1 [26], and as Lloyd [6] put it, “n can always
be picked sufficiently large to ensure the simulator tracks
the correct time evolution to within any [desired nonzero
accuracy].” The perfect control of any system (quantum or
classical) is only ever an idealization, however. Little is
known about the real-world situation, although recently the
Trotter decomposition has been shown to be stable in the
sense that the overall error can be reduced to a fixed desired
level if the precision of the individual steps is good enough
[27]. Reference [28] is a study of the influence of noise on
certain quantum simulations, calculating the average fidelity
of the final state of the computer with the ideal. Here we
derive analytical results for arbitrary (generally nonunitary and
noncommuting) component Hamiltonians. Further, as we shall
show, our results allow us to predict the ultimate performance
of a faulty quantum simulator and allow us to prescribe the
optimum Trotter number to employ. Our results hold for a
whole class of statistical distance metrics, including the most
interesting worst-case metrics.

We construct “faulty Trotterized quantum channels” and
consider the following generalized noise map, with Vj (ρ) =
eiHj t/nρe−iHj t/n representing the component unitary processes
of Trotterization (here describing the transformation of a
d × d density matrix ρ describing the quantum state of the
simulator):

E faultyTrotter(ρ) = ©n
i=1 ©k

j=1 Eij ◦ Vj (ρ)

= ©n
i=1 (· · · ◦ Ei2 ◦ V2 ◦ Ei1 ◦ V1) (ρ)

= ©n
i=1E fTss

i (ρ). (4)

The ◦ symbol is used here to denote the concatenation of quan-
tum channels: here we have a triple concatenation (first due to
faulty evolutions Eij following the clean ones, second due to
applying each of the k local Hamiltonians in turn, and third by
repeating this process n times). The interleaved operations Eij

are unwanted evolutions; they carry an index i to emphasize
that they may vary over the course of the experiment, and there
may also be a dependence on {Hj }, t , and n. In the course of
our derivations it is useful to consider the map over a single
Trotter iteration (faulty Trotter single step) E fTss

i .
It will be convenient to consider the supermatrix rep-

resentation of these maps: this is defined by TE 	ρ = −−→E(ρ),
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where 	ρ is the vectorized (column-stacked) density matrix
and TE is a supermatrix of dimension d2. This representation
makes the semigroup structure of quantum maps apparent. The
concatenation of channels is merely matrix multiplication:

TfaultyTrotter =
n∏

i=1

k∏
j=1

TEij
TVj

=
n∏

i=1

(· · · TEi2 TV2 TEi1 TV1

)

=
n∏

i=1

TfTss
i . (5)

We write the perfect implementation of the Trotter tech-
nique as V with unitary matrix V = ( n

√
V )n and supermatrix

TV = ( n
√

TV )n, essentially by removing all the faulty maps
from the faulty Trotter channel.

We write the supermatrix representation of the ideal map U
as U = U ⊗ U ∗ and break up this unitary evolution as

U(ρ) = ©n n
√
U(ρ), (6)

with the notation justified by the supermatrix describing each
ideal Trotter step U = ( n

√
U)n.

IV. STATISTICAL DISTANCE MEASURES
FOR QUANTUM CHANNELS

Hauke et al. [29] pose the question, Can we trust quantum
simulators? Rather than give a binary answer, one can instead
ask the question, To what extent can we trust quantum
simulators? We aim to provide an answer to the above question
in the form of a discrimination probability. To measure
the faithfulness of quantum operations, one can appeal to
generalizations of either classical fidelity or classical statistical
distance between probability distributions. We prefer the latter
here: the trace distance between quantum states (density
matrices) has an operational meaning because it determines the
success probability for the state discrimination problem [30].
One is provided with either ρA or ρB with equal probability
and is asked to guess which after a single measurement. The
probability of success is

pdistinguish = 1
2 + 1

4 ||ρA − ρB ||. (7)

Here

||ρA − ρB || = Tr|ρA − ρB | = Tr
√

(ρA − ρB)(ρA − ρB)†. (8)

The norm of the difference between the operators is a metric,
giving the quantum statistical distance between the operators.
This definition implies that the discrimination is informed
by measurement results arising from the optimum choice
of positive operator-valued measure (POVM), or generalized
measurement procedure [31]. In fact,

||ρA − ρB || = 2 max
E

Tr[E(ρA − ρB)], (9)

where E is a positive operator (or POVM element). A similar
maximization over states in turn induces a distance on quantum
channels, defined as

||EA − EB ||�,1 = max
ρ∈S,Ssep

||(EA ⊗ I)(ρ) − (EB ⊗ I)(ρ)||. (10)

S

Ssep

Sint

input state
preparation

output state 
discriminationchannel

or

or

FIG. 1. (Color online) The distinguishability of two quantum
channels EA and EB can be defined as the distinguishability of the
outputs of each channel when the input is an optimally chosen
quantum state ρ∗. The optimum is generally drawn from a set S

describing joint states of an enlarged system. The subset Ssep, contains
states with no system-ancilla entanglement and a further subset Sint,
which contains only physical states of interest.

The associated task is to submit an optimal input state ρ∗
to undergo evolution under EA or EB (chosen at random)
and to perform the state discrimination task (above) on the
output state. For full generality the enlarged search space S

(having dimensions d2) is needed to allow for the possibility of
entanglement with an ancilla (of dimension no larger than that
defined by the channels themselves) assisting in the channel
discrimination task [32]. When the full search space S is
available, || · ||� is the diamond norm [32]; otherwise, when
the maximization is over states which factorize into system,
ancilla states, the norm is the unstabilized induced trace norm
|| · ||1 (and the ancilla plays no role). A further restriction
considered by Lloyd [6] would be to define the set of states of
“interest” Sint, but this has the drawback of requiring detailed
knowledge of the particular simulation at hand and makes
additional assumptions on the set of initial states of interest
(see Fig. 1).

These metrics then give the bias away from a half in
the probability of discriminating between the real and ideal
channels, given a single optimal initial state preparation (for
the diamond norm over a larger space), a single channel use,
and a single sample from an optimally chosen measurement
basis (again for the diamond norm on a larger space):

pdistinguish � 1
2 + 1

4 ||EA − EB ||�,1. (11)

They are therefore worst-case metrics. Yet another norm to
consider is the J norm || · ||J : this provides a bound on the
average trace distance over a uniformly measured state space
[33]. The J distance between two quantum maps is merely
the trace distance of the associated states in the Jamiolkowski
isomorphism [34]:

||EA − EB ||J = ||J (EA) − J (EB)||, (12)

where J (E) ∝ ∑
ij E(|i〉〈j |) ⊗ |i〉〈j | with the constant of

proportionality such that J (E) has unit trace. The J distance
is related to the average probability of discriminating the real
and ideal simulations, given an optimal measurement:

p̄distinguish � 1
2 + 1

4 ||EA − EB ||J . (13)

For a comprehensive survey of available metrics, see
Refs. [33,35].
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There are a number of senses in which these metrics
are pessimistic measures. First, for the worst-case metrics,
an optimal input state (possibly entangled with an ancilla)
may not arise in a quantum simulator: readout methods such
as the phase-estimation algorithm [36], for example, do not
employ such states. Currently, the full set of preparations
and measurements at the disposal of a quantum computer
is not used in quantum simulation algorithms: in the future,
more involved procedures (including readout using an ancilla)
may turn out to be more powerful at extracting information.
Second, for the maximization over POVMs, in reality, the
measurements are likely to be restricted to those observables
necessary for calculating macroscopic quantities, e.g., the
ground-state energy of the system, the Shannon entropy, effec-
tive temperature, net magnetization, and so on. Consider that
these measurement choices might be completely impervious
to certain types of error, but the errors are ruthlessly sought out
and exposed under the trace-norm or diamond-norm distances.
In other words, there may be an equivalence class of (possibly
mutually orthogonal) microstates with the same macrostate (or
property of interest). An “incorrect” microstate could well be
good enough for the purposes of the simulation (even yielding
precisely the correct “answer”) while being highly (or even
perfectly) distinguishable from the correct state. Consider, for
example, a very large simulator suffering only a bit flip on a
qubit corresponding to the least significant digit of the readout
register (minimal effect on readout result) or even a simulator
which suffers a severe scrambling of phase relations prior
to measurement in the computational basis (potentially zero
effect on readout result). The game of simulation is not neces-
sarily an adversarial one; nevertheless, due to the often random
and potentially significant effect of errors, worst-case metrics
are usually regarded as the most relevant measures to employ.

All metrics satisfy some important properties which we
will make use of: the triangle inequality ||EA − EC || �
||EA − EB || + ||EB − EC || and convexity ||∑i piEi || �∑

i pi ||Ei ||. Another important property satisfied by all metrics
considered in this paper is chaining: ||EA1 ◦ EA2 − EB1 ◦
EB2 || � ||EA1 − EB1 || + ||EA2 − EB2 ||. The diamond norm and
J distance are special in that they are stable: they satisfy
||I ⊗ E ||�,J = ||E ||�,J . See Gilchrist et al. [33] for further
details.

The convexity property is an important one and is enough
to ensure that the maximum statistical distance is achieved on
a pure state [33]. Further, although often understood as the
inability to increase distinguishability through averaging (i.e.,
as a handicap in information processing tasks such as param-
eter estimation [31]), here it implies that the performance of
a faulty quantum computation may be improved by repeating
the computation and averaging the results. As we shall see
below, this can lead to quite significant improvements because
the fluctuations may be suppressed.

A related fact concerns appropriate worst-case benchmarks.
While the ideal evolution U is unitary and will take a pure state
to a pure state, a completely noisy channel Eρ→I/d (ρ) = I/d
destroys the purity of any state (having dimension d). One can
prove [37] that under the unstabilized trace norm one has

||Eρ→I/d − U ||1 = 2 − 2

d
, (14)

whereas with the diamond norm [38] and J distance (which
we concentrate on for the remainder of this article) one has

||Eρ→I/d − U ||�,J = 2 − 2

d2
. (15)

These values represent benchmarks: the distinguishability
between the output of the ideal simulation and complete noise.
Any simulation giving a higher distance than this will be worse
than a completely random output! Note that both norms con-
verge to the algebraic maximum of 2 as d → ∞. The algebraic
maximum is achieved, for example, by an unwanted bit flip.

V. RESULTS

We are now in a position to calculate the accuracy of a
realistic quantum simulator. To that end, we apply the norms
introduced above to calculate the statistical distance from the
ideal map to the faulty Trotter map. To see why we expect
an optimum Trotter number to emerge in realistic universal
quantum simulators, consider first a simple application of the
triangle inequality to the distance between ideal and realistic
channels over a single Trotter step:

|| n
√
U − E fTss|| � || n

√
U − n

√
V|| + || n

√
V − E fTss||. (16)

Next, assume the first term is bounded by a quantity ∝ n−s

for some s � 2: this captures the first-order Trotter formula
that we study here (s = 2), as well as higher-order expansions
[20]. Now assume the second term is a constant with respect
to n. This immediately leads, via the chaining property, to

D := ∣∣∣∣U − E faultyTrotter
∣∣∣∣ � C

ns−1
+ Dn (17)

for some constants C and D . It is simple to show that the
optimum Trotter number is

n∗ = s
√

C (s − 1)

D
(18)

and the statistical distance at this optimum is

D(n∗) = Ds

s − 1
s
√

C (s − 1)

D
. (19)

Depending on the values of C and D (which also depend on s

in the general case), one is able to also optimize over s to find
the best-order Trotter formula to use. For the remainder of this
paper, however, we set s = 2, and these quantities reduce to

n∗ =
√

C

D
(20)

and

D(n∗) = 2
√

C D . (21)

As we shall show, C is fixed by the pair {H,t}, while D is
determined by gate errors. Below we investigate some example
noise models that influence D .

A. Mistimed control

Trotterization fundamentally requires “switching” between
unitary gates: in our simplification this is thought of as
switching each component Hamiltonian Hj on for a specific
duration. Consider that the duration is increased (decreased)
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by a random number �ij , normally distributed around zero
with variance σ 2. This makes

EMTC
ij (ρ) = eiHj �ij ρe−iHj �ij . (22)

Such imperfection is ubiquitous in the control of quantum
systems, and an equivalent imperfection (laser intensity fluctu-
ations) was cited as the dominant error source by Lanyon et al.
in a recent implementation of universal quantum simulation
[3]. Under this noise model, the total map E faultyTrotter, being a
concatenation of random unitaries, is itself a random unitary
map. Note that the magnitude of the errant time shift �ij is
independent of t or n, but the error map is more severe when
||Hi || is large, i.e., the simulator is driven “hard.”

As shown in Appendix A, by assuming ||Hi[t/n +
�ij ]|| � 1 one can find the difference between real and ideal
supermatrices for this error model, finding

n
√

U − TfTss
i

=
∑
j<l

(I ⊗ [Hj,Hl]
∗ + [Hj,Hl] ⊗ I)

t2

2n2

+ i
∑

j

(I ⊗ H ∗
j − Hj ⊗ I)�ij

+
∑
j<l

(I ⊗ H ∗
j H ∗

l + HjHl ⊗ I)

×
[

t

n
�ij + t

n
�il + �ij�il

]

+ 1

2

∑
j

(I ⊗ H 2∗
j + H 2

j ⊗ I)

[
2

t

n
�ij + �2

ij

]

−
∑
j l

Hj ⊗ H ∗
l

[
t

n
�ij + t

n
�il + �ij�il

]
+ · · · (23)

Note that the terms linear in � work to introduce “coherent”
or reversible errors that may be averaged away because of our
assumptions �ij = 0 and �ik�im = δkmσ 2; hence

n
√

U − TfTss
i =

∑
j<l

(I ⊗ [Hj,Hl]
∗ + [Hj,Hl] ⊗ I)

t2

2n2

+ 1

2

∑
j

(I ⊗ H 2∗
j + H 2

j ⊗ I)σ 2

−
∑
j l

Hj ⊗ H ∗
l σ 2 + · · · (24)

leaving the “incoherent” or irreversible errors (quadratic in
�) remaining. Clearly, averaging can help reduce fluctuations
introduced by the noise. This is expected, because of the con-
vexity property of the norm. The resultant (less severe) map is
denoted MTC, ‘for averaged mistimed control’. Figure 2 shows
(through numerical simulations) how averaging can reduce
the simulation error for this noise model, as measured by the
diamond-norm distance. Taking the norm of (24) gives the
statistical distance, and employing the triangle inequality gives

Dss

MTC
� A

t2

2n2
+ Bσ 2. (25)

FIG. 2. (Color online) Diamond norm distance vs Trotter number
for a quantum simulation of the Hamiltonian H = σx + σy over a
duration t = 2. Each transparent marker represents a single Monte
Carlo simulated random unitary evolution of the simulator. The solid
lines represent the performance of the averaged map, and the dashed
lines are the average of the individual Monte Carlo runs: lower is
better. Note how the position of the averaged map is below the average
position of the markers. The performance of the average map is better
than the average performance of the maps of which it is composed.
The two colors correspond to different noise characteristics of the
mistimed control noise model.

By the chaining property we reach

DMTC � A
t2

2n
+ Bnσ 2, (26)

with

A =
∥∥∥∥∥∥
∑
j<l

(
I ⊗ [Hj,Hl]

∗ + [Hj,Hl] ⊗ I
)∥∥∥∥∥∥

?

B =
∥∥∥∥∥∥

1

2

∑
j

(
I ⊗ H ∗2

j + H 2
j ⊗ I − 2Hj ⊗ H ∗

j

)∥∥∥∥∥∥
?

. (27)

Comparing (26) with (17), we see that A t2/2 = C and
Bσ 2 = D . Note that we leave the choice of norm free here:
? ∈ {�,1,J, . . .}. We made use of only the triangle inequality
and the chaining property. As we will show, if A : B happens
to be invariant under the choice of norm, the optimum Trotter
number is also an invariant since it only depends on this
ratio. Note also that these are norms of supermatrices: the
supermatrices may need to be converted to another form so
that the norms are evaluated.

Applying the triangle inequality to A and B, we note
that the first quantity is upper bounded by the sum of, at
worst, 1

2 (k2 − k) norms and the second by the sum of only k

norms. Since k is polynomial in the particle number, the Trotter
error (sometimes called the digital error) therefore grows only
polynomially in the size of the simuland.

Taking n ∈ R for the moment, simple analysis yields (i) the
optimum Trotter number

n∗
MTC

=
√

A (2B)−1tσ−1, (28)
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(ii) the statistical distance at this optimum

DMTC(n∗) =
√

2A Btσ, (29)

and (iii) the maximum simulation time after which the
statistical distance is above the accepted level Dmax, given by

tmax = Dmax/(σ
√

2A B). (30)

The meaning of equations (28), (29), and (30) is inherited
from the choice of norm in the definition of A and B.

Of course, in reality n∗ ∈ Z: the true optimum must be
a whole number of Trotter steps, so n∗ should be rounded
in the direction of the sign of �n∗��n∗� − A t2/(2Bσ 2). See
Appendix C for more details.

Although our formulas apply generally, as a case study we
study a special case of the Ising Hamiltonian,

H1 =
N∑
r

σ r
z , H2 =

∑
〈r,s〉

σ r
x σ s

x (31)

with σ r
x and σ r

z being the Pauli matrices acting on qubit r

of N , with identity matrices implied on other qubits. The
notation

∑
〈r,s〉 denotes a sum over nearest neighbors. Note

that [H1,H2] �= 0. As shown in Fig. 3(a), our approximate
analytical upper bound (26) is a good fit for exact numerics in
the correct parameter regime (for example, we chose t = 0.1
and N = 2).

We note three regimes where the fit is worse: (i) when
||Hit/n|| ≈ 1 (the perturbative expansion breaks down), (ii) in
the trade-off region near the optimum Trotter number n∗ (here
the chaining inequality is loose), and (iii) when the distance
measure approaches its maximum (the errors are saturating,
and the chaining inequality between consecutive Trotter steps
is loose). Despite the looseness of the fit in these areas, the
location of n∗ and D(n∗) are well captured.

Aside from combatting the gate noise via averaging, one
can apply the time-energy freedom (3), noting that

a �= 1 ⇒ DMTC � A
t2

2n
+ Bn(aσ )2. (32)

Clearly, one can now take a < 1, i.e., retard the simulator to
decrease the absolute error at each Trotter step. This has the
same effect as reducing σ : the first term is unaffected.

B. Trotter-step-induced depolarization

Next we study a different noise model, which we call
the Trotter-step-induced depolarization, or DEPOL model.
Depolarizing noise is commonly used to phenomenologically
model noise because it makes analytic results tractable. To
gain an idea of how each operation might introduce generic
noise into the simulator, we assume that after a single Trotter
step the combined effect of imperfections in the applied gates
is to depolarize the entire simulator uniformly. The faulty map
is then

E faultyTrotter(ρ) = ©iEDEPOL
i ◦ (· · ·V2 ◦ V1)(ρ) (33)

= ©iE fTss
i , (34)

with

EDEPOL
i (ρ) = (1 − p)ρ + p

d
I. (35)

Here I is the d × d identity matrix. Note there is no dependence
on any variable other than p, the probability of a depolarizing
error during one Trotter step. This quantity therefore captures
the severity of the faulty control. Now

E fTss − n
√
U = (1 − p)

n
√
V + pEρ→I/d − n

√
U

= (1 − p)[
n
√
V − n

√
U] + p[Eρ→I/d − n

√
U], (36)

and we can use convexity to reach

||E fTss− n
√
U || � (1 − p)|| n

√
V− n

√
U || + p||Eρ→I/d − n

√
U ||.
(37)

Now, the first term follows trivially from the above calculation
and equals (1 − p)Dss

MTC
|σ=0. The second term is also known

(see above). This means that (again employing the chaining
inequality over the n iterations of the single step channel and
assuming ||Hi || t/n � 1)

DDEPOL � (1 − p)A
t2

2n
+ np

(
2 − 2

d2

)
, (38)

which we can simplify, in the case of d � 1, to

DDEPOL � (1 − p)A
t2

2n
+ 2pn. (39)

Qualitatively, this is very similar to the mistimed control
(MTC) model. One cannot, however, leverage the freedom
in the time-energy correspondence to effectively reduce p, the
characteristic of the noise, because (39) is invariant under that
transformation. One has

n∗
DEPOL = t

√
(1 − p)A

2p
(
2 − 2

d2

) , (40)

or, in the case of d � 1,

n∗
DEPOL = t

√
(1 − p)A

4p
. (41)

Note that, as above, one should round n∗ to the nearest integer
in the direction of the sign of �n∗��n∗� − (1 − p)A t2/4p.
One has

DDEPOL(n∗) = 2t
√

A p(1 − p). (42)

See Fig. 3(b) for comparison with numerical results, which
show that the DEPOL noise model has behavior qualitatively
similar to that of the MTC noise model and also that our
approximate analytical approach continues to provide a good
fit for the true performance.

C. Decoherence

To model the overall noise of a simulator under perfect
control, we depolarize the simulator in a manner that is inde-
pendent of the number of operations. This means the number
of Trotter steps does not affect the total noise characteristics.
An argument very similar to the one above gives

E faultyTrotter−U = [1 − p(t)][V −U] + p(t)[Eρ→I/d −U],

(43)

and now p(t) increases over time. Typically, 1 − p(t)
represents exponential decay of population and coherence
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(a) (b)

FIG. 3. (Color online) Log-Log plot of the statistical distance vs the Trotter number for a faulty simulation of the Ising Hamiltonian
[Eq. (31)], with N = 2 and t = 0.1. The noise model is either (a) timing errors (the MTC noise model) or (b) depolarizing noise (the DEPOL
model). The horizontal axis represents the frequency of applied operations, and the vertical axis is related to the probability that the actual
simulation could be distinguished from the ideal simulation (lower is better). Solid colored lines (numerically calculated) correspond to the
diamond norm distance, and the dotted lines are approximate analytical formulas. The different colors correspond to either (a) the standard
deviation σ of the noise or (b) the probability p of a depolarizing error at each Trotter step, each shown in the legend. Black lines are the J

distance (solid lines are exact numerics; dotted lines are approximate analytics). The crosshairs show the analytically predicted optimum Trotter
number and performance level at that optimum. Note the n → ∞ behavior shows the norms saturating to the completely noisy benchmark (see
main text).

with time [31]. The first term follows trivially and is equal to
(1 − p)DMTC|σ=0. We have

DDECOH � [1 − p(t)]
A t2

2n
+ p(t)

(
2 − 2

d2

)
. (44)

Once more employing the time-energy freedom (3), we find

DDECOH �
[

1 − p

(
t

a

)]
A t2

2n
+ p

(
t

a

)(
2 − 2

d2

)
; (45)

note that accelerating the simulator a > 1 will improve
performance if p(t) is monotonically increasing. Note here
there is no optimum Trotter number because the noise is not
worsened by increasing the number of operations.

VI. DISCUSSION

By modeling some simple imperfections in the control of a
Trotterized universal quantum simulator, we have shown how
the accuracy of the quantum channel that is applied depends
on various parameters. These parameters include those outside
of direct experimental control, such as the severity of environ-
mental decoherence or the spread in control timing, and also
controllable quantities such as the Trotter number and the
simulator-simuland time ratio. We suggested ways in which
these quantities can be optimized over in order to improve the
accuracy of the simulation, which we quantified by calculating
the statistical distance to the ideal map. The optimization im-
plies only that the uncontrollable quantities be estimated from
control experiments and that C (simply related to A , which
measures the total noncommutativity of the local pieces of the
Hamiltonian) and D (which measures the control error per
Trotter step) be calculated only once (possibly numerically).

We discussed the choice of a number of norms for this purpose,
including the worst-case induced-trace norm and stabilized
(diamond) norm, as well as the average-case J distance.

In particular we found there to be a finite optimum Trotter
number to employ, setting a maximum performance and a
maximum simulation time. By way of a general argument, we
have shown these features to be generic to faulty simulators
operated with a Trotterized (or similar) algorithm. In order
to predict these quantities, one can appeal to a microscopic
model of the simulator; having a sufficiently good model for
a physical system is arguably a prerequisite for using it as a
computational device [39].

The problem of noise in quantum computers has, in one
sense, been solved by the error-correction threshold theorems
[40–43]. An error-correction threshold is a critical value of a
measure of the accuracy of quantum control. Once it has been
surpassed, error-correction techniques work to decrease the
overall net error. These theorems show that, when experimental
operations become clean enough, encoding logical qubits in a
larger number of redundant physical qubits allows the error in
the overall computation to be suppressed at will [44]. But
as interest in simulators grows [45] and small-scale (say,
64-qubit) devices begin to appear, the noise problem will
remain until many-thousand-qubit devices with subthreshold
physical error rates can be engineered. Even after this is
achieved, imperfections will not have completely disappeared:
the question of how the accuracy of overall computation
depends on the necessarily finite residual (i.e., error-corrected)
error rate [46] remains of high importance, and our analyses
here will still apply.

We will briefly comment on two recent experimental
demonstrations in superconducting systems. The Martinis
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group performed an investigation of fermionic models with
four transmon qubits [2], but they failed to control the error
in the simulation at all, operating in the gate-error-dominated
regime n > n∗. The Wallraff group, investigating interacting
spin systems using only two transmon qubits, successfully
swept the Trotter number through the optimum point [47] for
various times t . By increasing the total simulation time they
effectively increased the Trotter error until it competed with the
other errors. Our results predict that, if both the Hamiltonian
and error per Trotter step (i.e., C and D) are kept constant,
then n∗/t should be a constant: the experimental results are
in agreement with this prediction. The worst trace distance in
these experiments was of the order of 10−1. These experiments
show the difficulty in achieving good confidence in quantum
simulators, especially as the number of qubits is increased.
Using our results (20) and (21), we estimate that for the
Wallraff experiment (fixing the Hamiltonian and simulation
time) reaching the sorts of precision we are accustomed to
with modern classical computers (the current standard “single
precision” is 2−24 ≈ 10−7 [48]) will require a factor of at least
106 more Trotter steps and therefore a 1012 improvement in the
error per Trotter step. This is due to the fact that the overall error
is proportional to the square root of the error per Trotter step.

Furthermore, as pointed out in Ref. [49], a full simulation
using readout with the phase-estimation algorithm calls for
simulation not only of U but of U 2m, further increasing the
required number of Trotter steps and therefore precision per
step. As Wecker et al. show [23], the number of logical gates
per Trotter step (for example, in a quantum chemistry simula-
tion) is roughly O(N5). This fact means that the error per gate
may need to be several orders of magnitude smaller still.

That simulations are only likely to provide novel insight
when featuring many dozens of qubits implies that yet
another improvement in gate quality is necessary. Consider an
N = 64 qubit simulation with nearest-neighbor interactions.
Compared to the recent N = 2 experiment [47], there will be a
thousandfold increase in the number of commutators between
Hi ; many of these may be expected to vanish, but nevertheless,
we might expect A (and therefore C ) to increase by two or
even three orders of magnitude, requiring an improvement in
D of comparable magnitude to compensate.

Future work will investigate the multiparameter optimiza-
tion when all noise types are present, the use of alternative
Trotter-type approximants, and the performance of simulators
when the set of interesting states and applied measurements is
chosen from a restricted set.
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APPENDIX A: ANALYTICS

We are interested in the difference between the faulty
Trotter map described by the MTC noise model and the
ideal map. It is convenient here to choose the supermatrix
representation. For a single shot map over a single Trotter step

n
√

U − TfTss
i = ei

∑
j Hj t/n ⊗ e−i

∑
j H ∗

j t/n −
∏
j

eiHj (t+n�ij )/n ⊗
∏
j

e−iH ∗
j (t+n�ij )/n

=
⎛
⎝I + it

n

∑
j

Hj − t2

2n2

⎧⎨
⎩
∑
j>l

+
∑
j<l

+
∑
j=l

⎫⎬
⎭HjHl + · · ·

⎞
⎠

⊗
⎛
⎝I − it

n

∑
j

H ∗
j − t2

2n2

⎧⎨
⎩
∑
j>l

+
∑
j<l

+
∑
j=l

⎫⎬
⎭H ∗

j H ∗
l + · · ·

⎞
⎠

−
⎛
⎝I + i

∑
j

Hj

[
t

n
+ �ij

]
− 1

2

⎧⎨
⎩
∑
j=l

+2
∑
j<l

⎫⎬
⎭HjHl

[
t

n
+ �ij

] [
t

n
+ �il

]
+ · · ·

⎞
⎠

⊗
⎛
⎝I − i

∑
j

H ∗
j

[
t

n
+ �ij

]
− 1

2

⎧⎨
⎩
∑
j=l

+2
∑
j<l

⎫⎬
⎭H ∗

j H ∗
l

[
t

n
+ �ij

] [
t

n
+ �il

]
+ · · ·

⎞
⎠ (A1)

= − t2

2n2

⎧⎨
⎩
∑
j>l

+
∑
j<l

+
∑
j=l

⎫⎬
⎭(I ⊗ H ∗

j H ∗
l + HjHl ⊗ I

)−i
∑

j

�ij (Hj ⊗ I − I ⊗ H ∗
j )

+1

2

⎧⎨
⎩
∑
j=l

+2
∑
j<l

⎫⎬
⎭ (I ⊗ H ∗

j H ∗
l + HjHl ⊗ I)

[
t2

n2
+ t

n
�ij + t

n
�il + �ij�il

]

−
∑
j l

Hj ⊗ H ∗
l

[
t

n
�ij + t

n
�il + �ij�il

]
+ · · · (A2)
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which, after employing the identity

−
⎧⎨
⎩
∑
j>l

+
∑
j<l

+
∑
j=l

⎫⎬
⎭+

⎧⎨
⎩
∑
j=l

+2
∑
j<l

⎫⎬
⎭HjHl ≡

⎧⎨
⎩
∑
j<l

−
∑
j>l

⎫⎬
⎭HjHl ≡

∑
j<l

[Hj,Hl],

gives

n
√

U − TfTss
i =

∑
j<l

(I ⊗ [Hj,Hl]
∗ + [Hj,Hl] ⊗ I)

t2

2n2
+ i

∑
j

(I ⊗ H ∗
j − Hj ⊗ I)�ij

+
∑
j<l

(I ⊗ H ∗
j H ∗

l + HjHl ⊗ I)

[
t

n
�ij + t

n
�il + �ij�il

]

+ 1

2

∑
j

(I ⊗ H 2∗
j + H 2

j ⊗ I)

[
2

t

n
�ij + �2

ij

]

−
∑
j l

Hj ⊗ H ∗
l

[
t

n
�ij + t

n
�il + �ij�il

]
+ · · · (A3)

which is the result in the main text.

APPENDIX B: NUMERICS

The diamond-norm distance between two unitary maps
described by matrices U and V is simply the diameter of
the smallest enclosing circle of the eigenvalues of UV † [50].
In our numerical work we used PYTHON code from Minase
[51].

To calculate the diamond norm for a general map expressed
in supermatrix, Choi, or Jamiolkowski form, we used a
semidefinite programming [52,53] algorithm due to Watrous
[54,55], implemented by Johnston in a MATLAB package called
QETLAB [56].

1. Total noise and depolarization

What is the supermatrix form of Eρ→I/d (ρ) = I/d? One
can exploit the trace of the density matrix to get the following
supermatrix:

Tρ→I/d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
d

0 . . . 0 1
d

0 . . .

0 0 . . . 0 0 0 . . .
...

...
. . .

...
...

...
. . .

0 0 . . . 0 0 0 . . .
1
d

0 . . . 0 1
d

0 . . .

0 0 . . . 0 0 0 . . .
...

...
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (B1)

each ellipsis denotes that there are d zero entries between the
nonzero elements. Clearly, each off-diagonal is annihilated,
and each diagonal goes to (Trρ)/d. From here we can easily
construct a supermatrix representation of EDEPOL, for example,
by scaling Tρ→I/d by p and adding (1 − p)Id2×d2 .

2. Averaged mistimed control

The quantum channel under consideration is what we call
the averaged mistimed control (MTC) model. It is the average

map that is applied when the timing suffers a nonzero spread.

T
faultyTrotter =

∏
i

T
nTss
i =

∏
i

∏
j

TEij
TUij

; (B2)

here we have exploited the independence of the random
(matrix) variables to distribute the expectation over the
concatenation of channels. Now for the MTC model the
interleaved maps can be written as

TEij
: ρ →

∫
p(�ij )eiĤj �ij ρe−iĤj �ij d�ij , (B3)

with the probability distribution p(�ij ) taken as a product of
independent Gaussians with zero mean and standard deviation
of σ . Now, expanding the density matrix ρ in the energy
eigenbasis, each operation merely generates a phase, and we
can evaluate the integral (here we suppress the Hamiltonian
index j for clarity):

ρ → 1√
2πσ

∫
e−�2

ij /σ
2
eiĤ�ij

×
(∑

mn

ρ̃mn|Em〉〈En|
)

e−iĤ�ij d�ij (B4)

= 1√
2πσ

∫
e−�2

ij /σ
2
eiEm�ij e−iEn�ij

×
(∑

mn

ρ̃mn|Em〉〈En|
)

d�ij (B5)

=
∑
mn

e− 1
2 (Em−En)2σ 2

ρ̃mn|Em〉〈En|. (B6)

We defined ρ̃mn = 〈Em| ρ |En〉 with H |Em〉 = Em |Em〉. Ob-
serve how the map acts on energy eigenstates: as an ele-
mentwise product ρ̃ → 
 · ρ̃ with a matrix having entries

mn = e− 1

2 (Em−En)2σ 2
. If we define W as the unitary matrix

changing from the canonical into the energy eigenbasis, then
the map acts on any ρ as ρ → W †(
 · WρW †)W .

The supermatrix T
 corresponding to the elementwise
product can be found by reshaping 
 into a vector and then
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constructing a diagonal matrix from this vector. The advantage
of using a supermatrix is the composition of channels is simply
matrix multiplication. The map can be defined for any density
matrix in the following way:

TEij
	ρ = TW †T
TW 	ρ (B7)

and TW = W ⊗ W ∗ and so on.
By using these techniques, one is able to build up the total

(averaged) faulty Trotter map in supermatrix form, which is
convenient for numerical calculations.

APPENDIX C: FINDING n∗ AS AN INTEGER

Using calculus, i.e., assuming n to be a real number, will
generally give a noninteger solution for n∗. We can always
round this up (or down) to get an integer, and in the worst case
we may round in the wrong direction. Here we briefly show

how to make sure the integer chosen is the correct one. To
ensure the lowest value for D, clearly, we should choose the
“rounded-down” value �n∗� and the “rounded-up” value �n∗�
when the quantity

D(�n∗�) − D(�n∗�) (C1)

is positive and negative, respectively. When it is exactly zero,
we can choose either. Let �n∗� = k and let

D(k) = C

k
+ Dk, (C2)

and our condition simplifies to

k(k + 1) − C

D
. (C3)

This justifies the claim in the main text that one should round
n in the direction of the sign of �n∗��n∗� − (C /D).
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