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Quantum information can be encoded in the set of steady states (SSS) of a driven-dissipative system. Nonsteady
states are separated by a large dissipative gap that adiabatically decouples them while the dynamics inside the SSS
is governed by an effective, dissipation-projected, Hamiltonian. The latter results from the interplay between a
weak driving and the fast relaxation process that continuously projects the system back to the SSS. This amounts
to a different type of environment-induced quantum Zeno effect. We prove that the dissipation-projected dynamics
is of geometric nature and that it is robust against different types of Hamiltonian and dissipative perturbations.
Remarkably, in some cases an effective unitary dynamics can emerge out of purely dissipative interactions.
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I. INTRODUCTION

Since the earliest days of quantum information processing
(QIP) weak coupling to the environmental degrees of freedom
has been regarded as one of the essential prerequisites. In
fact, decoherence and dissipation generally spoil the unitary
character of the quantum dynamics and induce errors into the
computational process. In order to overcome such an obstacle,
a variety of techniques have been devised including quantum
error correction [1], decoherence-free subspaces (DFSs) [2–4],
noiseless subsystems (NS) [5–8], and geometric or holonomic
quantum computation [9–11].

However, it has been recently realized that dissipation
and decoherence may even play a positive role to the aim
of coherent quantum manipulations. Indeed, it has been
shown that properly engineered, dissipative dynamics can
in principle be used to enact QIP primitives (see Ref. [12]
for an early important contribution in this direction) such
as quantum state preparation [13–15], quantum simulation
[16], and computation [17]. Exotic physical properties such
as topological order [18] and non-Abelian synthetic gauge
fields [19] can also be achieved by engineered dissipation.

In a nutshell, the idea is that one can design driven-
dissipative systems such that their steady states enjoy some
computationally desirable property. For example, in Ref. [14]
the unique steady state is maximally entangled, while in
Ref. [17] the steady states encode for an arbitrary quantum
computation! Moreover, the irreversible and attractive nature
of dissipative dynamics endows these techniques with a degree
of robustness against imperfections in preparation and control.
All this leads to a dramatic paradigm shift in QIP: noise and
dissipation should not be viewed as detrimental but may in
fact be considered as a resource.

In this paper we build upon our recent discovery on how
to enact coherent dynamics over the set of steady states (SSS)
of a strongly dissipative system [20]. Quantum information
is encoded in sectors of the SSS while nonsteady states
are separated by the large dissipative gap that adiabatically
decouples them away. A weak Hamiltonian control gives rise
to an effective dynamics inside the SSS that is ruled by a
dissipation-projected Hamiltonian. The latter results from a
nontrivial interplay between the control and the fast relaxation
process that continuously projects the system back onto the

SSS. This amounts to a different type of environment-induced
quantum Zeno effect [21,22].

In this paper we show that the dissipation-projected dy-
namics is geometric in nature. This means that this approach
can be regarded as a dissipative extension of the fault-tolerant
techniques of geometric and holonomic quantum computation
[9–11]. We also prove that the dissipation-projected Hamil-
tonians are protected against several types of perturbations
(unitary and dissipative) and may allow for robust QIP. Finally
we show how an effective unitary evolution may emerge out
of suitable dissipative perturbations of a purely dissipative
dynamics. This “emerging unitarity” phenomenon is perhaps
the single most surprising one of our results.

II. THE DISSIPATION-PROJECTION THEOREM

We consider quantum open systems whose dynamics is
described by the equation

dρ(t)

dt
= L ρ(t). (1)

The superoperator L is referred as to the Liouvillian. An open
quantum system generically admits a unique steady state ρ∞
that is approached by the time-evolving density matrix ρ(t)
as the time goes to infinity. Asymptotically the information-
theoretic distance D(ρ(t), ρ∞) := 1

2‖ρ(t) − ρ∞‖1 decays ex-
ponentially with time where the time scale τR is referred to as
the relaxation time. For t � τR the time-evolved state becomes
indistinguishable from the steady state. According to Eq. (1)
the steady state satisfiesL(ρ∞) = 0, i.e., it lies lies in the kernel
of the Liouvillian. Uniqueness of the steady state translates into
a one-dimensional kernel. In this paper we focus on the case
in which the Liouvillian can be decomposed as L = L0 + L1

in such a way that
(i) The relaxation time of L0 is the shortest time scale of

the problem. Equivalently, the dissipative gap of L0, τ−1
R , is

the largest energy scale.
(ii) The kernel ofL0 is high dimensional and attractive (the

nonzero eigenvalues of L0 have a negative real part).
We denote by P0 (Q0 = 1 − P0) the spectral projection of L0

with eigenvalue zero (one). The steady-state set (SSS) is given
by those states ρ such that P0(ρ) = ρ. The critical assumption
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is that the SSS is high dimensional. A prototypical instance of
this nongeneric situation is the following:

Example 0. Suppose a system S is joined to a system B and
that the dissipation acts only on the latter. Let ρB denote the
(generically) unique steady state of B and by ρ any state of S.
It is then obvious that any bipartite state of the form ρ ⊗ ρB is a
steady state of the full dynamical system when the S and B are
decoupled. Clearly, any transformation over S is a symmetry
of the dynamics. For the sake of concreteness, one may think
of a two-level atom S weakly coupled to a leaky cavity mode
B. To a good approximation dissipation acts directly just on
B. Formally, the Hilbert space is H = HS ⊗ HB and L0 =
1S ⊗ LB where the Liouvillian LB admits a unique steady
state ρB . In this case P0(X) = TrB(X) ⊗ ρB, the kernel of L0

has dimension (dimHS)2, and the SSS can be identified with
the state space of S. This apparently trivial example is later
considerably generalized by resorting to the theory of NSs [5].

The fundamental technical result we build upon is the
following fact proved in Ref. [20] (see also Sec. A):

Projection theorem. Suppose L = L0 + L1 with ‖L1‖ =
O(1/T ), then

sup
t∈[0,T ]

‖(Et − etLeff )P0‖ = O(1/T ), (2)

where Leff := P0 LP0 = P0 L1 P0 and Et = etL.

In words, if the system is prepared at time t = 0 inside the
SSS, then, in the large T limit, the time evolution leaves the
SSS invariant and it is governed by the effective generator Leff .

In several of the applications we discuss below the pertur-
bation is of Hamiltonian type, i.e., L1 = −i[K,•], (K = K†);
in that case it is denoted by K. The key point is that Keff =
P0 KP0 turns out to be an Hamiltonian; it is referred to as
the dissipation-projected Hamiltonian. Physically, this means
that strong dissipation, while dressing the Hamiltonian by a
continuous projection onto the SSS, does not alter its unitary
character. Nonsteady states are adiabatically decoupled away.
The SSS and unitarity are protected by the large dissipative
gap of L0.

For example, in Example 0 discussed above, where the
Liouvillian LB has a unique steady state ρB , one finds Keff =
−i[Keff, •], where Keff = TrB(KρB) ⊗ 1B . We see that in fact
Keff is Hamiltonian.

In Sec. A we prove Eq. (2) and we give a rigorous estimate
for the coefficient in its right-hand side (RHS). It turns out
[see Eq. (A14)] that the numerical factor is cτR , where τR

is the relaxation time of the unperturbed dynamics and c is
a O(1) constant. This fact is important as it implies that the
error can be made small, either by making T larger (which also
makes the waiting time O(T ) longer) or by making dissipation
faster (i.e., τR smaller). Indeed, measuring times in unit of τR

one realizes that the expansion parameter in Eq. (2) is really
τR/T . In other terms, the “long T limit” just means that the
Hamiltonian norm has to be much smaller than the dissipative
gap [=O(τ−1

R )]. The latter represents the physical quantity
that in real applications has to be engineered in order to make
it as large as possible. Equivalently, one wants to make the
relaxation time τR as short as possible. We have to operate in
the deep dissipative regime.

III. DISSIPATIVE HOLONOMIES

Let us now discuss the intimate relation between our basic
result (2) and geometric and holonomic quantum computation
[9,10]. We show that the effective evolution (2) is in fact
geometric and is given by a superoperator holonomy.

The possibility of merging dissipation dynamics and holo-
nomic quantum computation [10,11,23] by reservoir engineer-
ing was first suggested in Refs. [24,25]. More specifically, in
Ref. [25] a time-dependent Lindbladian dynamics admitting a
DFS was considered, and it was shown that under a suitable
adiabatic condition, a state initially in a DFS remains inside the
subspace and, hence, is rigidly transported around the Hilbert
space together with the DFS. The evolution is, in fact, coherent,
although entirely produced by an incoherent phenomenon.
Moreover, when the DFS eventually returns to its initial
configuration, the net effect is a holonomic transformation
on the states in the subspace. Counterintuitively, the effect
of the dissipation on the (time-dependent) DFS can be made
smaller by making the dissipation rate larger. The authors
qualitatively explain this phenomenon in terms of some sort of
environment-induced quantum Zeno effect where the action of
a strong environment can be regarded as a measuring apparatus
continuously monitoring the slowly moving DFS.

In order to establish a connection between these findings
and the results we have discussed so far it suffices to move to
a rotated reference frame by defining ρ̃(t) := U†

t ρ(t) where
Ut (X) := etK(X) = e−itKXeitK . In this rotated frame ρ̃(t)
evolves in a time-dependent bath

dρ̃(t)

dt
= Lt ρ̃(t), Lt := U†

t L0Ut . (3)

In the rotated frame, the dynamical semigroup is given by
Ẽt = U†

t Et and a state ρ̃t is an instantaneous steady state of Lt

if and only if (iff) ρ̃t = U†
t ρ0, where ρ0 is a steady state of L0.

It follows that the projector onto the kernel of Lt is given by
Pt = U†

t P0Ut = e−tKP0e
tK. Moreover, in the rotated frame

the dissipation-projected dynamics is geometric.
Proposition 1. (a) The projection theorem (2) can be

reformulated in the form

‖Ẽt P0 − T exp

(∫ t

0
dτ [Ṗτ ,Pτ ]

)
P0‖ = O(1/T ), (4)

where T denotes the chronological ordering symbol.
(b) The T-ordered geometric superoperator in Eq. (4) can

be rewritten as

X(t) = lim
N→∞

T
N∏

j=1

Ptj = e−tK lim
N→∞

(e
t
N
KP0)N, (5)

where tj = j t/N, j = 0, . . . ,N . Namely, the evolution corre-
sponds to an infinite, time-ordered, succession of projections
onto the instantaneous SSS, equivalently, to a succession of
P0 interleaved with infinitesimal unitaries evolutions e

1
N
K.

Proof. (a) From unitarity of Ut = etK and Eq. (2) one has

‖EtP0 − etP0KP0P0‖ = ‖ẼtP0 − X(t)‖ = O(1/T ), (6)
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where X(t) := e−tKetP0KP0P0. By differentiation

Ẋ(t) = −Ke−tKetP0KP0P0 + e−tKP0KP0e
tP0KP0P0

= −KPtX(t) + PtKX(t) = [−K,Pt ]X(t)

= Ṗt X(t). (7)

Notice also that PtX(t) = X(t) and Pt ṖtPt = 0, whence
Ẋ(t) = Ṗt X(t) = ṖtPt X(t) = (ṖtPt −Pt Ṗt )PtX(t), namely

dX(t)

dt
= [Ṗt ,Pt ] X(t) ⇒ X(t) = T e

∫ t

0 dτ [Ṗτ ,Pτ ]X(0). (8)

Equation (4) is now obtained by using Eq. (6) and X(0) = P0.

(b) Proceeding formally, if X̃(t) = ∏
τ∈[0, t] Pτ then

X̃(t + dt) − X̃(t) = Pt+dt X̃(t) − X̃(t) = (Pt+dt − Pt )X̃(t)

= Ṗt X̃(t)dt + O(dt2), (9)

whence ˙̃X(t) = Ṗt X̃(t). Since X(t) and X̃(t) fulfill the same
ordinary differential equation and the same initial condition
X(0) = X̃(0) = P0 they have to be the same function. This
proves the first equality in Eq. (5) while the second can
be verified by direct inspection using the definition of
the Pt ’s. �

The integral in Eq. (4) is clearly invariant under time
reparametrizations τ → τ ′ = τ ′(τ ) and it is therefore of
geometric nature; i.e., it depends only on the path t → Pt in the
space of (super) projections. We also see that the superoperator
holonomy is the line integral of the “tautological” connection
A = [Ṗ(τ ),P(τ )] [26].

If one replaces in Eq. (5) the projection P0 with a more
general CP map, e.g., generalized measurement, basically all
the quantum-Zeno-like QIP protocols recently discussed in
the literature are recovered [24,27–29]. In all these works the
geometric and holonomic nature of the resulting dynamics
have been discussed on the basis of the particular case at hand,
and a general comprehensive theoretical understanding seems
to be lacking. The formalism discussed in this paper may be
able to provide such an underlying conceptual framework.

IV. SSS AND INTERACTION ALGEBRAS

In this section we discuss an important class of dissipative
systems whose SSS can be fully characterized on general
algebraic grounds and at the same time describes physically
relevant cases.

Let us consider the most general dissipative generator L0

of a Markovian quantum dynamical semigroup Et := et L0 .
Thanks to the Lindblad theorem [30] the Liouvillian can be
written as

L0(ρ) =
∑

α

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

. (10)

The Lα’s are the so-called Lindblad operators. Let us now
define two operator algebras associated with Eq. (10):

A := Alg[{Lα,L†
α}α], A′ := {X ∈ L(H) / [X,A] = 0}.

(11)

The algebra A is the associative algebra (with unit) generated
by the Lindblad operators Lα and their Hermitian conjugates,
and it is referred to as the interaction algebra [5] and A′ as its

commutant. These algebras play a fundamental role in unifying
all the quantum information stabilization techniques developed
so far [6,7]. Both A and A′ are closed under Hermitian
conjugation and can be regarded as (finite-dimensional) C∗
algebras. Standard structure theorems then imply that the
state space breaks down into dJ -dimensional irreducible
representations of A (labeled by J ), each of them appearing
with multiplicity nJ :

H ∼=
⊕

J

CnJ ⊗ CdJ . (12)

From this it follows that at the algebra level one has

A ∼=
⊕

J

1nJ
⊗ L(CdJ ), A′ ∼=

⊕
J

L(CnJ ) ⊗ 1dJ
. (13)

From the first equation in Eqs. (13) it follows that the
Liouvillian (10) preserves the direct-sum structure of the
Hilbert space, i.e.,L is J block diagonal, and that it has a trivial
action on the CnJ factors. For this reason the latter are termed
“noiseless subsystems” and is where quantum information
can be stored safely from the influence of the environment
described by of L0 (more on this in the next section) [5]. In
each of the L0-invariant J blocks the situation coincides with
the one of Example 0. In other terms Eq. (10) corresponds
to a direct sum of bipartite systems in which the noise acts
just on one of the two (virtual) subsystems, i.e., CdJ . In this
sense this class of models can be regarded as a far-reaching
generalization of Example 0 [20].

We now assume that
∑

α[Lα,L†
α] = 0. Under these as-

sumptions the dynamical semigroup {etL0}t�0 leaves the
identity fixed as L0(1) = 0 and KerL0 = A′ [31]. Such a L0

is referred to as unital. From the second equation in Eqs. (13),
we see that the SSS is given by the convex hull of states of
the form ωJ ⊗ 1dJ

/dJ , where ωJ is a state over the factor CnJ .
Since KerL0 = A′ it follows that P0 is the projection onto the
commutant algebra A′, namely [20]

P0(X) =
∫

dU UXU †

=
∑

J

TrdJ
(�J X �J ) ⊗ 1dJ

/dJ ∈ A′, (14)

where the Haar-measure integral is performed over the unitary
group of the algebra A and �J := 1nJ

⊗ 1dJ
are the projectors

on the CnJ ⊗ CdJ sectors of H. In Ref. [20] we have shown
that

Keff|KerL0 = −i[Keff, •], Keff := P0(K) ∈ A′. (15)

The effective Hamiltonian P0(K) clearly commutes with the
whole unitary group of the interaction algebra. In this sense
Keff is a dissipation-projection symmetrized [32] version of
K. As a consequence, its action is trivial on the “noise-full”
CdJ factors in Eq. (12). In other terms dissipation can also
be regarded as a resource to the end of dynamical decoupling
[32–35].

V. ROBUSTNESS

One of the main motivations behind the type of dissipation-
assisted manipulations we are considering is that it features

052324-3



PAOLO ZANARDI AND LORENZO CAMPOS VENUTI PHYSICAL REVIEW A 91, 052324 (2015)

built-in resilience against certain types of perturbations.
This means that dissipation, besides providing assistance for
QIP, may provide protection. This stems from the simple
observation that the projection theorem (2) clearly indicates
that any extra term V in the Liouvillian, either Hamiltonian or
dissipative, such that ‖V‖ = O(1/T ) = and

P0 V P0 = 0 (16)

will not contribute to the effective dynamics (2). For instance,
in the context of Example 0 any pair of Hamiltonians K1 and
K2 such that TrB[ρB(K1 − K2)] = λ1S, (λ ∈ R) generate the
same projected dynamics.

A. Hamiltonian perturbations: Unital case

In the interaction algebra case associated with the unital
Liouvillian in Eq. (10), one can prove the following result
which is reminiscent of the correctability condition in operator
error correction [36] [see, e.g., Eq. (4) therein].

Proposition 2. Equation (16) is satisfied by an Hamiltonian
perturbation V iff

P0(V ) ∈ A ∩ A′ =: Z(A). (17)

The solution space of the Hamiltonian robustness, Eq. (17),
is a linear subspace of the full operator algebra L(H)
with codimension

∑
J (n2

J − 1). This subspace, in particular,
contains the kernel of P0 and the interaction algebra A.

Proof. From Eq. (15) we see that the condition (16), for
V = −i[V,•], means [P0(V ), ρ] = 0,∀ρ ∈ A′, namely the
projected dynamics does not change by perturbing K with
any term V such that ‖V ‖ = O(1/T ) and P0(V ) ∈ A′′ = A.
Since, by construction P0(V ) ∈ A′ as well, one finds that
Eq. (16) is satisfied by an Hamiltonian perturbation V iff
Eq. (17) is satisfied. Moreover, if V ∈ Z(A) ⇒ P0(V ) = V

implies that the solution space of Eq. (17) is the linear
space KerP0 + Z(A). More concretely, the Hamiltonian
perturbations V fulfilling the robustness condition Eq. (17)
have the form

V = V off +
∑
Jβ

X
β

J ⊗ Y
β

J +
∑

J

λJ1nJ
⊗ 1dJ

, (18)

where Tr(Yβ

J ) = 0, (∀J,β), and V off is off diagonal
in the decomposition (13). The first two terms
in Eq. (18) represent KerP0 whose dimension
is then

∑
J �=J ′ (nJ dJ )(n′

J d ′
J ) + ∑

J n2
J (d2

j − 1) =
(
∑

J nJ dJ )2 − ∑
J n2

J = dim L(H) − dimA′. The third
term in Eq. (18) represents the center Z(A) of the
interaction algebra whose dimension is

∑
J 1. Overall

we see that the solution space of Eq. (17) has dimension
dim L(H) − ∑

J n2
J + ∑

J 1 = dim L(H) − ∑
J (n2

J − 1); i.e.,
it has codimension

∑
J (n2

J − 1). �
For example, in the collective decoherence case the interac-

tion algebraA is the algebra of permutation-invariant operators
acting on the N -qubit space [2,3]. Since

P0
(
σα

j

) =
∫

SU (2)
dUU⊗ Nσα

j U †⊗ N =
∫

SU (2)
dUUσα

j U †

= Tr
(
σα

j

)
1 = 0 (α = x,y,z; j = 1, . . . ,N),
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FIG. 1. (Color online) Robustness against dissipative errors. Dis-
tance from the exact evolution and the effective one as a function of
1/T . The unperturbed Lindbladian is of the form L0 = ∑

α γαLα ,
where Lα is generated by a collective Lindblad operator Sα =∑N

j=1 σα
j with N = 4. The control Hamiltonians are Kα = −i[Hα,•]

with Hx = (3/2)(σ z
1 σ z

2 + σ z
2 σ z

3 ) + 1 and Hz = −(
√

3/2)(σ z
1 σ z

2 −
σ z

2 σ z
3 ) + σ z

1 . The effective dynamics generate the unitary gates
uα = exp (−iθσ α) with an arbitrary angle ϑ up to an error O(T −1)
(see also Ref. [20]). The same dynamics is obtained (up to an error
O(T −1) with possibly a different prefactor) with an error onL0, which
replaces Sα → Sα + T −1Xα . For the numerical simulation we used
Xα = gσ 1 · σ 2S

z. The plot is obtained by fixing γ α = g = ϑ = 1.
The norm used is the maximum singular value of the maps realized
as matrices over H⊗ 2. The linear fit is obtained using the four most
significant points.

it follows that all symmetry-breaking V ’s of the form V =∑N
j=1.α=x,y,z δ

j
ασ α

j with |δj
α| = O(1/T ) can be tolerated.

B. Perturbation of the Lindblad operators

Besides unitary perturbations K → K + V in practical
applications one has also to consider dissipative ones L0 →
L0 + L1, where L1 denotes a dissipative Liouvillian with
‖L1‖ = O(1/T ). It is important to stress that the resilience of
the projected dynamics extends to nonunitary perturbations,
e.g., extra noise sources.

To begin with, we observe that in the unit-preserving case
all Lindbladian perturbations L1 of the form of Eq. (10)
whose Lindblad operators are in the interaction algebra A
[see Eq. (11)], satisfy P0L1P0 = 0. Let us then consider per-
turbations that take the Lindblad operators outside of A. More
precisely, we consider Eq. (10) with Lindblad operators given
by collective spin operators Sμ = ∑N

j=1 σ
μ

j (μ = x,y,z) and
then we perturb them by permutational symmetry-breaking
terms Sμ �→ Sμ + T −1Xμ, where ‖Xμ‖ = O(1). This leads
to a perturbed Liouvillian L̃0 = L0 + T −1L1 + T −2L2, where

L1(ρ) =
∑

μ

(
XμρSμ + SμρXμ − 1

2
{ {Xμ, Sμ}, ρ}

)
(19)

and L2 is a quadratic expression in the Xμ’s.
Proposition 3. If L1 is given by Eq. (19) then P0 L1 P0 = 0.

Proof. To see that is enough to notice that ρ ∈ A′ ⇒ ρ =
⊕J ρJ ⊗ 1dJ

, and Sμ = ⊕J1nJ
⊗ S

μ

J : Since P0 annihilates
any off-diagonal contribution in Eq. (19) one can assume
a J block-diagonal structure for the perturbation Xμ =
⊕J X

μ

J ⊗ Y
μ

J . Therefore by considering, for example, the term
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P0(XμρSμ) = P0(XμSμρ) = P0(XαSμ)ρ one obtains

P0(XμSμ)=P0
(⊕X

μ

J ⊗ YJ S
μ

J

)=⊕J TrdJ

(
YJ S

μ

J

)
Xα

J ⊗1/dJ

= ⊕J TrdJ

(
S

μ

J YJ

)
X

μ

J ⊗ 1/dJ = P0(SμXμ). (20)

This shows that any term in P0 L1 P0 arising, e.g., from the
first term in Eq. (19) is canceled by an identical one arising
from the anticommutator side as P0(XμSμρ + SμXμρ) =
2P0(SμXμ)ρ. Notice that in particular for Xμ ∈ A′ one has
the stronger property L1P0 = 0. �

In Fig. 1 we report a numerical simulation for the four-
qubits system discussed in the former section. The simulation
confirms that for small 1/T the Liouvillians L0 and L̃0

generate the same projected dynamics [20]. In words: one
can exploit (symmetric) noise to wash out other noise.

VI. EMERGING UNITARITY

A unitary dynamics gives rise to a nonunitary one as soon
as some unobserved degrees of freedom are traced out. This
is an ubiquitous situation in physics. The converse process,
to obtain a unitary evolution from an underlying dissipative
one, appears a much more difficult task. Here we show how
this phenomenon of emerging unitarity manifests itself in the
context we have discussed in this paper.

We begin by slightly generalizing our setup, i.e., going
beyond the unital case where the kernel ofL0 is the commutant
of the interaction algebra. According to Ref. [38] any generator
of the Lindblad type (10) is such that its SSS is given by
states ρ of the form ρ = ∑⊕

J λJ ωJ ⊗ ρ0,J , where the state
space block structure is still of the form (12). Here the ωJ are
arbitrary states in CnJ , the ρ0,J ’s are uniquely defined states in
CnJ , and the λJ ’s are non-negative scalars. In the unital case
we mostly considered so far ρ0,J = 1dJ

/dJ . The robustness
calculation of the former section can be now generalized to
this nonunital Liouvillian case. As before, we perturb the (not
necessarily Hermitean) Lindblad operators Lα �→ Lα + δLα

and consider as perturbation the first-order variation of L0 :

L1(ρ) =
∑

α

(
δLαρL†

α − 1

2
(δL†

αLα + L†
αδLα) ρ + H.c.

)
.

(21)

If ‖δLα‖ = O(1/T ) then Eq. (2) holds with K̃ replaced by L1.

Proposition 4. Let us add, to a Liouvillian generator of the
type (10), a perturbation of the form (21). Then, for ρ in the
SSS, one has that P0L1P0(ρ) = −i[A, ρ], where

A = Im
∑

α

⊕∑
J

TrdJ

(
δL†

αLα

(
1nJ

⊗ ρ0,J

)) ⊗ 1dJ
= A†,

(22)

in which Im X := 1
2i

(X − X†). In particular, for the unital case
L0(1) = 0, one can write

A = ImP0

(∑
α

δL†
αLα

)
. (23)

Proof. Let us consider the Lindbladian L0(ρ) = LρL† −
1
2 {L†L, ρ}. Perturbing the Lindblad operators L �→ L + δL

one finds the variation L0 �→ L0 + δL, where

δL(ρ) = δLρL† − 1
2 (L†δL + δL†L) ρ + H.c., (24)

Without loss of generality we can consider δL as block
diagonal in the decomposition (13) and work on a fixed
J sector CnJ ⊗ CdJ . In that sector we write δL = X ⊗ Y,

L = 1 ⊗ L̃ and ρ = ω ⊗ ρ0 in the SSS. Here ρ0 denotes the
unique steady state in the CdJ factor of the J block, i.e., 1dJ

/dJ

in the unital case. The first three terms in Eq. (24) give rise to
the following three contributions respectively:

Xω ⊗ Yρ0L̃
†, − 1

2Xω ⊗ L̃†Yρ0, − 1
2X†ω ⊗ Y †L̃ ρ0.

ApplyingP0 : A ⊗ B �→ Tr(B) A ⊗ ρ0 and adding the h.c.,
terms one finds

P0δLP0(ρ) =
(

α

2
Xω − ᾱ

2
X†ω

)
⊗ ρ0 + h.c.

= −i

[
ᾱX† − αX

2i
, ω

]
⊗ ρ0, α := Tr(L̃†Yρ0).

(25)

On the other hand δL†L = (X† ⊗ Y †)(1 ⊗ L̃) = X† ⊗ Y †L̃
from which we see that Eq. (25) can be written as −i[Ã, ω ⊗
ρ0], where Ã = Im TrdJ

(δL†L (1 ⊗ ρ0)) ⊗ 1dJ
. Here the index

dJ denotes the second factor, i.e., CdJ in the bipartition of
the given J block. Let us now consider a Liouvillian L0 with
more than one Lindblad operator {Lα}α . Putting together all the
different J blocks, we obtain P0L1P0(ρ) = −i[A, ρ], where
A is given by Eq. (22) with ρ = ∑⊕

J ωJ ⊗ ρ0,J , (P0(ρ) = ρ).
In the unital case one has ρ0,,J = 1dJ

/dJ and Eq. (23) follows
from Eqs. (22) and (14). �

Remark. (i) If all the Lα’s and perturbations δLα’s are
Hermitean A = 0; (ii) if δLα ∈ A′(⇒ (Xα)J ∼ 1nJ

) then
AJ ∼ 1nJ

⇒ P0δLP0 = 0.

While mathematically simple, Proposition 4 is, on phys-
ical grounds, a remarkable and surprising result. Combined
with the dissipation-projection theorem Eq. (2), it indeed
implies that a small, generic, Lindblad perturbation induces
an effective unitary dynamics over the SSS generated by
the Hamiltonian (22), even in absence of any Hamiltonian
term in both the unperturbed and unperturbed Liouvillian. In
principle, by tailoring the dissipative terms δLα’s, one can
obtain a desired effective unitary generator A.

A. Examples

To illustrate this mechanism we first consider a simple two-
qubit example. We set L = 1 ⊗ σ z and δL = σ− ⊗ σ z. In
this case P0(X) = TrB(X(1 ⊗ |0〉〈0|)) ⊗ |0〉〈0| + TrB(X(1 ⊗
|1〉〈1|)) ⊗ |1〉〈1|, where TrB denotes the partial trace over the
second qubit. Using Eqs. (25) and (22) with J = 0,1; d0 =
d1 = 1; ρ0,0 = |0〉〈0|, ρ0,1 = |1〉〈1|; X = σ− and Y = σ z one
finds

A = ImP0(δL†L) = σy ⊗ |0〉〈0| + σy ⊗ |1〉〈1| = σy ⊗ 1.

(26)
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FIG. 2. (Color online) Unitarity from dissipation: a unitary dy-
namics is generated out of a purely dissipative one. To high-
light the unitary character we use the method described in
Ref. [37]. For unitary dynamics one has ρ(t) = e−itHeff ρ0e

itHeff =∑
n,m e−it(En−Em) [ρ0]n,m |n〉〈m|, with Heff = ∑

n En|n〉〈n|. In the
figure we plot the real and imaginary part of 〈1|ρ(t)|2〉. Left
panel: two-qubit example generating the effective Hamiltonian Heff =
σ y ⊗ 1. The time evolution window is t ∈ [T/100,10T ] and T = 100
in arbitrary units. Right panel: four-qubit example with perturbed
collective noise. The effective Hamiltonian is given in Eq. (28). The
time-evolution window is [T/2,4T ] with T = 100.

A numerical simulation of this dissipation-generated gate
is shown in the left panels of Figs. 2 and 3. To highlight the
unitary character of the dynamics we use the fact that matrix
elements of the density matrix ρ(t) evolve as phases in the
Hamiltonian eigenbasis and therefore result in circles on the
complex plane (Fig. 2). Similarly as ET approaches a unitary
evolution within the SSS, the eigenvalues of ETP0 converge to
the unit circle increasing T as depicted in Fig. 3.

Let us now consider a four-qubit system subject to general
collective decoherence [2,3]. In this case L0 has the form
(10) with the Lindblad operators given by collective spin
operators, i.e., Lα = ∑4

j=1 σα
j , (α = x,y,z). In this unital case

the interaction algebra A coincides with algebra of totally
symmetric operators and the commutant A′ is 14-dimensional

Reλ

Im
λ

Reλ

Im
λ

FIG. 3. (Color online) Unitarity from dissipation: a unitary dy-
namics is generated out of a purely dissipative one. Here we plot
real and imaginary part of the eigenvalues of the exact map ET P0 =
exp[T (L0 + 1

T
L1 + 1

T 2 L2)]P0 for different T . The examples are the
same as in Fig. 2, i.e., two- (four-) qubit example on the left (right)
panel. By increasing T the eigenvalues tend to go on the unit circle.
Left panel: T ∈ [1,1000], the eigenvalues approach e±2i ,1, consistent
with Eq. (26). Right panel: T ∈ [5,600]. The eigenvalues of the
effective Hamiltonians (28) are ±8,0. Consequently the eigenvalues
of ET P0 approach e±16i ,e±8i ,1.

[20] and generated by qubit permutation operators in the group
S4. We consider perturbations of the form δLα = U Lα =
Lα U , where U ∈ S4. Then

∑
α δL†

αLα = 4U †S2, where S
is the total spin operator. We also have P0(U †S2) = U †S2 and
U †S2 − U S2 = 2(U † − U ). We further fix U to perform the
right-shift permutation (1,2,3,4) → (4,1,2,3). One obtains

A = 4 ImP0(U †S2) = 8 Im(U †) (27)

= [(σ 1 + σ 2) × σ 3] · σ 4 + [σ 2 × (σ 3 + σ 4)] · σ 1 , (28)

where in the last equation we used the fact that U =
S2,3S3,4S1,4 with Si,j = (1 + σ i · σ j )/2 the operator swapping
site i with j . A numerical simulation confirming this unitary
behavior emerging from a dissipative dynamics is shown in
the right panels of Figs. 2 and 3.

VII. CONCLUSIONS

The traditional avenue to quantum information process-
ing (QIP) primitives, such as quantum gates, requires the
dissipation due to the environment to be as small a possible
compared to the control Hamiltonian. A number of powerful
techniques have been develop to combat the detrimental effects
of dissipation [1]. However, over the past few years there
has been a growing amount of evidence that dissipation
may, on the contrary, provide a resource for QIP; see, e.g.,
Refs. [13,14,16–19].

In this spirit in Ref. [20] we have shown how it is possible to
generate coherent quantum manipulations also in the opposite
regime in which the dissipation is much stronger than the
control Hamiltonian. The only requirement is essentially that
the dissipation must provide a degenerate set of steady states
(SSS). The coherent control drives the system away from
the SSS but the strong dissipation effectively projects the
dynamics back onto the SSS. As a consequence, a quantum
evolution governed by an effective Hamiltonian coherently
unfolds within the SSS [20].

In this paper we further investigated the consequences of
this approach. The following are the main findings of this
paper: (i) We provided further details on the rigorous estimate
of the error between the exact evolution and the effective
projected dynamics. (ii) Moving to a suitable rotated frame,
we have shown that the effective dynamics in the SSS is of
geometric origin, i.e., it is the holonomy associated with a
superoperator-valued connection. (iii) The effective dynamics
is protected against a large class of Hamiltonian and dissipative
perturbations. (iv) As a corollary of this result, we have shown
that certain dissipative perturbations of purely, dissipative,
Lindbladian nature (i.e., one for which the eigenvalues are
real negative) generate an effective unitary dynamics.

Dissipative dynamics is easily obtained from a unitary
one as soon as some degrees of freedom are traced out. On
the contrary, the emergent unitarity phenomenon we have
discussed is a quite surprising example of a unitary dynamics
obtained from a purely dissipative one. Understanding its
fundamental origin and potential application in QIP is a
worthwhile topic for future investigations.
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APPENDIX: ERROR ESTIMATE

Here we estimate the error term appearing in the right-hand
side (RHS) of Eq. (2). In this section we use the following
notation for the total Liouvillian: L(x) = L0 + xL1, where L0

is the dominant, dissipative term, L1 is the perturbation (which
often will be taken as a unitary generator, i.e., L1 = K), and
x is a small dimensionless parameter. The relation between
x and the T in the main text is T −1 = xτ−1

0 , where τ0 is
some time scale which will become more explicit below. We
show that the expression inside the norm in the left-hand
side (LHS) of Eq. (2) is analytic in x around zero starting
with a linear term and we estimate its coefficient. Let us
assume that Ker(L0) is d dimensional, i.e., d eigenvalues of
L0 are zero. If we turn on the perturbation xL1, some of these
eigenvalues will move a little bit. The collection of all these
d eigenvalues forms the so-called λ group [39] and identifies
an invariant subspace of L(x). The projection P(x) onto such
subspace turns out to be an analytic function of x [39]. As
shown in Ref. [39], the restriction of L(x) to the λ group,
R(x) := P(x)L(x) = L(x)P(x) = P(x)L(x)P(x), is also an
analytic function of x. The λ-group projection P(x) is a
standard tool in the spectral theory of linear operators (see,
e.g., the classic Ref. [39]). It is basically the sum of all the (not
necessarily orthogonal) spectral projections associated with λ

group itself and is analytic even at the exceptional points where
the degeneracy changes. It can be obtained by integrating the
resolvent (z − L(x))−1 along a contour enclosing all (and only)
the eigenvalues belonging to the λ group.

One has the following expansions:

P(x) = P0 + xP1 + O(x2), (A1)

R(x) = xR1 + x2R2 + x3R3 + O(x4). (A2)

The Liouvillian character of L0 (i.e., that fact that P0 =
limt→∞ etL) assures that zero is a semisimple eigenvalue of
L0; i.e., there is no Jordan block associated with the zero
eigenvalue of L0. Although this is not strictly required, it does
simplify the following formulae. In the semisimple case one
has, for instance, [39]

P1 = −(P0L1S + SL1P0), (A3)

R1 = P0L1P0, (A4)

R2 =−(P0L1P0L1S+P0L1SL1P0+SL1P0L1P0). (A5)

In the above formulas, S is the projected resolvent of L0 at
zero satisfying L0S = SL0 = 1 − P0 and is given by

S = − lim
z→0

(z − L0)−1(1 − P0) (A6)

= −
∑
k �=0

[
(−λk)−1P (k) +

mk−1∑
n=1

(−λk)−n−1(D(k))n
]

. (A7)

In the last equation we assumed that L0 has the following
Jordan decomposition:

L0 =
∑

k

(λkP (k) + D(k)) (A8)

with λk eigenvalues with (algebraic) multiplicity mk , projec-
tors P (k), and nilpotent blocks D(k) (note that λ0 = 0 and
P (0) ≡ P0). Note that all the Lj ,R′

j s have the dimension of
inverse of time, the Pj ’s are dimensionless, and S has units
of time. In particular xR1 is precisely Leff in our applications.
We denote it Reff := txR1 here for notational consistency.

Clearly P(x) commutes with L(x) and so one has the
identity

etL(x)P(x) = etR(x)P(x). (A9)

We now choose times t such that tx is bounded by a
given finite time in some unit, i.e., tx = O(1)τ0. In the
following we adopt the so-called 1 − 1 norm for maps E ,
i.e., ‖E‖ := sup‖X‖1=1 ‖E(X)‖1. This is a submultiplicative
and automorphism-invariant norm for superoperators such that
‖etL(x)‖ � 1.

Note that ‖etL(x)‖ � 1 because the evolution maps states
to states (i.e., because of complete positivity). Instead from
‖etR(x)‖ � exp ‖tR(x)‖ we get ‖etR(x)‖ � O(1). Hence we
obtain

(etL(x) − etR(x))P0 = −(etL(x) − etR(x))xP1 + O(x2). (A10)

Now define � := etR(x) − etxR1 . Clearly � = O(x) (we
later determine the coefficient), so we finally get

(etL(x) − etxR1 )P0 = +�P0 − (etL(x) − etxR1 )xP1 + O(x2).

(A11)

Using Dyson expansion one can easily estimate �:

� = tx2
∫ 1

0
e(1−s)ReffR2e

sReff ds + O(x2). (A12)

We now take the norm of Eq. (A11), use triangle
inequality, and bound all the resulting terms. Defining
C = sups∈[0,1] ‖esReff ‖, we get ‖�‖ � tx2C2‖R2‖ + O(x2),
‖R2‖ � 3‖P0‖2‖L1‖2‖S‖, and ‖P1‖ � 2‖P0‖‖L1‖‖S‖.
Putting things together we finally obtain

‖(etL(x) − eReff )P0‖ � x‖S‖‖L1‖‖P0‖
× (3txC2‖P0‖2‖L1‖
+ 2(C + 1)) + O(x2). (A13)

In order to make more apparent the connection with
physical constants, we define dimensionless (tilded) operators
via L = γ0L̃0 + γ1L̃1 such that γ −1

0 = τR is the (short)
relaxation time of the unperturbed dissipation and γ −1

1 = T

is the time scale of the control term. By measuring times in
units of τR the evolution becomes exp[(t/τR)(L̃0 + xL̃1)] and
we see that x = γ1/γ0 = τR/T is the small parameter. The
requirement that the effective generator R̃eff = tγ1P̃0L̃1P̃0 is
finite and nonzero implies tγ0x = tγ1 = O(1). This means that
the waiting time is given by t = O(T ). The bound Eq. (A13)
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then translates into (all the tilded operators are dimensionless)

‖(etL − eR̃eff )P0‖ � τR

T
‖S̃‖‖L̃1‖‖P̃0‖

(
3

t

T
C2‖P̃0‖2‖L̃1‖ + 2(C + 1)

)
+ O(x2). (A14)

The relation above can often be further simplified. For example, if L0 generate a positive map ‖P̃0‖ = 1, whereas ifReff generates
a unitary one has C = 1.
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[13] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and
P. Zoller, Preparation of entangled states by quantum Markov
processes, Phys. Rev. A 78, 042307 (2008).

[14] M. J. Kastoryano, F. Reiter, and A. S. Sorensen, Dissipative
preparation of entanglement in optical cavities, Phys. Rev. Lett.
106, 090502 (2011).

[15] F. Ticozzi and L. Viola, Steady-state entanglement by engineered
quasi-local Markovian dissipation: Hamiltonian-assisted and
conditional stabilization, Quantum Inf. Comput. 14, 265 (2014).

[16] J. T. Barreiro et al., An open-system quantum simulator with
trapped ions, Nature (London) 470, 486 (2011).

[17] F. Verstraete, M. M. Wolf, and J. I. Cirac, Quantum computation
and quantum-state engineering driven by dissipation, Nat. Phys.
5, 633 (2009).

[18] C.-E. Bardyn et al., Topology by dissipation, New J. Phys. 15,
085001 (2015).

[19] K. Stannigel, P. Hauke, D. Marcos, M. Hafezi, S. Diehl, M.
Dalmonte, and P. Zoller, Constrained dynamics via the Zeno
effect in quantum simulation: Implementing non-Abelian lattice
gauge theories with cold atoms, Phys. Rev. Lett. 112, 120406
(2014).

[20] P. Zanardi and L. Campos Venuti, Coherent quantum dynamics
in steady-state manifolds of strongly dissipative systems, Phys.
Rev. Lett. 113, 240406 (2014).

[21] P. Facchi and S. Pascazio, Quantum Zeno subspaces, Phys. Rev.
Lett. 89, 080401 (2002).

[22] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A.
Lidar, Zeno effect for quantum computation and control, Phys.
Rev. Lett. 108, 080501 (2012).

[23] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian Berry con-
nections for quantum computation, Phys. Rev. A 61, 010305(R)
(1999).

[24] O. Oreshkov and J. Calsamiglia, Adiabatic Markovian dynam-
ics, Phys. Rev. Lett. 105, 050503 (2010).

[25] A. Carollo, M. F. Santos, and V. Vedral, Coherent quantum
evolution via reservoir driven holonomies, Phys. Rev. Lett. 96,
020403 (2006).

[26] M. Nakahara, Geometry, Topology, and Physics (IOP, Bristol
and Philadelphia, 1990).

[27] D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio,
and K. Yuasa, Exponential rise of dynamical complexity in
quantum computing through projections, Nat. Commun. 5, 5173
(2014).

[28] Y. Li, D. Herrera-Marti, and L. C. Kwek, Quantum Zeno effect
of general quantum operations, Phys. Rev. A 88, 042321 (2013).

[29] D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio,
and K. Yuasa, Non-Abelian phases from a quantum Zeno
dynamics, Phys. Rev. A 88, 042107 (2013).

[30] G. Lindblad, On the generators of quantum dynamical semi-
groups, Commun. Math. Phys. 48, 119 (1976).

[31] D. W. Kribs, Quantum channels, wavelets, dilatations and
representations of On, Proc. Edin. Math. Soc. 46, 421 (2003).

[32] P. Zanardi, Symmetrizing evolutions, Phys. Lett. A 258, 77
(1999); ,Computation on an error-avoiding quantum code and
symmetrization, Phys. Rev. A 60, 729 (1999).

[33] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open
quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[34] K. Khodjasteh and D. A. Lidar, Fault tolerant quantum dynam-
ical decoupling, Phys. Rev. Lett. 95, 180501 (2005).

[35] G. Uhrig, Keeping a quantum bit alive by optimized π -pulse
sequences, Phys. Rev. Lett. 98, 100504 (2007).

[36] D. Kribs, R. Laflamme, and D. Poulin, Unified and generalized
approach to quantum error correction, Phys. Rev. Lett. 94,
180501 (2005).

[37] L. Campos Venuti and P. Zanardi, Excitation transfer through
open quantum networks: Three basic mechanisms, Phys. Rev. B
84, 134206 (2011).

[38] B. Baumgartner and H. Narnhofer, Analysis of quantum semi-
groups with GKS-Lindblad generators: II. General, J. Phys. A
41, 395303 (2008).

[39] T. Kato, Perturbation Theory for Linear Operators (Springer-
Verlag, Berlin, Heidelberg, 1995).

052324-8

http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevLett.79.3306
http://dx.doi.org/10.1103/PhysRevA.57.3276
http://dx.doi.org/10.1103/PhysRevA.57.3276
http://dx.doi.org/10.1103/PhysRevA.57.3276
http://dx.doi.org/10.1103/PhysRevA.57.3276
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1126/science.1057357
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevLett.84.2525
http://dx.doi.org/10.1103/PhysRevA.63.012301
http://dx.doi.org/10.1103/PhysRevA.63.012301
http://dx.doi.org/10.1103/PhysRevA.63.012301
http://dx.doi.org/10.1103/PhysRevA.63.012301
http://dx.doi.org/10.1103/PhysRevLett.90.067902
http://dx.doi.org/10.1103/PhysRevLett.90.067902
http://dx.doi.org/10.1103/PhysRevLett.90.067902
http://dx.doi.org/10.1103/PhysRevLett.90.067902
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1126/science.1064460
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1038/35002528
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1016/S0375-9601(99)00803-8
http://dx.doi.org/10.1126/science.1058835
http://dx.doi.org/10.1126/science.1058835
http://dx.doi.org/10.1126/science.1058835
http://dx.doi.org/10.1126/science.1058835
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevLett.85.1762
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevA.78.042307
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.112.120406
http://dx.doi.org/10.1103/PhysRevLett.113.240406
http://dx.doi.org/10.1103/PhysRevLett.113.240406
http://dx.doi.org/10.1103/PhysRevLett.113.240406
http://dx.doi.org/10.1103/PhysRevLett.113.240406
http://dx.doi.org/10.1103/PhysRevLett.89.080401
http://dx.doi.org/10.1103/PhysRevLett.89.080401
http://dx.doi.org/10.1103/PhysRevLett.89.080401
http://dx.doi.org/10.1103/PhysRevLett.89.080401
http://dx.doi.org/10.1103/PhysRevLett.108.080501
http://dx.doi.org/10.1103/PhysRevLett.108.080501
http://dx.doi.org/10.1103/PhysRevLett.108.080501
http://dx.doi.org/10.1103/PhysRevLett.108.080501
http://dx.doi.org/10.1103/PhysRevA.61.010305
http://dx.doi.org/10.1103/PhysRevA.61.010305
http://dx.doi.org/10.1103/PhysRevA.61.010305
http://dx.doi.org/10.1103/PhysRevA.61.010305
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.105.050503
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1103/PhysRevLett.96.020403
http://dx.doi.org/10.1038/ncomms6173
http://dx.doi.org/10.1038/ncomms6173
http://dx.doi.org/10.1038/ncomms6173
http://dx.doi.org/10.1038/ncomms6173
http://dx.doi.org/10.1103/PhysRevA.88.042321
http://dx.doi.org/10.1103/PhysRevA.88.042321
http://dx.doi.org/10.1103/PhysRevA.88.042321
http://dx.doi.org/10.1103/PhysRevA.88.042321
http://dx.doi.org/10.1103/PhysRevA.88.042107
http://dx.doi.org/10.1103/PhysRevA.88.042107
http://dx.doi.org/10.1103/PhysRevA.88.042107
http://dx.doi.org/10.1103/PhysRevA.88.042107
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1017/S0013091501000980
http://dx.doi.org/10.1017/S0013091501000980
http://dx.doi.org/10.1017/S0013091501000980
http://dx.doi.org/10.1017/S0013091501000980
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1016/S0375-9601(99)00365-5
http://dx.doi.org/10.1103/PhysRevA.60.R729
http://dx.doi.org/10.1103/PhysRevA.60.R729
http://dx.doi.org/10.1103/PhysRevA.60.R729
http://dx.doi.org/10.1103/PhysRevA.60.R729
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.94.180501
http://dx.doi.org/10.1103/PhysRevLett.94.180501
http://dx.doi.org/10.1103/PhysRevLett.94.180501
http://dx.doi.org/10.1103/PhysRevLett.94.180501
http://dx.doi.org/10.1103/PhysRevB.84.134206
http://dx.doi.org/10.1103/PhysRevB.84.134206
http://dx.doi.org/10.1103/PhysRevB.84.134206
http://dx.doi.org/10.1103/PhysRevB.84.134206
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303
http://dx.doi.org/10.1088/1751-8113/41/39/395303



