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Perfect wave-packet splitting and reconstruction in a one-dimensional lattice
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Particle delocalization is a common feature of quantum random walks in arbitrary lattices. However, in the
typical scenario a particle spreads over multiple sites and its evolution is not directly useful for controlled quantum
interferometry, as may be required for technological applications. In this paper we devise a strategy to perfectly
split the wave packet of an incoming particle into two components, each propagating in opposite directions,
which reconstruct the shape of the initial wavefunction after a particular time t∗. Therefore, a particle in a δ-like
initial state becomes exactly delocalized between two distant sites after t∗. We find the mathematical conditions
to achieve the perfect splitting, which are satisfied by viable example Hamiltonians with static site-dependent
interaction strengths. Our results pave the way for the generation of peculiar many-body interference patterns
in a many-site atomic chain (such as the Hanbury Brown and Twiss and quantum Talbot effects) as well as for
the distribution of entanglement between remote sites. Thus, as for the case of perfect state transfer, the perfect
wave-packet splitting can be a new tool for varied applications.
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I. INTRODUCTION

The quest for a quantum computer is boosting the develop-
ment and engineering of new sophisticated quantum devices
that allow us to observe the space-time evolution of its con-
stituents. Indeed, in recent years several experimental groups
successfully measured the quantum dynamical evolution of
particles and/or quasiparticle hopping in a lattice [1–9]. Due
to the inherent nature of quantum mechanics, the evolution of
an isolated quantum system is represented by a wavefunction
ψ(x,t), which describes the probability amplitude of finding
a particle in position x at time t . Quantum interference
can give rise to particular structures and patterns in the
space-time evolution |ψ(x,t)|2, which are known as “quantum
carpets” [10], quantum revivals [11], or quantum Talbot
effect [12,13], quantum walks [14–16], and quantum self-
imaging [17].

An interesting case is when the wavefunction undergoes a
revival, namely when after a particular time the shape of the
initial wave packet is almost perfectly reconstructed. Aside
from its fundamental implication, revivals occurring into a
different position, far from the initial one, are particularly
important for connecting and linking distant quantum regis-
ters [18,19]. On the other hand, a lattice of static localized
particles represents an alternative paradigm for quantum
communication where information carriers are not physically
moving particles but rather collective excitations whose space
extent is reconstructed at a different position after a certain
time. In this respect, spin chains represent one of the most
viable solutions and there are various protocols to exploit their
dynamics for transferring states and entanglement between
remote sites [20,21]. The coherent excitation transfer, or in
general the wavefunction reconstruction at a certain time, cor-
responds to the phase alignment of the eigenstates entering into
the wave packet and, as such, can happen only when the energy
eigenvalues satisfy certain conditions [22,23]. Some models
admitting a perfect [22,24,25] or almost perfect [26–29]
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reconstruction have been explicitly constructed. On the other
hand, if the phase alignment is only between particular subsets
of the energy eigenstates, then the wavefunction is split into
a superposition of copies of the initial wave packet, each
separated by a certain distance. This effect is known as
fractional revival [11,22,30], or fractional Talbot effect [12].

In this paper we engineer a chain with nearest-neighbor in-
teractions to obtain a perfect wave-packet splitting and recon-
struction during a ballistic evolution. In other terms, if ψ(x,t =
0) = f (x) is the shape of the initial wave packet, at the revival
time t∗ the wavefunction is ψ(x,t) = f (x−vt∗)+f (x+vt∗)√

2
, where

v is the group velocity defined by the energy eigenvalues.
While in general the revival time is connected to specific
algebraic properties of the spectrum and might be very long,
in our case the splitting happens on a time that is dictated
by the group velocity of excitations and, as such, scales
linearly with the distance. Our method is therefore specifically
targeted for applications where a smaller operational time is
particularly important for neglecting the interaction with the
surrounding environment. Recently, it has been shown that
the wavefunction of a one-dimensional excitation can be split
into a transmitted and reflected components by introducing
localized impurities [31–33] or via suitably designed time-
dependent control fields [34]. Here we focus on a different
strategy aiming at obtaining a perfect fractional revival.

The generalization of the fractional revival to a many-
particle setting has many important applications. As far as
identical particles (bosons/fermions) are concerned, it allows
one to define a perfect effective beam-splitter operation be-
tween distant sites and then to observe multiparticle Hanbury
Brown and Twiss interference effects [35,36], such as perfect
bunching or antibunching. As for spin systems, that the
perfect fractional revival can be used to generate dynamically
long-distance entanglement, a topical application that may be
tested experimentally with current technology [37,38]. Indeed,
the use of particle delocalization to generate entanglement is
particularly evident in a single excitation setup, namely when
there is a single spin in the state |↑〉 while all the other spins are
in the state |↓〉. If the wave packet of this excitation is perfectly
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split and reconstructed in two distant sites n and m, then the
final state of the spins pair (n,m) is (|↑↓〉nm + |↓↑〉nm)/

√
2,

namely a maximally entangled Bell state. We show that this
reasoning can also be used in a multiple excitation scenario
to dynamically generate a maximal set of Bell pairs in a
spin-chain setup, and to provide a more general version of
previous proposals [39,40].

This paper is organized as follows. In Sec. II, we define
the mathematical conditions that allow a particular fractional
revival, namely the perfect splitting and reconstruction of an
incoming wave packet, and we propose a numerical algorithm
to find suitable Hamiltonians that will fulfill these conditions.
Interesting applications are then analyzed in Sec. III in a
many-particle setting. In particular, we discuss bunching and
antibunching effects in atoms trapped in an optical lattice
and the dynamical generation of entanglement in spin chains
interacting with nearest-neighbor XY couplings. Conclusions
are drawn in Sec. IV.

II. PERFECT SPLITTING WITH
ENGINEERED COUPLINGS

We study a one-dimensional quantum walk in a lattice
with nearest-neighbor engineered interactions described by
the Hamiltonian

Hp = −
(

L−1∑
n=1

Jn|n〉〈n+1| + H.c.

)
−

L∑
n=1

Bn|n〉〈n|, (1)

where |n〉 represents the state where a particle is in the nth
site, and L is the length of the chain. To find the mathematical
conditions for a perfect splitting and reconstruction, we first
focus on the requirements to achieve perfect state transfer.
To perfectly transfer an excitation from site 1 to site L,
the coefficients Jn and Bn have to satisfy some conditions
(see, e.g., Ref. [23]). First, the Hamiltonian has to be mirror
symmetric; i.e., JL−n=Jn and BL+1−n=Bn for any 1 � n � L.
The mirror symmetry imposes some relations between the
eigenvectors of the Hamiltonian [25]: if the eigenvalues Ek of
Hp are ordered such that Ek<Ek+1, then

OLk = (−1)kO1k, (2)

where Hp = OEOT is the eigenvalue decomposition of Hp.
The second requirement is that the energy eigenvalues Ek

satisfy the relation

e−iEkt
∗ = (−1)keiα, (3)

where t∗ is the transmission time and α is an arbitrary
phase. Here we consider α = 0, namely TrH = 0. Among
the analytic solutions of Eq. (3), the simplest one is given by
the coupling pattern [24,41],

J PST
n = πJ

2L

√
n(L − n), Bn = 0, (4)

which implements perfect state transfer (PST) at t∗ = L/J .
Other solutions can be obtained numerically using inverse
eigenvalue algorithms [23,42,43]. If the eigenvalues and

eigenvectors of Hp satisfy Eqs. (2) and (3), then

〈n|e−iHpt∗ |m〉 =
∑

k

On,kOm,ke
−iEkt

∗ =
∑

k

On,kOm,k(−1)k

=
∑

k

On,kOL+1−m,k = δn,L+1−m, (5)

namely not only the dynamics implements a perfect transfer
from site 1 to site L, but, more generally, an excitation initially
located in site m is perfectly transferred to site L − m + 1 after
a time t∗.

In a similar fashion, a perfect wave-packet splitting and
reconstruction can be obtained when the eigenvalues of Hp

satisfy

e−iEkt
∗ = cos θ + i(−1)k sin θ, (6)

for some angle θ . Indeed, by repeating Eq. (5) one finds
〈n|e−iHpt∗ |m〉 = cos θ δnm + i sin θ δn,L+1−m, namely

|m〉 t∗−→ cos θ |m〉 + i sin θ |L−m+1〉. (7)

The eigenvalue relation, Eq. (6), is one of the main results of
this paper. By properly choosing θ it is possible to balance
the reconstruction on distant sites, as show in Eq. (7), and
for θ = π/4 one obtains the perfect delocalization between
distant sites of an initially localized wave packet. The coupling
pattern to satisfy Eq. (6) can be obtained using inverse
eigenvalue techniques. From the conceptual point of view an
inverse eigenvalue problem deals with finding the zeros of the
highly nonlinear function f (λ) = E(λ)−Ẽ, where the vector
E(λ) contains the ordered eigenvalues of the Hamiltonian
Hp(λ) with parameters λ, and the vector Ẽ contains the
target spectrum. Among the algorithms to find the optimal
parameters [44,45], the most used one relies on the application
of the Newton method to find the zeros of f (λ). The Newton
method starts with an initial guess λ(0) and updates it according
to the rule [46]

J (λn)[λ(n+1) − λ(n)] = f (λ(n)), (8)

where the matrix, with elements

Jmk(λ(n)) = ∂fm(λ(n))

∂λ
(n)
k

= 〈m|O(λ(n))T
∂Hp(λ(n))

∂λ
(n)
k

O(λ(n))|k〉,

(9)

is the Jacobian matrix and Hp(λ) = O(λ)E(λ)O(λ)T is the
eigenvalue decomposition of Hp(λ). The linear system Eq. (8)
has a unique solution provided that J is an invertible matrix.
This in turn implies that the number of parameters have to
match the number of eigenvalues, i.e., the dimension of the
matrix.

The mirror symmetric Hamiltonian Eq. (1) has L indepen-
dent parameters, L being the number of sites. Indeed, because
of the mirror symmetry, when L = 2N (N being an integer)
there are N independent values of Jn and N independent values
of Bn. On the other hand, when L = 2N + 1, there are N

independent values of Jn and N + 1 independent values of Bn.
We apply inverse eigenvalue techniques to find the coupling
pattern, which allows a perfect balanced splitting of the wave
packet. The latter is obtained by imposing the condition Eq. (6)
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FIG. 1. (Color online) Comparison between the perfect wave-
packet splitting couplings J split

n and the perfect state transfer couplings
J PST

n in Eq. (4) for an even chain (a) and for an odd chain (b). Only
in the latter case the perfect splitting requires also the engineering of
a field profile Bsplit

n .

with θ = π/4, so the target eigenvalues are

LẼ

J
=

(
. . . ,− π

4
,
π

4
,− π

4
+ 2π,

π

4
+ 2π,− π

4
+ 4π, . . .

)T

,

(10)

where, without loss of generality, we have imposed t∗ = L/J .
Because f (λ) is in general a nonconvex function, possibly with
many local minima, inverse eigenvalue problems are known
to converge only if the initial guess λ(0) is not too far from the
ideal set of parameters λ̃ for which E(λ̃) = Ẽ [46]. We guess
that the optimal parameters for a perfect wave-packet splitting
are given by a local perturbation of the fully engineered chain,
which guarantees perfect state transfer, so we use the coupling
pattern Eq. (4) as an initial condition.

The algorithm quickly converges to an optimal parameter
set and hereinafter we called J

split
n and B

split
n the obtained

optimal couplings and local fields. Surprisingly, we find that
for even L the algorithm always converges to a solution
where B

split
n = 0, while for odd L the local fields B

split
n are

different from zeros, especially near the center of the chain.
For example, the Hamiltonians for L = 5,6 are shown in the
Appendix. The output of the algorithm is shown in Fig. 1(a)
for L = 50, and in Fig. 1(b) for L = 49. As it is clear, both
for L even and odd, the coupling patterns J

split
n for perfect

wave-packet splitting are similar to the coupling pattern J PST
n ,

in Eq. (4), for perfect state transfer: the only difference being
at the center of the chain. Moreover, for odd L one requires
also the engineering of the local fields B

split
n according to

some particular profiles. The resulting field pattern is constant
far from the center of the chain and has a particular oscillatory
profile near the central sites.

III. APPLICATIONS

A. Perfect bunching and antibunching in a bosonic lattice

As a concrete application of the results of the last section
we consider a model of hopping particle in a one-dimensional
lattice, described by a Bose-Hubbard Hamiltonian with site-
dependent parameters

H = −
L∑

n=1

Jn(a†
nan+1 + H.c.)

+
L∑

n=1

Unnn(nn − 1) −
L∑

n=1

Bnnn. (11)

Here Jn = J
split
n are the tunneling matrix elements, Un is

the onsite interaction, Bn = B
split
n is the chemical potential,

an is the boson annihilation operator, and nj = a
†
j aj . The

Hamiltonian Eq. (11) accurately describes cold bosonic
atoms in optical lattices [47,48], and it also models hard-
core bosons [49] when U → ∞ and, subsequently, under a
Jordan-Wigner transformation, fermions [50,51]. Alternative
implementations are systems of interacting polaritons [52] and
coupled quantum dots [53]. Photonic lattices represent another
promising system where Un = 0 and the coupling strengths
can be finely tuned [54]. In the optical lattice implementation
the tuning of the site-dependent coupling constants in Eq. (11)
is achieved via addressable optical lattices [55], created pro-
jecting an electric field profile via holographic masks [56,57]
or via micromirror devices [1]. Initialization and read-out of
single atoms are achieved exploiting single-particle addressing
techniques [1,6,58–60] while magnetically induced Feshbach
resonances allow a global control of the onsite interaction
acting on the collisional coupling constants values [61]. For
instance, the noninteracting regime Un = 0 has been recently
achieved with this technique using Cs atoms loaded in a
one-dimensional optical lattice [62].

Thanks to the techniques developed in this paper, the
coupling profile produces a splitting of a single-particle
wavefunction, which is reconstructed at the transfer time t∗
as two copies of the initial wave packet with probability
1/2 each. More precisely, when the coupling pattern J

split
n

is implemented, the wavefunction of a bosonic atom initially
onsite n is split by the impurity pattern at the center of the
lattice and, at the transfer time t∗, that particle is perfectly
delocalized between two mirror symmetric sites, n and L −
n + 1. If an another particle was in the lattice in position
m, after t∗ it would be delocalized between the sites m and
L − m + 1. When two particles are initially in two mirror
symmetric sites, i.e., m = L − n + 1, the dynamics generates
multiparticle Hanbury Brown and Twiss correlations [35] at t∗.
Indeed, in the free-boson case, namely when Un = 0, because
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of the symmetries of the bosonic wavefunction, after a time t∗
the state becomes

|ψ(t∗)〉 = |2〉n|0〉m + |0〉n|2〉m√
2

≡ |ψb〉, (12)

i.e., the output state consists of a superposition of two bosons
being in site n and two bosons being in site m = L − n + 1.
This “bunching” effect is the celebrated Hong-Ou-Mandel
effect (HOM) [63], which has been observed recently exploit-
ing the coherent evolution of two particles in a single double-
well tunneling model [64]. With the results presented in this
paper, because of the perfect reconstruction of wave packets
at the transfer time, it is possible to achieve a perfect bunching
between arbitrary distant sites of an optical lattice. On the other
hand, one obtains antibunching in the hard-core boson limit
Un = ∞, where the final state is |ψ(t∗)〉 = |1〉m|1〉n, i.e., there
is one particle in position n and one particle in position m.

1. Effect of imperfections in tuning the parameters

In real systems, random noise effect, due to environmental
variables, and engineering imperfections in the coupling
configurations produce deviations from the ideal coupling
values [55]. The effect of the coupling randomness, even

FIG. 2. (Color online) Relative variation of the bunching prob-
ability P11(t = t∗) in the noninteracting regime Un = 0, in the
presence of (a) random hopping noise and (b) random diagonal noise,
respectively, with coupling strength ε and η. Several chain lengths L

are considered.

for noninteracting systems, is to produce a localization of
the eigenstates of the system and consequently to inhibit the
state transfer [65]. We also mention that recently it has been
shown [66,67] that the interaction of bosonic atoms with static
fermionic impurities, randomly distributed in the lattice, may
yield a Bose-Hubbard model where the parameters Jn and
Bn are subject to noise. Given the above, we investigate what
degree of imperfections is tolerable in our scheme or, in other
terms, what is the precision required in tuning the coupling
strengths according to the desired pattern.

We first include an off-diagonal disorder term (hopping
disorder) in the Hamiltonian Eq. (11) as Jn = J (J split

n + xn),
where xn∈[−ε,ε] is a uniform random distribution and ε is the
perturbation strength [68]. In Fig. 2(a) the relative variation
|�P11|/P11(ε = 0) is shown as a function of the degree of
disorder ε. Here P11 = |〈ψb|ψ(t∗)〉|2, where |ψb〉 is defined
in Eq. (12), and �P ≡ |P11(ε)−P11(ε = 0)| represents the
deviation of the bunching probability with respect to the ideal
case. We also consider the effect of diagonal noise Bj =
B+Jxj with xn ∈ [−η,η] in an even site chain. The effect
of signal noise is shown in Fig. 2(b) as a function of the noise
coupling strength ε. As is clear from Figs. 2(a) and 2(b), a
power-law behavior, under a certain threshold value of ε and η,
characterizes both the deviations due to hopping disorder and
due to the diagonal disorder. Clearly, an high degree of disorder
produces state localization, which completely destroys the
effect.

B. Quantum many-particle carpets

The perfect reconstruction scheme developed in the pre-
vious sections enables the generation of periodic space-time
quantum interference patterns, known as “quantum carpets,”
which resemble the Talbot effect [12] and generalize it to a
quantum many-particle lattice. By using the engineered chain

FIG. 3. (Color online) Quantum carpet: space-time evolution of
〈n2

j (t)〉 for a L = 40 one-dimensional chain initialized in |ψ0〉 =
a
†
10a

†
31|0〉. We consider the free-boson regime Un = 0.
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FIG. 4. (Color online) Quantum carpet due to four-particle interference. The initial state |ψ0〉 = a
†
2a

†
6a

†
9a

†
13|0〉 contains four bosonic

particles. We consider the space-time evolution of 〈nj (t)〉 in the top row and the space-time evolution of 〈n2
j (t)〉 in the bottom row. The

chain length is L = 14 and several values of the onsite interaction Un = U are considered: U = 0 (left column), U = 1 (center column), and
U = 30 (right column). Here t∗ (expressed in J units) is the fractional revival time, while 2t∗ is the full revival time. The difference between the
first and second row is due to bunching and antibunching effects. Note the transition from bosonic (U = 0) to fermionic and hard-core boson
(U = ∞) behavior as a function of U .

with J
split
n and B

split
n , one in fact expects a regular temporal

pattern in the evolution: the wave packets composing the initial
state are split into two copies, reconstructed into different
positions after the time t∗, and then they go back to the
initial position after a time 2t∗. On the other hand, during
intermediate times, quantum interference leads to different
behaviors, which are expected to be susceptible to the particle
statistics. To show this effect, we study the quantum carpet
generated by the space-time evolution of the mean occupation
number 〈nj (t)〉 or by the square occupation mean 〈n2

j (t)〉. The
regular interference pattern of a two-particle system is depicted
in Fig. 3, where we show the expectation value 〈n2

j (t)〉 for

two noninteracting bosons initially in |ψ0〉 = a
†
10a

†
31|0〉 in a

one-dimensional chain with L = 40.
To highlight more in detail the multiparticle statistical

interference effect we consider a system of four particles,
initially in |ψ0〉 = a

†
2a

†
6a

†
9a

†
13|0〉, where L = 14. We show in

Figs. 4(a) and 4(d), respectively, the mean occupation number
and the mean-square occupation number for the noninteracting
case and for the strong-interacting case in Figs. 4(c) and 4(f).
In the boson case bunching effects are observable at t∗, while
in both cases a perfect reconstruction of the initial wave packet
happens at 2t∗. This is evident more clearly in Fig. 5, where we
represent the mean occupation number and the mean-square
occupation number of site 2 as a function of time. We also
take into consideration the role of the onsite interaction,
which affects the perfect reconstruction of a two-particle
wave packet. It turns out that from the space-time dynamics
of 〈nj (t)〉 it is not possible to discriminate free evolution
(U = 0) from the hard-core limit (U = ∞), while particle
statistics give rise to different dynamics for 〈n2

j (t)〉. On the
other hand, for intermediate values of the onsite interaction
the Hamiltonian cannot be mapped into a free model (either
bosonic or fermionic), so scattering effects prevent the perfect
reconstruction of the wave packet. This effect is clearly shown
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FIG. 5. (Color online) Plot of the (a) mean occupation number
and of the (b) mean-square occupation number of site 2 as a function
of time t for several values of the onsite interaction. Here L = 14
and the initial state is |ψ(0)〉 = a

†
2a

†
6a

†
9a

†
13|0〉. Note the transition from

bosonic (U = 0) to fermionic and hard-core boson (U = ∞) behavior
as a function of U .

in Figs. 4(b) and 4(e) and in Fig. 5 for Un = 1, where
〈n2

2(t = 2t∗)〉 < 〈n2
2(t = 0)〉 and 〈n2(t = 2t∗)〉 < 〈n2(t = 0)〉.

From Fig. 4 one may also notice a partial fractional revival
for t = t∗/2 and t = t∗/4. In Fig. 6 we show the results for
〈nj (t = t∗/4)〉 and 〈n2

j (t = t∗/4)〉.

C. Perfect generation of entanglement in an XY spin chain

We now consider a chain of spin- 1
2 magnets described by

the XY Hamiltonian

H = −
∑

n

(Jnσ
+
n σ−

n+1 + H.c.) −
∑

n

Bn

2
σ z

n , (13)

where σα
n , α = x,y,z are the Pauli spin operators acting

on the spin localized in the nth site of the chain, and
σ±

n = (σx
n ± iσ

y
n )/2. Effective spin- 1

2 systems coupled by the
Hamiltonian Eq. (13) with site-dependent coupling strengths
can be obtained in different physical realizations; e.g., in
NRM using global rotations and suitable field gradients [69],
with atomic ions confined in segmented microtraps [70], with
neutral atoms trapped into an optical lattice by polarized laser
beams [3,71], or with superconducting qubits coupled either
by site-dependent capacitors [72] or inductors [73].

FIG. 6. (Color online) Plot of the mean occupation number and
of the mean-square occupation number for each site at t = t∗/4 for
U/J = 0. Here L = 14 and the initial state is |ψ(0)〉 = a

†
2a

†
6a

†
9a

†
13|0〉.

The system Hamiltonian Eq. (13) can be mapped to a
fermionic hopping model via the Jordan-Wigner transforma-
tion: the operators cn = ∏

j<n(−σ z
j )σ−

n satisfy canonical an-

ticommutation relations and H = ∑
nm〈n|H |m〉 c

†
ncm, where

H is the hopping matrix Eq. (1). Every many-body spin state
can be obtained by applying the annihilation operators cn

to the fully polarized state |
〉 = |↑↑ · · ·〉. Therefore, the
time evolution of a generic initial state can be obtained by
expressing the operator cn in the Heisenberg picture [27] as

cn(t) =
∑
m

〈n|e−iH t |m〉 cm. (14)

We now show how one can create entanglement between
two remote mirror symmetric sites by exploiting the perfect
wave-packet splitting Eq. (7). Suppose that, starting from
the fully polarized state |
〉 a particle is flipped in position
n; the initial state of the system is then cn|
〉. When
the single-particle Hamiltonian implements the transforma-

tion Eq. (7), then, thanks to Eq. (14) one has cn|
〉 t∗−→
(cn|
〉+icL−n+1|
〉)/√2. Therefore, going back to the spin
picture, after the time t∗ an entangled state |↑↓〉+i|↓↑〉√

2
between

sites n and L − n + 1 is generated.
The above arguments can be generalized in a many-particle

setting to generate the maximal amount of entangled pairs
starting from a separable state. Two suitable choices of the
initial state are

|ψDM〉 = |↑↑ · · · ↑↓ · · · ↓↓〉, (15)

|ψAFM〉 = |↑↓↑ · · · ↑↓〉, (16)

namely the domain-wall state |ψDM〉 or the antiferromagnetic
state |ψAFM〉. If the system is initialized in either |ψDM〉
or |ψAFM〉 and is let to evolve under the perfect splitting
Hamiltonian, then the resulting state after a time t∗ is
(c1 + eiα1cL)(c2 + eiα2cL−1)(c3 + eiα3cL−2) · · · |
〉, where αi

depends on the initial state. By carefully dealing with the
Jordan-Wigner phase entering into the definition of the
operators cn, one can easily find that the resulting state
corresponds to a state in which every pair of qubits sitting
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in positions n and L − n + 1 is maximally entangled, namely
|ψn,L−n+1(t∗)〉 = (|↑↓〉 + eiα′

n |↓↑〉)/2, where α′
n can differ

from αn by a π factor. The perfect splitting dynamics thus
represents an alternative to other methods existing in the
literature to generate nested Bell pairs [39,40] starting from a
separable state. However, compared to previous proposals it is
more general because it allows tuning the number of generated
Bell pairs by simply choosing the number of flipped spins in
the initial state.

IV. CONCLUSIONS

In this paper we study the wavefunction dynamics of
hopping particles and/or quasiparticles in a quantum chain.
We design the Hamiltonian so that a localized wave packet
evolves coherently along the chain without dispersion and
at a particular point is perfectly split into transmitted and
reflected components that propagate in opposite directions
without dispersion. When the reflected component reaches
the initial site, its wave packet becomes localized while, at
the same time, the wave packet of the transmitted component
becomes localized in a different site of the chain. We devise the
exact conditions that the Hamiltonian spectrum has to satisfy
to allow for the perfect splitting and reconstruction. Then
we focus on some viable Hamiltonians with nearest-neighbor
interactions and site-dependent couplings, and we find the
coupling pattern that satisfies the perfect splitting condition
using inverse eigenvalue techniques.

Besides shedding light into quantum interference phenom-
ena in one dimension, our results are particularly useful for
applications. In this respect, we study atomic lattices and
obtain perfect Hanbury Brown and Twiss correlations and
peculiar quantum interference patterns that result in regular
structure in the space-time evolution of the many-particle

wavefunction. Moreover, we show that in a spin-chain setting,
the particle splitting can be used to generate maximally
entangled states between distant parts.

We expect that the perfect wave-packet splitting will
become a general tool for varied applications in controlled
quantum interference and quantum information processing.
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APPENDIX: PERFECT SPLITTING
HAMILTONIAN FOR L = 5,6

The Hamiltonian matrices 〈n|H |m〉 for perfect balanced
splitting when L = 5 and 6 are, respectively (in unit of J ):⎛
⎜⎜⎜⎜⎜⎝

−0.08378 0.6195 0 0 0
0.6195 −0.2932 0.6664 0 0

0 0.6664 0.7540 0.6664 0
0 0 0.6664 −0.2932 0.6195
0 0 0 0.6195 −0.08378

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5999 0 0 0 0
0.5999 0 0.8279 0 0 0

0 0.8279 0 0.3927 0 0
0 0 0.3927 0 0.8279 0
0 0 0 0.8279 0 0.5999
0 0 0 0 0.5999 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

As shown in Sec. III, small imperfections parameter tuning
result in negligible deviations from the ideal dynamics.
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