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Entanglement control in quantum networks by quantum-coherent time-delayed feedback
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A crucial property of quantum networks is the entanglement between different network nodes. We demonstrate
that entanglement in quantum networks can be created and controlled by introducing quantum-coherent time-
delayed self-feedback at single nodes.
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I. INTRODUCTION

Future quantum information processing will almost cer-
tainly rely on quantum networks [1–3]. In these networks, local
operations are performed on the nodes, exploiting local quanti-
ties, while communication between the nodes is performed by
carriers of quantum information, e.g., photons [4]. In order to
utilize the full “quantum toolbox,” it is necessary to establish
nonclassical statistical correlations between the single nodes,
i.e., entanglement [5]. Therefore, it is of utmost importance to
understand the generation and transfer of entanglement.

Coupling open quantum systems to a common reservoir
is well known to create entangled decoherence-free sub-
spaces [3,6–10], also called “dark states,” since they are stable
against the reservoir-system interaction. The dynamics of the
reservoir-coupled system may start from a large range of
initial conditions, but the system reaches a “dark” entangled
state in a natural way. The related protocols however depend
on a coherent interaction of multiple nodes with the same
(“common”) reservoir. In view of the need to transfer quantum
information between spatially distant nodes, having individual
reservoirs, the common reservoir approximation is unrealistic.

Feedback [11] is a typical means for stabilization and
control of a plethora of systems. Usually, feedback is not
instantaneous, but shows a delay time τ , which in classical
nonlinear dynamics is, e.g., used for the stabilization of
unstable periodic orbits [12] or fixed points [13]. In quantum
mechanics, feedback can either be introduced by measuring
the quantum variable and changing the system parameters
according to the outcome of the measurement [14–19] or
without an external measurement by using a full-quantum-
mechanical feedback control mechanism [16,20–22] that
includes a quantum-coherent controller. The mechanism to
control the entanglement in networks discussed in our paper is
of the second kind, and therefore does not introduce any wave
function collapse but preserves coherence.

II. QUANTUM-COHERENT TIME-DELAYED FEEDBACK

Time-delayed feedback in its broadest sense consists of
a quantum signal leaving the quantum node at some time t

and re-entering at t + τ . In order to describe it in a fully
quantum-coherent [16,20] manner, we need a reservoir to
store the excitation (in our case, a photon) for exactly the
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period τ . This can be achieved by structuring the reser-
voir, in our case the photonic density of states [21,23–26].
Structured reservoirs are called “non-Markovian” [27–29]
because (quantum) information is not lost instantaneously, but
stored for a certain amount of time. Non-Markovian reservoirs
are known for their influence on quantum statistics and
entanglement [27,28,30–33], e.g., inducing sudden “death”
and “birth” of entanglement [30,34,35].

The feedback control we focus on in this paper is of
the “Pyragas type,” as introduced for classical dynamics in
Ref. [12]. It consists of a feedback term in the dynamical
equations of the form −K[c(t) − c(t − τ )], with c(t) a system
variable, K the feedback strength, and the delay time τ . The
special property of this kind of feedback is that it vanishes
for dynamics that are τ periodic, which makes the feedback
noninvasive for precisely these dynamics.

The aim of this paper is to discuss how Pyragas-type
time-delayed feedback control (“Pyragas control”) can be used
to create and stabilize entangled states in quantum networks.
It is structured as follows: First, we show how Pyragas control
can be modeled for single nodes, and also discuss experimental
realizations. Second, we turn to two coupled nodes, each
individually subject to time-delayed feedback. We show that it
is possible to create entanglement between these nodes using
Pyragas control. Third, we generalize our results to networks
with more nodes and different feedback strengths.

III. SINGLE NODE SUBJECT TO FEEDBACK

To model time-delayed quantum-coherent Pyragas feed-
back, we need a reservoir that has a precisely defined feedback
time τ , after which the emitted radiation interacts with the
emitter again. A simple realization of such a feedback reservoir
is a one-dimensional photonic reservoir bounded on one
side by a mirror. Such a reservoir has been implemented
experimentally for atoms as quantum emitters by collecting
the emitted photons with a lens and reflecting them back by
a mirror at distance L from the atom [36,37] [cf. Fig. 1(a)].
Hemispherical mirrors [25] of radius L were shown to lead
to similar dynamics. For quantum nodes consisting of high-
quality cavities, e.g., whispering gallery modes [38] or defects
in photonic crystals [39–41], the feedback reservoir can be
realized by a waveguide [41] or photonic fiber of finite length,
coupled weakly to the node [42] [cf. Fig. 1(b)]. If one of the
ends of the waveguide is located at distance L, it can provide
the necessary time-delayed feedback, while keeping the whole
system “open” so that a stable equilibrium can be achieved.
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FIG. 1. (Color online) (a) Microscopic modeling of a single node
with time-delayed feedback. A quantum node, described by ĉ(†) (blue
dot), is coupled to a set of one-dimensional bosonic reservoir modes
of different wave vector k, described by d̂

(†)
k . Due to a mirror at

distance L, at which the reservoir modes have to vanish, the coupling
of the node to the reservoir becomes wave vector dependent. (b)
A possible implementation of time-delayed feedback for a quantum
node consisting of a high-Q cavity: A photonic waveguide coupled
to the node. One end of the waveguide is located at distance L,
leading to time-delayed feedback, while the other end is much further
away and can be treated as lying at ∞. Due to the weak coupling
between the node and the waveguide, the presence of the node does
not alter the mode structure of the waveguide. (c) Schematics of a
simple network, as discussed first, consisting of two coupled identical
nodes. The coupling strength is given by M . Both nodes are subject to
time-delayed feedback of equal strength K and equal delay time τ . (d)
A possible implementation of the two coupled, feedback-controlled
network nodes using cavities and two waveguides.

Waveguides were also proposed to be used in feedback
experiments for artificial superconducting atoms [43,44].

We describe the quantum node with the Hamiltonian
Ĥnode, which at the moment is still arbitrary. The transition
between two states within the node will be described by
the ladder operators ĉ

(†). Later on, we will choose single
mode photonic cavities as nodes, however the mechanism
presented can be applied to a large variety of systems, such
as atoms [24], artificial atoms [43], or quantum dots in a
solid-state environment. The transfer between this excitation
within the quantum node (e.g., a photon in a cavity) and the
bosonic reservoir mode with wave vector k (creation operator
d̂
†
k ) as well as the free reservoir dynamics [cf. Fig. 1(a)] can be

described in the rotating wave approximation by [23,24]

ĤFB = �

∫ ∞

−∞
dk[c0|k|d̂†

k d̂k + (γ sin(kL)ĉ†d̂k + H.c.)]. (1)

Here, γ is the coupling strength. The factor sin(kL) creates
the wave-vector dependent reservoir structure, which will lead
to the desired non-Markovian behavior. It takes care of the
boundary condition for electric fields at a mirror in distance
L to the emitter, leading to a feedback time τ = 2L/c0, c0

being the speed of light. It is exactly this factor which is
responsible for the appearance of Pyragas-type control terms.
Without the sinusoidal prefactor, the coupling would lead to
a purely exponential decay of the mode excitation without
any feedback, as is well known from Wigner-Weisskopf
theory [45].

In the limit that one excitation quantum is in the
whole system, the solutions of the Schrödinger equa-
tion can be transformed into time-delayed differential
equations. We therefore solve the Schrödinger equation
with the Hamiltonian Ĥ = Ĥnode + ĤFB, using the state
|φ〉 = c|e〉|0〉 + ∑

k dk|g〉|1k〉. Please note that in our notation
operators are marked with a “hat” (e.g., ĉ) to distinguish them
from the probability amplitudes (e.g., c). |e〉 and |g〉 denote the
excited and ground state of the node, mediated by the ladder
operators ĉ

(†), while |0〉 describes zero photons in the reservoir
and |1k〉 describes one photon in the mode k, and no other
photons in the reservoir. The resulting differential equations
for dk can be formally integrated and inserted in the ODE of
c, which finally gives [24]

d

dt
c = f (c(t)) − K[c(t) − c(t − τ )]. (2)

Here, f (c(t)) denotes the internal dynamics of the node due
to Ĥnode, which right now can be chosen arbitrarily. K = πγ 2

2c0
gives the initial decay rate and also determines the strength of
the feedback effects. In the derivation of Eq. (2), we neglected
the occurring frequency (Lamb) shift as is frequently done in
literature [24,45]. We see that the structure of the continuum
leads to the Pyragas control terms. We also see that due to our
choice of the structure, no delay terms with t − 2τ, t − 3τ ,
etc., are present. This means that for Pyragas control there must
be no possibility for the photons to spend several round-trip
times τ in the reservoir before interacting with the node again.
Since atoms are very bad mirrors [37], this is automatically
the case for atoms as quantum nodes. For high-q cavities, we
need to put them outside of the reservoir waveguide structure,
as shown in Fig. 1(b), so that the radiation is not reflected
back into the reservoir by the cavity mirror without interacting
with the cavity mode. However, even in setups that allow
for multiple round trips in the reservoir, such as a single
cavity mode coupled to a large cavity, a strong frequency
dependence of the mode decay dynamics was demonstrated
experimentally [46]. Since this will be the important ingredient
for our entanglement control scheme, multiple round trips in
principle do not deteriorate our approach. However treatments
of such systems is beyond the scope of this publication.

For more than one photon, or treatments beyond the
Schrödinger equation, e.g., to include further dissipative
effects, one has to solve the full dynamics using the
Hamiltonian of Eq. (1), including the whole continuum of
external modes, instead of being able to use Eq. (2). This
is numerically very cumbersome and usually needs further
approximations [24,47]. We restrict ourselves to the one-
photon case and the structured reservoirs as the only decay
channel.

We now discuss the main result of our work, the generation
and stabilization of deliberately chosen eigenstates in a
quantum network by time-delayed feedback.

IV. TWO COUPLED NODES

We first investigate the simplest of networks, consisting
of two nodes, here represented by two coupled single mode
cavities of equal angular frequency ω0 (creation operator ĉ

†
1,2,
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annihilation operator ĉ1,2). Both of the nodes are subject to
time-delayed feedback of the same strength K and the same
feedback delay time τ by coupling to two separate structured
reservoirs. The two cavities are coupled to each other with a
coupling constant M [cf. Fig. 1(c) for a schematic view and (d)
for a possible implementation using cavities]. The Hamiltonian
of the coupled cavity system, not including the coupling to the
reservoirs, reads

Ĥsys = �ω0ĉ
†
1ĉ1 + �ω0ĉ

†
2ĉ2 + �Mĉ

†
1ĉ2 + �Mĉ

†
2ĉ1. (3)

This can be realized by cavities either directly coupled through
evanescent fields [40,48–50] or through a short, detuned
optical fiber [51]. In the latter case, M can be derived from an
effective Hamiltonian. In the limit of at most one photon, the
coupled cavities can be described by the states |10〉, |01〉, and
|00〉, i.e., one photon is in the left cavity and none in the right,
or one photon is in the right cavity and none in the left, or
there is no photon at all in the cavities, respectively. Solving
the Schrödinger equation with a state |ψ〉 leads us to the
following differential equations for the probability amplitudes
c1 = 〈10|ψ〉 and c2 = 〈01|ψ〉, including the network node–
local reservoir interaction:

d

dt
c1,2(t) = −iω0c1,2(t) − iMc2,1(t)

−K[c1,2(t) − c1,2(t − τ )]. (4)

The ODE system can be decoupled by transforming into c± :=
(c1 ± c2)/

√
2. While the states |10〉 and |01〉 were separable,

the new states |±〉 := (|10〉 ± |01〉)/√2 with the probability
amplitudes c± are entangled—a simple manifestation of the
fact that a separable state can be regarded as a superposition
of entangled states. Our aim is now to choose τ such that
one of the entangled states gets stabilized, while the other one
decays. Most importantly, we can choose which of the states
survives by choosing appropriate feedback. The decoupled
system reads as

d

dt
c± = −i (ω0 ± M) c±(t) − K[c±(t) − c±(t − τ )]. (5)

Due to the coupling, there exist two modes (entangled in the old
basis) with different frequencies ω± = ω0 ± M . Let us focus
on the terms describing the coupling to the reservoirs. While
the first term, −Kc±(t), describes a decay, the influence of the
feedback-induced time-delayed term +Kc±(t − τ ) depends
on the state of the system at t − τ . In the case that c±(t − τ ) =
c±(t), it cancels the influence of the decay term and leads
to a stabilization of the quantum state. An equivalent way to
formulate this is that the necessary condition for a stabilization
of an oscillation with angular frequency ω is that ωτ is an
integer multiple of 2π . In contrast, if c±(t − τ ) ≈ −c±(t), the
decay is enhanced after τ . Usually, the situation (increase or
decrease of the decay) differs for the two different angular
eigenfrequencies ω±. In particular, one can set τ such that we
get a stabilization only for one of the two modes, while the
other mode is destabilized. This gives us the ability to control
whether a mode is “dark” or “bright” by simply tuning the
delay time τ . Since the eigenmodes |+〉 and |−〉 are entangled,
by stabilizing only one of them we can single out this entangled
component from any initial state, even from a fully separable
one such as |10〉. This mechanism is fundamentally different

from coupling to a common reservoir [6], where usually only
antisymmetric states are dark and therefore do not decay. In
our case, we are able to control which state becomes dark and
which bright. For specific experimental realizations, especially
in the case of atoms as quantum nodes, there might of course
be common decay channels as well, which also contribute to
different decay dynamics for |+〉 and |−〉. This is independent
of the controllable decay proposed here and can either enhance
or decrease the effectiveness of our mechanism. Additionally,
the single nodes will experience losses through further decay
channels. These losses should be minimized, since they set an
upper bound to the lifetime of the entangled states.

In our numerical simulations (see Fig. 2), we choose
ω0 = 1 fs−1, M = 10 ns−1, and K = 0.52 ns−1, which leads
to strong coupling between the cavities (M > K) but is
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FIG. 2. (Color online) Numerical results of the entanglement
between the two cavities discussed in the first section, calculated
by the concurrence. Assumed values are given in the text. (a)
Entanglement dynamics, starting from different states. Blue, solid
line: Starting from the separable state |10〉, the entanglement reaches
its final value slightly above 0.4 after a series of oscillations. Orange,
dashed line: Starting from the antisymmetric state |−〉, which is
maximally entangled, the concurrence decreases exponentially with
an even higher rate after the feedback time. Green, dotted line: The
maximally entangled symmetric state |+〉 gets stabilized after the
feedback delay time. (b) Density matrix elements, starting with a 1:1
incoherent mixture of |10〉 and |01〉. Blue, solid line: The diagonal
matrix element ρ10,10 = 〈10|ρ|10〉 first decreases and finally reaches
a stable value due to feedback stabilization. Orange, dashed line:
The off-diagonal matrix element ρ10,01 = 〈10|ρ|01〉 stays zero up to
the delay time τ , since we are dealing with an incoherent ensemble.
After τ , coherence is built up due to the feedback, and ρ10,01 increases
steadily to its final value slightly above 0.2. This demonstrates the
importance of the feedback for the creation of entanglement between
the two systems.

052321-3



HEIN, SCHULZE, CARMELE, AND KNORR PHYSICAL REVIEW A 91, 052321 (2015)

in the range of experiments [39,40,48]. We choose τ =
4π × 104/(ω0 + M) ≈ 126 ps, which makes ω+τ an integer
multiple of 2π . Therefore, |+〉 is stabilized while |−〉 is
destabilized. In order to get the most accurate results, we
directly solve the Schrödinger equation, using the Hamiltonian
of Eq. (1). The reservoir is discretized using 1000 modes
equally spaced around ω0/c0.

We define the entanglement via the concurrence C, which
can be easily calculated as C = 2|c∗

1c2| [5,52], leading
to a value between 0 (no entanglement) and 1 (maximal
entanglement). Starting with the separable state |10〉, we
see in Fig. 2(a) (blue, solid curve), that the entanglement
C gets stabilized at a value slightly below 0.5 after a
series of Rabi oscillations. Analogous to other dissipative
entanglement creation mechanisms [3,6–10], the maximally
achievable value is C = 0.5. Without feedback, C would also
show a series of oscillations, however it approaches 0 in the
long-time limit. The mechanism of entanglement generation
and stabilization becomes clear by looking at the other two
curves of Fig. 2(a), where we plot the entanglement dynamics
depending on different initial states. Starting as a maximally
entangled antisymmetric state |−〉, we see that the probability
of being in the state, and therefore the entanglement, decays
rapidly after the feedback delay time τ . The symmetric
state |+〉, however, gets stabilized. Since the separable state
|10〉 is a superposition of these two states, we single out
the symmetric component after a set of Rabi oscillations
and thereby create stable entanglement between the two
cavities.

Stability can be reached, since the system is still “open”
despite the introduction of a feedback mirror: The radiation
can still escape to infinity traveling away from the mirror [e.g.,
to the left-hand side in Figs. 1(a), 1(b), and 1(d)]. If the Pyragas
condition is met, the radiation in this decay channel however
interferes destructively, which leads to a nonzero stable photon
density in the nodes.

Figure 2(a) suggests that there is an “average” entanglement
in the system also for small times, even below τ , if the
concurrence is averaged over one Rabi oscillation period.
The real power of our mechanism becomes visible by
looking at the dynamics beyond pure state dynamics, i.e.,
incoherent mixtures. We start with an initially incoherent
1:1 mixture of |10〉 and |01〉, described by the density
matrix ρ(t = 0) = 1

2 (|10〉〈10| + |01〉〈01|). The results are
depicted in Fig. 2(b). We see a decay of the diagonal density
matrix element ρ10,10 = 〈10|ρ|10〉 (blue, solid line) due to
the coupling to a reservoir. The entanglement C is, however,
dependent on the off-diagonal component ρ10,01 = 〈10|ρ|01〉
(orange, dashed line) and can in our case be calculated as
C = 2|ρ10,01|. The component ρ10,01 starts and stays at zero
up to the delay time τ . Afterwards, it strongly increases until
it reaches its final value slightly above 0.2 for large times.
This clearly demonstrates that time-delayed feedback induced
by local reservoirs is the important quantity to establish
nonclassical coherence between the two cavities. Without
feedback, ρ10,01, and therefore C, would have stayed 0 all
the time. However, even with feedback, both photons will end
up in the reservoir with more than 50% probability, leading to
ρ00,00 � 0.5 (in order to preserve the trace of ρ). Therefore,

we will not reach entanglement larger than 0.5 when starting
from a fully disentangled state.

Important quantities are the final entanglement C(t → ∞)
and the time the separation of |+〉 and |−〉 needs, since
a fast separation leads to faster entanglement stabilization.
Both quantities can be calculated analytically by a Laplace
transform of c± and using it to solve Eq. (5). The separation
time is given by the decay rate λ of the unstable component (in
the above case, the antisymmetric state), with the constraint
that the other component fulfills the Pyragas condition and
therefore gets stabilized. This decay rate can be interpreted as
a Lyapunov exponent for the entanglement stabilization. It can
be calculated as [13,53]

λ = 1

τ
(Re{W[Kτ exp(Kτ + 2iMτ )]} − Kτ ), (6)

using the Lambert-W function. For the important long-time
behavior, the solution of Eq. (6) with smallest absolute value is
dominant. In Fig. 3, we plotted the scaled Lyapunov exponent
λ/K over the scaled delay time Kτ . We use M/K = 20, which
is approximately fulfilled in our numerical simulations. We
see a series of dips of λ/K . At the largest negative values,
the entanglement stabilization mechanism works best. Here
the two components can be discriminated very well by time-
delayed feedback. We see an optimum at about Kτ = 0.25.
However, when λ/K = 0, both components are stabilized.
Therefore we do not create stable entanglement, but stabilize
Rabi oscillations between the components instead [21].

The poles of the Laplace transform of c± give the long-term
dynamics of the system. We find, that when starting from a pure
separable state the concurrence equilibrates at

C(t → ∞) = 1

2(1 + Kτ )2
. (7)

This shows that τ should be kept small to reach high values
of entanglement. However, this has to be balanced against
the vanishing Lyapunov exponent λ for Kτ → 0, leading to
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FIG. 3. Scaled Lyapunov exponent λ/K of the stabilization
mechanism, calculated using Eq. (6), depending on the scaled
feedback delay time Kτ . At the largest negative values, the separation
between different states is the fastest, which means the entanglement
stabilization mechanism works best. When λ = 0, both components
get stabilized, and in our ideal case we never reach an equilibrium,
but get stabilized Rabi oscillations instead [21].
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FIG. 4. (Color online) A complex network with many nodes. The
several nodes, here depicted as single mode cavities, may have
different resonance frequencies. The network is described by the
coupling between the nodes via the matrix M. Some nodes are subject
to time-delayed feedback with individual outcoupling strength Ki .
The delay time is assumed to be equal for all feedback loops.

very long separation times. In the limit of Kτ = 0, the value
C = 0.5 is never stabilized. Therefore, time delay is crucial
for our mechanism. We also see that very strong coupling
M 	 K is not necessary for finite entanglement, however
strong coupling leads to an easier and faster separation of
the two components and therefore larger negative Lyapunov
exponents λ [cf. Eq. (6)].

V. MANY NODE NETWORKS

We now extend our analysis to larger networks containing
multiple nodes with different frequencies, which may or may
not be coupled to an external feedback reservoir (see Fig. 4).
We define the vector 
c such that the nth component cn is the
probability amplitude of node n being in the excited state while
all the other nodes are in the ground state. The matrix 
 is a
diagonal matrix containing the eigenfrequencies of the nodes,
while the matrix M gives the couplings between the nodes. The
coupling strength to a feedback bath at the different nodes is
given by K. Diagonal elements of K model individual feedback
reservoirs that couple only to a single node, while we can
include the coherent decay of multiple nodes into the same
feedback reservoir by off-diagonal elements [3]. We choose
the same delay time for all the feedback. The dynamics of 
c is
described by

d

dt

c = −i

c(t) − iM
c(t) − K[
c(t) − 
c(t − τ )]. (8)

The kernel ker(K) describes decoherence-free subspaces [3,6]
also used for entanglement creation. Our aim is to stabilize
states not contained in ker(K).

We introduce the matrix T which diagonalizes 
 + M such
that

T(
 + M)T−1 := � (9)

is diagonal. With this, we can define a differential equation for
the vector 
ξ = T
c:

d

dt

ξ = −i�
ξ − TKT−1[
ξ (t) − 
ξ (t − τ )]. (10)

With the elements of �, we have the eigenfrequencies �ii of
the system at hand, which we can use to choose τ . If we set
τ such that it is an integer multiple of the period given by
an eigenfrequency, we stabilize the respective eigenstate 
ξ�ii

since the term (
ξ�ii
(t) − 
ξ�ii

(t − τ )) vanishes when the system
equilibrates. These eigenstates are usually highly entangled
and can be used, as shown for two coupled cavities, to
create entanglement from a separable starting state. We also
recognize that we would not have needed to couple both nodes
of our simple two node model in the paper equally to the
feedback reservoirs. This symmetry made the coupling matrix
TKT−1 diagonal, leading to a full decoupling of Eq. (5).
However the whole term describing the reservoir interaction
vanishes if the Pyragas condition is met, independent of the
properties of TKT−1. The only important property is that there
is at least one feedback reservoir, providing a delay time τ .

VI. CONCLUSION AND OUTLOOK

We have shown that we can use time-delayed feedback
on single nodes in quantum networks to select which of the
eigenstates shall be dark and which shall be bright. Since
the eigenstates are usually entangled, this can be used to
create entangled states from separable states and tune the
entanglement within the network.

Due to the conceptual simplicity, our proposal should
be applicable to a large variety of realizations of quantum
nodes [36,37,43]. Our analysis only covered the case of one
excitation in the network. It is certainly interesting to expand
the scheme to a higher number of excitations and also include
nonlinearities that can lead to a large number of additional
network modes.
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[13] P. Hövel and E. Schöll, Phys. Rev. E 72, 046203 (2005).
[14] H. M. Wiseman and G. J. Milburn, Quantum Measurement

and Control (Cambridge University Press, Cambridge, England,
2009).

[15] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk,
S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune,
J.-M. Raimond, and S. Haroche, Nature (London) 477, 73
(2011).

[16] A. Serafini, ISRN Opt. 2012, 15 (2012).
[17] N. Yamamoto, H. I. Nurdin, M. R. James, and I. R. Petersen,

Phys. Rev. A 78, 042339 (2008).
[18] G. Kiesslich, C. Emary, G. Schaller, and T. Brandes, New J.

Phys. 14, 123036 (2012).
[19] C. Emary, Philos. Trans. R. Soc. London A 371, 20120468

(2013).
[20] S. Lloyd, Phys. Rev. A 62, 022108 (2000).
[21] A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A. Knorr,

Phys. Rev. Lett. 110, 013601 (2013).
[22] A. L. Grimsmo, arXiv:1502.06959.
[23] R. J. Cook and P. W. Milonni, Phys. Rev. A 35, 5081 (1987).
[24] U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002).
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