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We discuss the so-called mean king’s problem, a retrodiction problem among noncommutative observables,
in the context of error detection. Describing the king’s measurement effectively by a single error operation, we
give a solution of the mean king’s problem using quantum error-correcting codes. The existence of a quantum
error-correcting code from a solution is also presented.
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I. INTRODUCTION

In 1987, Vaidman, Aharonov, and Albert formulated the
mean king’s problem [1] to provide a way to discriminate
eigenstates among noncommutative observables with the help
of classical delayed information. The problem is often told as
a tale [2–4] that a mean king gives a physicist, say Alice, the
challenge for that discrimination problem. In the tale, the king
performs a projective measurement of one of the observables
σx,σy, and σz on a qubit system prepared by Alice. Alice is
given an opportunity to measure the system, and then the king
reveals the observable he has measured. Immediately after
that, Alice is required to correctly guess the king’s outcome.
We say that the king’s problem has a solution if Alice can find a
strategy to be successful in this challenge. In Ref. [1], inspired
by the Aharonov-Bergmann-Lebowitz rule [5], a solution is
constructed by making use of an entanglement between the
measured qubit and another qubit secretly kept by Alice.

The problem has been generalized in several directions:
Most naturally, a quantum system with d � 2 levels has
been considered with the king’s measurement being one of
the complete (i.e., d + 1 numbers of) mutually unbiased
bases (MUBs) [6,7]. With particular constructions of MUBs,
solutions have been successfully shown for d = 3 [2], d =
prime [3], and d = power of prime [8]. For a general d, the
existence of the solution is shown to be that of the orthogonal
Latin squares, irrespective of the way of the construction of
MUBs but under the restriction of Alice’s measurement to be
a projection valued measure (PVM) measurement [9]. This
implies that for some cases, e.g., d = 6, we have no solutions
to the problem. However, allowing Alice to perform a positive
operator valued measure (POVM) measurement, it has been
shown that a solution always exists for arbitrary dimension
[10]. On the other hand, a non-MUB measurement for the
king’s measurements has been considered for d = 2 [11,12]
and in a general dimension in Ref. [13]. As a different line
of generalization, it is shown that there are no solutions if
Alice does not use the blessings of entanglement [14,15].
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Recently, by showing the relationship between the mean king’s
problem and finite dual affine plain geometry, a solution to
the problem is introduced in the odd prime dimensional case
[16]. Connected to the above relationship, it is considered that
Alice guesses a measurement employed by the king without
any classical delayed information revealed by the king. This
derivation is called tracking the king [17].

In this paper, we investigate the king’s problem from the
viewpoint of error detection and correction. By considering
the king’s measurement as an error, the problem becomes a
certain kind of an error detection problem. To see the idea,
let us see how the solution is constructed in Ref. [1]: In
Alice’s preparation, she utilizes an entangled state on two
qubits, one of which is for the king and the other is kept
secretly on Alice’s hand. In the context of error correction,
this corresponds to finding a good coding system, especially by
adding a redundant system to have the error resilience. Then,
Alice finds an observable, the measurement of which makes
her successful in guessing the king’s outcome. The key fact
here is that the observable has the orthogonal eigenspaces such
that the postmeasurement state for each outcome of any Pauli
matrix on the king’s space belongs to one of the eigenspaces.
The general idea to construct a reliable error detection method
is to find an orthogonal decomposition on the larger Hilbert
space so that each error state belongs to a different subspace.
Thus, one can consider Alice’s measurement as the syndrome
measurement to diagnose the error, corresponding to the king’s
outcome, in the context of the mean king’s problem. In this
way, the king’s problem is fairly translated to that of the error
detection.

Notice, however, the existence of the delayed information of
the king’s measurement basis makes the problem complicated
and one cannot apply the general theory of error correction
straightforwardly. Nevertheless, we show that the king’s
problem can be described by a single error operation described
by the collection of error operators (Lk)k which effectively
describes the king’s measurements and realizes the above
mentioned error-correcting strategy. For the setting in Ref. [1],
we find a collection of error operators (Lk)k such that each
of the operators projects a Bell state to orthogonal subspace
and a particular combination of them corresponds to an
eigenprojection of each Pauli matrix. Then, Alice can perform
a syndrome measurement corresponding to the orthogonal
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subspace and can correctly guess the king’s outcome according
to the combination rule connecting the error operators and the
choice of the king’s measurement.

This paper is organized as follows. In Sec. II, we review
quantum error-correcting codes and the general condition for
the existence of the codes. In Sec. III, we introduce the mean
king’s problem in the most general setting using measurement
operators and give a solution to the problem which consists of
analogical error detection and error correction. In Sec. IV, the
existence of quantum error-correcting codes is discussed in
the case where there exist solutions to the problem. In Sec. V,
problems solvable with our method are constructed from any
orthonormal basis. In Sec. VI, we discuss higher dimensional
codes as the solutions to the problem. Finally, we summarize
this paper in Sec. VII.

II. REVIEW OF QUANTUM ERROR-CORRECTING
CODES

Throughout this paper, we treat a finite dimensional Hilbert
space and we regard Hilbert spaces (respectively, density
operators) in the same light as quantum systems (respectively,
quantum states). Let ρ be a density operator on a Hilbert
space H, i.e., ρ � 0 and trρ = 1. We denote by S(H) the set
of density operators on H. A general quantum operation is
described by a trace nonincreasing completely positive (CP)
map �, which is represented by a collection of linear operators
(Ai)i such that �(ρ) = ∑

i AiρA
†
i . A trace nonincreasing

condition reads
∑

i A
†
i Ai � I while the equality holds iff

it is trace preserving. This representation is called a Kraus
representation and each Ai is called a Kraus operator. In the
context of noise operation, Ai is called a noise operator. In the
following, we often use an abbreviation � = (Ai)i to imply
the Kraus representation �(ρ) = ∑

i AiρA
†
i .

Let E = (Ei)i be an error operation on a d-dimensional
Hilbert space. An n-dimensional subspace C ⊂ H is called a
(d,n) quantum error-correcting code against E = (Ei)i if there
exists a trace preserving CP map R = (Rj )j such that

R ◦ E(ρ) ∝ ρ,

for any state ρ whose support lies in C. The general condition
for the existence of the error-correcting code was given by
Knill-Laflamme [18].

Theorem 1. A necessary and sufficient condition for C ⊂
H to be a (d,n) quantum code against an error operation E =
(Ei)i is that

PE
†
i Ei ′P = λii ′P ∀i,i ′,

with a positive matrix (λii ′)i,i ′ where P denotes the projector
onto C.

Moreover, it is easy to see that the error-correcting code C

can also correct an error operation spanned by {Ei}i [19].
Notice that in general the orthogonality of the code states

with error is only sufficient but not necessary. However, in the
following, we use the orthogonality condition to connect the
mean king’s problem and error-detecting problem.

III. SOLUTION TO MEAN KING’S PROBLEM USING
QUANTUM ERROR-CORRECTING CODES

The essence of the mean king’s problem is summarized as
follows:

(i) The king performs one of the measurements on a
quantum state HK , where the initial state is prepared by Alice.

(ii) Alice is then allowed to perform a measurement on the
system.

(iii) Immediately after the king reveals the measurement
type he performed, Alice is required to answer the king’s
measurement outcome.

Given the set of the king’s measurements, a solution to the
mean king’s problem is defined as a pair of an initial state ρ

and Alice’s measurement A with which Alice can successfully
guess the king’s outcome with delayed information J of the
king’s measurement.

Here, we shall give several equivalent conditions of a
solution (ρ,A) to the mean king’s problem. Let J, I, and
A be random variables (including measurements) for the
king’s measurement type J , the king’s outcome i, and Alice’s
outcome a. We denote the joint probability distribution of
J,I,A by Pr(J,i,a), and the conditional probability of I given
J = J,A = a by Pr(i|J,a), and so on. Note that we shall omit
the dependence of ρ of these quantities for the notational
simplicity.

Proposition 2. The following are equivalent: Given the
king’s measurement set,

(s1) (ρ,A) is a solution to the mean king’s problem.
(s2) There exists an estimation function s(J,a) such that

Pr(s(J,a)|J,a) = 1.
(s3) H (I|J,A) = 0 where H (I|J,A) is the conditional

entropy of I given J and A.
(s4) An index set X(J,i) ⊇ {a|Pr(J,i,a) �= 0} satisfies

X(J,i) ∩ X(J,i ′) = ∅ ∀J,∀i �= i ′. (1)

The proof is straightforward (Note that if Alice gets
outcome a and heard the king’s measurement J , then the king’s
outcome i should satisfy a ∈ XJ,i . However, by condition (1),
such i uniquely exists, which determines Alice’s estimation
function.)

In a quantum setting of the problem, Alice can utilize
entanglement between the king’s system HK and another
quantum system HA kept secretly by Alice. Let d and d ′ be
dimensions of HK and HA, respectively. Although the king’s
measurement is conventionally restricted to a class of projec-
tive measurements, we allow the king to perform a general
class of measurement process described by a collection of
measurement operators. Namely, letting M(J ) = (M (J )

i )i (J =
1, . . . ,m) be a collection of measurement operators on HK

for a J th measurement, the postmeasurement state from the
density operator ρ is given by

ρ
(J )
i = M

(J )
i ρM

(J )
i

†

p
(J )
i

,

where i is the king’s outcome and p
(J )
i := tr M

(J )
i ρM

(J )
i

†
is

the probability to get the ith outcome. Moreover, the most
general class of Alice’s measurement can be described by
POVM measurement A = (Aa)a on HA ⊗HK .
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Motivated by Theorem 1, we can relate a solution to the
general mean king’s problem to the error detection problem as
follows.

Theorem 3. Let C ⊂ HA ⊗HK be an n-dimensional sub-
space and P the projection operator onto C. If there exists
a quantum operation (La)a on HK and nonempty index sets
X(J,i) ⊂ {1,2, . . . ,l} satisfying

(c1) IA⊗M
(J )
i =

∑
a∈X(J,i)

f (J,i)
a IA⊗La on C,

(c2) X(J,i) ∩ X(J,i ′) = ∅ ∀J,∀i �= i ′,

(c3) P (IA ⊗ La)†(IA ⊗ La′)P = λaδaa′P,

for some λa � 0 and f (J,i)
a ∈ C, then

(i) by using any code state in C as an initial state, Alice can
guess the king’s outcome perfectly.

(ii) C is a quantum error-correcting code against span{IA ⊗
La}a .

The theorem tells us that we can effectively describe the
king’s measurements introducing a single error operation (La)a
through the decompositions (c1). Note that condition (c3) is
a sufficient condition for distinguishing the kinds of error
operators perfectly on C and implies that C is a quantum
error-correcting code against the error operation.

Proof. (i) Let |�〉 ∈ C be an initial state prepared by Alice.
If the king chooses the J th measurement and obtains the ith
outcome, then condition (c1) implies that the postmeasurement
state is proportional to∣∣IA ⊗ M

(J )
i �

〉 ∈
⊕

a∈X(J,i)

Aa,

where Aa is a subspace spanned by {IA ⊗ LaC}(a =
1,2, . . . ,l); note here that, from condition (c3), Aa and Aa′

are orthogonal subspaces for any a �= a′. Let Pa be the
projection operator onto Aa , then P := (P1,P2, . . . ,Pl,P

⊥)
forms a discrete PVM, where P ⊥ := IA ⊗ IK − ∑l

a=1 Pa .
Let Alice perform the PVM measurement P and obtain

outcome a. With the revealed J by the king, Alice is assured
that the king’s outcome i satisfied a ∈ X(J,i). Thus Alice can
correctly guess the king’s outcome [see (s4) of Proposition 2].

(ii) Condition (c3) implies that C is a quantum error-
correcting code against the error operation {IA ⊗ La}la=1 from
Theorem 1. In addition, C can also correct an error operation
span{IA ⊗ La}la=1. �

IV. EXISTENCE OF QUANTUM ERROR-CORRECTING
CODES

In this section, we discuss conversely the existence of
quantum error-correcting codes against error operators which
consist of operators derived from the measurements if there
exists a solution to the mean king’s problem.

Let HA = HK := H and an entangled quantum state (in
the form of the Schmidt decomposition):

|�η〉 =
d∑

j=1

ηj |ψj 〉 ⊗ |φj 〉 (ηj > 0), (2)

be prepared as an initial state with orthonormal bases {|ψj 〉}j
and {|φj 〉}j of H satisfying

∑
j η2

j = 1. A maximal entangled

state is |�η〉 with η = (η1, . . . ,ηd ) = ( 1√
d
, . . . , 1√

d
). In the

following, we shall denote a maximal entangled state by |�〉.
Let L(H) be the set of linear operators on H. Noting that

ηj > 0 for any j , it is easy to see thatL(H) is a d2-dimensional
Hilbert space by introducing the following inner product
dependent on |�η〉:

〈A|B〉Sc := d〈I ⊗ A�η|I ⊗ B�η〉
= d

∑
j

η2
j 〈φj |A†B|φj 〉. (3)

One can introduce the following isomorphism between L(H)
and H⊗H (which is similar to the Choi-Jamiołkowski
isomorphism):

L ∈ L(H) �→ Iη(L) :=
√

d|I ⊗ L�η〉 ∈ H⊗H , (4)

in a way to preserve the inner products of L(H)
and H⊗H. Indeed, we have 〈Iη(L)| Iη(L′)〉 = d

∑
i,j

ηiηj 〈ψi |ψj 〉〈φi |L†L′φj 〉=d
∑

j η2
j 〈φj |L†L′φj 〉=〈L|L′〉Sc.

Note that Eq. (3) is a generalization of the Hilbert-Schmidt
inner product:

〈A|B〉HS := tr A†B,

which is the case when |�η〉 is a maximal entangled state |�〉.
We denote the isomorphism (4) for the maximal entangled
state just by I.

Lemma 4. For any (unnormalized) orthogonal basis
{La}d2

a=1 of L(H) such that 〈La|La′ 〉Sc = αδaa′ (α > 0), we
have

d2∑
a=1

L†
aLa =

d∑
j=1

α

η2
j

|φj 〉〈φj |. (5)

If |�η〉 is a maximal entangled state, we have

d2∑
a=1

L†
aLa = αdI.

Proof. To prove Eq. (5), it is enough to observe that∑d2

a=1 L
†
aLa is the inverse of

∑d
j=1

η2
j

α
|φj 〉〈φj |. Note

that |χ〉〈ξ | (∀|ξ 〉,|χ〉 ∈ H) can be written as |χ〉〈ξ | =∑
a 1/α〈La||χ〉〈ξ |〉ScLa = ∑

a,j dη2
j /α〈ξ |φj 〉〈φj |L†

a|χ〉La

by the orthogonal basis {La}. Applying an orthonormal
basis {|χk〉}k of H to |χ〉 of this equality, we get

〈ξ | = 〈ξ |(∑j

η2
j

α
|φj 〉〈φj |(

∑
a L

†
aLa) by taking inner product

〈χa| and summing them over a. Since 〈ξ | is an arbitrary

vector, we have (
∑

j

η2
j

α
|φj 〉〈φj |)(

∑
a L

†
aLa) = I. �

Using Lemma 4, we obtain the following theorem which
implies the existence of a quantum error-correcting code C

against an error operation (La)a from a solution of the mean
king’s problem.

Theorem 5. Let P = (Pa = |pa〉〈pa|)d2

a=1 be a PVM on

HA ⊗HK with an orthonormal basis {|pa〉}d2

a=1. If the initial
state |�η〉 in Eq. (2) with the PVM measurement P̂ provides
a solution to the mean king’s problem, there exists a quantum
operation (La)d

2

a=1 on HK and index sets X(J,i) satisfying the
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following conditions,

(c1′) M
(J )
i =

∑
a∈X(J,i)

f (J,i)
a La,

(c2′) X(J,i) ∩ X(J,i ′) = ∅ ∀J,∀i �= i ′,

(c3′) 〈La|La′ 〉Sc = αδaa′ ,

for some α > 0 and f (J,i)
a ∈ C. For the case of a maximal

entangled state |�〉, (La)a can be chosen to satisfy the trace
preserving condition, i.e.,

∑
a L

†
aLa = IK , with α = 1/d.

Note that conditions (c1′)–(c3′) are parallel to (c1)–(c3)
in Theorem 3: (c1′) is an equality condition not only on the
code space C; (c3′) implies the orthogonality condition (c3)
on C. Therefore, Theorem 5 gives a “reverse” statement of
Theorem 3.

Proof. First, using isomorphism (4), we define an error
operation (La)d

2

a=1 on L(HK ) by

La := I−1
η (

√
α|pa〉) (⇔ |pa〉 =

√
d

α
|I ⊗ La�η〉),

for some α > 0. Then, orthogonality condition (c3′) follows
from an inner preserving property of the isomorphism.
Moreover, Lemma 4 implies

∑
a L

†
aLa � IK if we put α :=

minj {η2
j }j > 0. For the case of the maximal entangled state,

α = 1/d and we have
∑

a L
†
aLa = IK .

Next, the conditional probability corresponding to the
random variables has the following form:

P (J,i,a) = P (J )
〈
IA ⊗ M

(J )
i �η

∣∣Pa

(
IA ⊗ M

(J )
i

)
�η

〉
,

where〈
IA ⊗ M

(J )
i �η

∣∣Pa

(
IA ⊗ M

(J )
i

)
�η

〉

= d

α

∣∣〈IA ⊗ M
(J )
i �η

∣∣IA ⊗ La�η

〉∣∣2 = 1

d
α
∣∣〈M (J )

i

∣∣La

〉
Sc

∣∣2
.

Since |�η〉 and P = (Pa) is the solution to the problem, an in-
dex set X(J,i) := {a | 〈M (J )

i |La〉Sc �= 0} ⊇ {a|Pr(J,i,a) �= 0}
satisfies condition (c2′) [see (s4) of Proposition 2)]. Therefore,

M
(J )
i =

∑
a

1

α

〈
La

∣∣M (J )
i

〉
Sc

La =
∑

a∈X(J,i)

1

α

〈
La

∣∣M (J )
i

〉
Sc

La

holds. This proves condition (c1′). �

V. CLASS OF PROBLEMS SOLVED WITH QUANTUM
ERROR-CORRECTING CODES

We construct a pair of a set of operators and index sets which
satisfies the conditions (c1)–(c3) for a maximal entangled state
from any orthogonal basis. We also show settings of the mean
king’s problem with measurements which consist of the pair.
The settings are solved with the method of Theorem 3 by using
quantum error-correcting codes.

Let HK = HA := H be a d-dimensional Hilbert space
and {|fi〉}di=1 an orthonormal basis for the space. We define
operators (Lij )di,j=1 on HK by

Lij := I−1

(
1√
d

|fi〉 ⊗ |fj 〉
)

,

where we use the isomorphism I for a maximal entangled
state 1/

√
d

∑d
i=1 |fi〉 ⊗ |fi〉. (Lij )i,j is an orthogonal ba-

sis with 〈Lij |Li ′j ′ 〉HS = 1
d
δ(i,j )(i ′,j ′) [this implies (c3)], then∑

i,j L
†
ijLij = I holds from Lemma 4.

We define index sets X(J,i) := {(l,J (i)(l))}l∈[d] ⊂ [d] ×
[d] (J = 1,2, . . . m and i ∈ [d]) by {J (i)(l)}l∈[d] = [d]
and J (i)(l) �= J (i ′)(l) for any i �= i ′ and l, where [d] :=
{1,2, . . . ,d}. For J = 0, we define X(0,i) := {(i,l)}l∈[d] ⊂
[d] × [d] (i ∈ [d]). Then, X(J,i) ∩ X(J,i ′) = ∅ holds for any J

and i �= i ′ [this implies (c2)]. Remark that a size d × d matrix
Ĵ = (Jil := J (i)(l))1�i,l�d (J = 1,2, . . . ,m) is a Latin square,
i.e., Ĵ has d different symbols, each occurring exactly once in
each row and each column.

Now we construct a collection of measurement operators
from the operators (Lij )i,j and the index sets X(J,i).

Corollary 6. We define M (J ) := (M (J )
i :=∑

(j,k)∈X(J,i) Ljk)i∈[d] (J = 1,2, . . . ,m) and M (0) :=
(M (0)

i := ∑d
j=1 Lij )i∈[d]. Then, M (J ′) is a collection of

measurement operators with
∑

i∈[d] M
(J ′)
i

†
M

(J ′)
i = I for any

J ′ ∈ {0,1, . . . ,m}.
That is, we can solve the mean king’s problem in which

the king employs MJ (J = 0,1, . . . ,m) by using the method
in Theorem 3 since (Lij )i,j and X(J,i) satisfy the conditions
(c1)–(c3) for MJ and the maximal entangled state.

Proof. For any i and J �=0, |M (J )
i fj 〉 =

1√
d
|fJ (i)(j )〉 holds because

∑
j |fj 〉 ⊗ |M (J )

i fj 〉= I(M (J )
i ) =∑

(j,k)∈X(J,i) I(Ljk)= ∑
(j,k)∈X(J,i)

1√
d
|fj 〉 ⊗ |fk〉=

∑
j |fj 〉 ⊗

1√
d
|fJ (i)(j )〉. Then, we observe

〈fl|
d∑

i=1

M
(J )
i

†
M

(J )
i fl′ 〉 =

d∑
i,k=1

〈
fk

∣∣M (J )
i fl

〉〈
fk

∣∣M (J )
i fl′

〉

= 1

d

∑
i,k=1

〈fJ (i)(l)|fk〉〈fk|fJ (i)(l′)〉

= 1

d

∑
i=1

〈fJ (i)(l)|fJ (i)(l′)〉 = δll′ .

For any j,k ∈ [d], |M (0)
i fl〉 = δil√

d
|f 〉 (where |f 〉 :=∑

j |fj 〉) holds because
∑

l |fl〉⊗M
(0)
i |fl〉 = I(M (0)

i ) =∑
j I(Lij )=∑

j
1√
d
|fi〉⊗|fj 〉=|fi〉⊗ 1√

d

∑
j |fj 〉=

∑
l |fl〉 ⊗

δil√
d

∑
j |fj 〉. Then, we observe

〈
fl

∣∣∣∣
d∑

i=1

M
(0)
i

†
M

(0)
i fl′

〉
=

d∑
i,k=1

1

d
δilδil′ 〈fk|f 〉〈fk|f 〉

= 1

d

d∑
i=1

δilδil′ 〈f |f 〉 = δll′ .

This implies that
∑

i∈[d] M
(J ′)
i

†
M

(J ′)
i = I holds for any J ′ ∈

{0,1, . . . ,m}. �
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VI. TOWARD HIGHER DIMENSIONAL QUANTUM
ERROR-CORRECTING CODES

So far, we have only seen the solutions with one-
dimensional (1D) quantum codes. In the following example,
we introduce a problem which are solved by using three-
dimensional (3D) quantum code.

First we construct a problem in which the king employs
two kinds of projective measurements in a two-dimensional
(2D) Hilbert space in preparation for the example and
show that the 1D quantum code spanned by the Bell
state |�+〉 is a solution to the problem. Let HA and
HK be 2D Hilbert spaces. We define operators (L̂a)4

a=1

with
∑4

a=1 L̂
†
aL̂a = I by L̂1 := X0Z0,L̂2 := X1Z0,L̂3 :=

X0Z1,L̂4 := X1Z1, where X0 := |+〉〈+|,X1 := |−〉〈−| and
Z0 := |0〉〈0|,Z1 := |1〉〈1| are eigenprojectors of σx and σz,
respectively. For projective measurements M̂ (1) := (X0,X1),
M̂ (2) := (Z0,Z1), and |�+〉, we observe

X0 = L̂1 + L̂3, X1 = L̂2 + L̂4,

Z0 = L̂1 + L̂2, Z1 = L̂3 + L̂4,

and

〈I(L̂a)| I(L̂a′)〉 = 〈L̂a|L̂a′ 〉HS = δaa′

2
.

Therefore, the operators (L̂a)4
a=1 and the index sets from

the relation between (L̂a)4
a=1 and (M̂ (1),M̂ (2)) satisfy the

conditions (c1)–(c3) for the measurements and a (4,1) quantum
code spanned by |�+〉.

In the following, we show a problem solved with a 3D
quantum code. Let {|i〉}2

i=0 be the computational basis of
C3. We define L̃1 := X̃0Z̃0,L̃2 := X̃1Z̃0,L̃3 := X̃0Z̃1,L̃4 :=
X̃1Z̃1,L̃5 := |2〉〈2|, where

X̃0 :=
⎛
⎝ 0

X0 0
0 0 0

⎞
⎠ , X̃1 :=

⎛
⎝ 0

X1 0
0 0 0

⎞
⎠ ,

Z̃0 :=
⎛
⎝ 0

Z0 0
0 0 0

⎞
⎠ , Z̃1 :=

⎛
⎝ 0

Z1 0
0 0 0

⎞
⎠ .

Then,
∑

a L̃
†
aL̃a = I holds. Let C̃ be a (9,3) quantum code

spanned by {|i〉 ⊗ (|0〉 + |2〉) | i ∈ {0,1,2}}, then,

〈i|(〈0| + 〈2|)(I ⊗ L̃a)†(I ⊗ L̃a′)|j 〉(|0〉 + |2〉) = λaδaa′δij

holds, where λ1 = λ2 = λ5 = 1,λ3 = λ4 = 0. Therefore,
there exists a solution with any code state in C̃ to the mean
king’s problem which consists of a collection of measurement
operators constructed from (L̃a)5

a=1 and suitable index sets.
Here we present an example of such measurement operators:

M̃ (J ) := (
M̃

(J )
1 ,M̃

(J )
2

)
(J = 1,2,3,4),

where

M̃
(1)
1 := L̃1 + L̃2 = Z̃0,

M̃
(1)
2 := L̃3 + L̃4 + L̃5 = Z̃1 + |2〉〈2|,

M̃
(2)
1 := L̃1 + L̃2 + L̃5 = Z̃0 + |2〉〈2|,

M̃
(2)
2 := L̃3 + L̃4 = Z̃1,

M̃
(3)
1 := L̃1 + L̃3 = X̃0,

M̃
(3)
2 := L̃2 + L̃4 + L̃5 = X̃1 + |2〉〈2|,

M̃
(4)
1 := L̃1 + L̃3 + L̃5 = X̃0 + |2〉〈2|,

M̃
(4)
2 := L̃2 + L̃4 = X̃1.

VII. CONCLUSION

In this paper, we showed the sufficient condition for solving
the mean king’s problem which consists of the measurement
operators by using quantum error-correcting codes. In the
context of quantum error-correcting codes, the orthogonality
of the error operators is helpful for error detection and error
correction. We apply the orthogonality to obtain auxiliary
information about the king’s outcome and the outcome is
guessed perfectly with the delayed information. It is shown
that there exists such a quantum error-correcting code if there
exist solutions with a bipartite system to the problem and the
one-rank PVM. Furthermore, we show the settings of the mean
king’s problem which are solved by using our method with
quantum error-correcting codes and discuss the possibility of
the construction of higher dimensional codes.

APPENDIX A: SOLUTION TO THE CONVENTIONAL
CASE IN THE QUBITS SETTING

In the conventional mean king’s problem [1], we show
a set of operators, index sets, and a quantum code which
satisfy (c1)–(c3). Suppose that Alice prepares qubit systems
HA ⊗HK � C2 ⊗ C2 in a Bell state |�+〉 := 1/

√
2(|0〉 ⊗

|0〉 + |1〉 ⊗ |1〉), where |0〉 := (1,0)T and |1〉 := (0,1)T . The
king chooses one of the measurements constructed from Pauli
matrices σx,σy , and σz:

M (1) := (
M

(1)
1 := |+〉〈+|,M (1)

2 := |−〉〈−|),
M (2) := (

M
(2)
1 := |+′〉〈+′|,M (2)

2 := |−′〉〈−′|),
M (3) := (

M
(3)
1 := |0〉〈0|,M (3)

2 := |1〉〈1|),

where |+〉 := 1/
√

2(1,1)T ,|−〉 := 1/
√

2(1, − 1)T ,|+′〉 :=
1/

√
2(1,i)T , and |−′〉 := 1/

√
2(1, − i)T . We define

L1 := I−1(|�1〉) = 1

4

(
2 1 − i

1 + i 0

)
,

L2 := I−1(|�2〉) = 1

4

(
2 −1 + i

−1 − i 0

)
,

L3 := I−1(|�3〉) = 1

4

(
0 1 + i

1 − i 2

)
,

L4 := I−1(|�4〉) = 1

4

(
0 −1 − i

−1 + i 2

)
,

by using the isomorphism I for |�+〉 and a basis measurement
{�i}4

i=1 employed by Alice in Ref. [1]. Then,
∑4

a=1 L
†
aLa = I
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TABLE I. The relationship between the measurement operators
and the index sets.

J i X(J,i) J i X(J,i)

1 1 {1,3} 1 2 {2,4}
2 1 {1,4} 2 2 {2,3}
3 1 {1,2} 3 2 {3,4}

holds since 〈La|La′ 〉HS = 1
2δaa′ [where this implies (c3)].

M
(1)
1 = L1 + L3, M

(1)
2 = L2 + L4,

M
(2)
1 = L1 + L4, M

(2)
2 = L2 + L3,

M
(3)
1 = L1 + L2, M

(3)
2 = L3 + L4,

hold. That is, the operators (La)4
a=1 and the index sets X(J,i)

(see Table I) satisfy conditions (c1) and (c2). Therefore, we
can reconsider the solution [1] to the qubit setting from the
viewpoint of quantum error-correcting codes.

APPENDIX B: CONSTRUCTION OF MEASUREMENT
OPERATORS FROM COMPUTATIONAL BASIS

We show a collection of measurement operators composed
by the computational basis as an example of the above
construction in Sec. V. Let {|l〉}d−1

l=0 be the computational
basis of d-dimensional Hilbert space HK � Cd , i.e., l + 1th
element (from the top) of |l〉 is equal to 1 and the others are
equal to 0. We define a d2 tuple of operators (Lij )di,j=1 by

I(
√

dLij ) = |i − 1〉 ⊗ |j − 1〉, where 1/
√

d
∑d−1

l=0 |l〉 ⊗ |l〉 is
used for the isomorphism. We remark that each operator Lij is
a d by d matrix (L(ij )

mn )1�m,n�d defined as L
(ij )
mn = δmj δni/

√
d.

In d = 3, we introduce three kinds of sets of measurement
operators constructed from (Lij )3

i,j=1 and the index sets shown

TABLE II. The relationship between the measurement operators
and the index sets.

J i X(J,i)

1 1 {(1,1),(1,2),(1,3)}
1 2 {(2,1),(2,2),(2,3)}
1 3 {(3,1),(3,2),(3,3)}
2 1 {(1,1),(2,2),(3,3)}
2 2 {(1,2),(2,3),(3,1)}
2 3 {(1,3),(2,1),(3,2)}
3 1 {(1,1),(2,3),(3,2)}
3 2 {(1,2),(2,1),(3,3)}
3 3 {(1,3),(2,2),(3,1)}

in Table II.

M
(1)
1 = 1√

3

⎛
⎝1 0 0

1 0 0
1 0 0

⎞
⎠ , M

(1)
2 = 1√

3

⎛
⎝0 1 0

0 1 0
0 1 0

⎞
⎠ ,

M
(1)
3 = 1√

3

⎛
⎝0 0 1

0 0 1
0 0 1

⎞
⎠ , M

(2)
1 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ ,

M
(2)
2 = 1√

3

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ , M

(2)
3 = 1√

3

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ ,

M
(3)
1 = 1√

3

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , M

(3)
2 = 1√

3

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ ,

M
(3)
3 = 1√

3

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ .
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