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Quantum state transfer along a ring with time-reversal asymmetry
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Time-reversal symmetry breaking can enhance or suppress the probability of success for quantum state transfer
(QST), and remarkably it can be used to implement the directional QST. In this paper we study the QST on
a ring with time-reversal asymmetry. We show that the system will behave as a quantum state turnplate under
some proper parameters, which may serve as time controlled quantum routers in complex quantum networks.
We propose realizing the quantum state turnplate in the coupled resonator optical waveguide by controlling the
coupling strength and the phase.
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I. INTRODUCTION

Quantum state transfer (QST) is one of the basic tasks
in the quantum information process. In the past decade QST
has been studied intensively. Several schemes are proposed
to achieve it by different channels, i.e., spin chains [1–5],
polarized photons in the optical fiber [6,7], coupled-cavity
array, and so on. Using the spin chain as a channel many
schemes are reported, such as, QST along a one dimen-
sional unmodulated spin chain [1], perfect QST achieved by
modulating the coupling strength [3,5,8–18], QST without
initialization [19,20], optimizing basis [21,22], generalizing to
the high spin QST [23–27], arbitrary perfect state transfer [28–
32], and relation with number theory [33,34]. The scheme
proposed in Ref. [35] shows that coupled-cavity arrays can be
a competitive candidate for the quantum channel, which serve
as a high dimensional channel and don’t need initialization.
Recently time-reversal symmetry breaking is introduced to
study the QST [36,37], where the time-reversal symmetry
breaking can enhance or suppress the probability of the
QST and make the QST directional bias. In this sense time
asymmetry is a new resource for exploring the QST.

In Refs. [38,39], it is shown that a synthetic magnetic
field can be introduced for photons by differential optical
paths in the system of coupled resonator optical waveguides
(CROW). In this paper we consider the QST along a ring
consisting of coupled cavities or coupled resonator optical
waveguides with time-reversal asymmetry. Because of the
time-reversal symmetry breaking we hope that the quantum
state transfer along the ring one by one periodically like a
turnplate of quantum states. The quantum turnplate will be
useful in building complex quantum networks where it acts
as a quantum router. In the following paper we show that a
CROW ring will behave as a quantum state turnplate under
some proper parameters.

This article is organized as follows. First we give the
physical model and make a general analysis. Then, we analyze
the dynamic requirement for the quantum state turnplate in a
single excitation model, and give the energy spectrum and
symmetry matching condition for the quantum state turnplate.
In Sec. IV, we study the spectrum of the system with the cn

symmetry. Then, we discuss the effective Hamiltonian of the
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system using the perturbation method. We come back to the
CROW system in Sec. VI. Finally a summary is given.

II. PHYSICAL MODEL

In the CROW the synthetic magnetic field can be introduced
by differential optical paths [38,39]. We consider the CROW
system in a ring configuration as shown in Fig. 1(a). The
Hamiltonian of the ring is

HR =
N∑

l=1

(Jlâl â
†
l+1 + J ∗

l â
†
l âl+1), (1)

where Jl is the coupling strength of between the sites l − 1
and l, and N + 1 is interpreted as 1. âl (â†

l ) is the annihilation
(creation) operator. From Ref. [35] we know that the condition
for transferring any single mode photon state from node l to
node l′ is

âl′(τ ) = âl , (2)

where âl′ (τ ) = U †(t)âl′U (t) with U (t) being the time evolu-
tion operator. It can be easily verified by noting that the expect
value of any operator in the l′th node at time τ is equal to that
of the operator in the lth node in the initial state.

Using the Heisenberg equation,

dâl(t)

dt
= i [HR,âl(t)] , (3)

and noting that âl(t) can be expressed on the operator bases as

âl(t) =
N∑

k=1

αk(t)âk,

the evolution of the operator âl(t) can be written as

i
dA

dt
= −H (J )A, (4)

where A = [α1(t), α2(t), . . . ,αN ]T with T being the transpose
operation, and

H (J ) =

⎡
⎢⎢⎢⎢⎣

0 J1 0 · · · J ∗
N

J ∗
1 0 J2 · · · 0
0 J ∗

2 0 · · · 0
...

...
...

. . .
...

JN 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦. (5)
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FIG. 1. (a) The CROW ring. The circles mean the site resonators,
and the link optical waveguides link the resonators as a ring. Every
waveguide between two site resonators has two paths, the outer path
and the inner path. The two paths have different lengths which induce
the complex coupling strength J . (b) Single excitation graph. The
circles correspond to the resonators in the CROW system. The arrow
with labels Jl represents the matrix element Jl |l〉〈l + 1|.

The initial condition is A(0) = [0, 0, . . . ,1, . . . ,0]T , where
1 is the lth element. With the above initial condition, Eq. (4)
describes the single excitation evolution in the ring with
coupling strength {−Ji}.

So the transfer of any single mode photon state in the CROW
ring has the same physical picture as the single excitation
model, and we do not need to initialize the state of other sites
except the input one.

III. SINGLE EXCITATION RING

First, we consider the single excitation model. To sketch
our central idea, we consider the system depicted by a graph
in Fig. 1(b) consisting of N sites as a ring, with the Hamiltonian
H (J ) having the form given in Eq. (5), where J is the set {Jl}.
Let us denote � as the set {φl}, where φl is the complex phase
of Jl . From Ref. [37] we know that the phase � can give rise to
the time-reversal asymmetry if the graph is nonbipartite graph
(N is odd). In this article we concentrate on the cases where
N is odd.

Through local unitary operator UL, the Hamiltonian can be
transformed to

H (J ′) = ULH (J )UL†,

where
∑

l φ
′
l = ∑

l φl and |J ′
l | = |Jl|. In other words, only the

sum of phases
∑

l φl is relative to the properties of QST. So
we can choose a proper operator UL to make all the phases
equal, φ′

l =
∑

l φl

N
, with the QST properties in the time evolution

unchanged.
Now we consider the question: In what condition would

the system behave like a turnplate of quantum state? First, we
require that the system have the symmetry of the cyclic group
cn for the turnplate having n (n � N ) scales on it, i.e., N/n

is an integer. The operators of the cn group elements can be
expressed as

Tn, (Tn)2, . . . , (Tn)n−1, 1,

where

Tn = eiLn
2π
n ,

and Ln is a Hermitian operator. From (Tn)n = 1, we know
that Ln has n integer eigenvalues, l ∈ {�− n−1

2 �, �− n−1
2 � +

1, . . . , � n−1
2 �} where �x� is the largest integer not greater

than x. Here we only consider the case where n is odd. For
the Hamiltonian we have the relation [H,Ln] = 0. Let the
eigenstate of the system be |ψl,m〉, that is,

H |ψl,m〉 = El,m|ψl,m〉,
and

Ln|ψl,m〉 = l|ψl,m〉.
Now we prove that the system will be a turnplate of quantum

states with n scales if the eigenvalues El,m match the symmetry
cn in the following way:

El,m =
(

l

n
+ Zm

)
ε + ε0, (6)

where Zm is an integer, and ε0 correspond to the phase that is
not an observable in physics.

Let the initial state of the system be |ψ0〉. It can be easily
proved that at time τ = 2π

ε
,

|ψ(τ )〉 = eiπε0/εTn|ψ0〉, (7)

meaning that the quantum state of the system turns one scale
every time interval τ . The energy and symmetry matching
condition can be seen as the generalization of the energy and
parity matching condition mentioned in Ref. [40], where the
parity matching condition corresponds to the case n = 2 and
ε = 2E0.

Here we look at the particular case N = n = 3. The relation
[H, T3] = 0 requires that J1 = J2 = J3. In the following of
this section we suppose that |J1| = |J2| = |J3| = 1. Using the
property of the c3 group we know H and Ln have the same
eigenvectors |φl〉 = 1√

3
[1, ωl

3, ω
2l
3 ]

T
with ω3 = ei 2π

3 and l ∈
{0, ± 1}. From Eq. (6) we get the equations,

E1 =
(

1

3
+ Z1

)
ε + ε0,

E0 = Z0ε + ε0, (8)

E−1 =
(−1

3
+ Z−1

)
ε + ε0,

where E1, E0, and E−1 are the eigenvalues for l = 1, l = 0, and
l = −1 respectively. Now we need to find three integers (Z1,
Z0, and Z−1) and two reals (ε, ε0) that make the equations
hold. From the characteristic polynomial of Hamiltonian,
λ(3 − λ2) + 2 cos(φ) = 0, we have

E1 + E0 + E−1 = 0.

That is,

ε0 = −Z0 + Z1 + Z−1

3
ε.

So we get two independent equations,

E1 =
(

1

3
+ Z1 − Z2

3

)
ε,

E0 =
(

Z0 − Z2

3

)
ε, (9)
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where Z2 = Z0 + Z1 + Z−1. Divide both sides, then we get

E1

E0
= 1 + 3Z1 − Z2

3Z0 − Z2
. (10)

We can easily get the eigenvalues,

E0 = 2 cos(φi), (11)

E1 = 2 cos

(
2π

3
+ φi

)
. (12)

Substituting them into Eq. (10) we get

1 + 3Z1 − Z2

3Z0 − Z2
= −1

2
−

√
3

2
tan(φi). (13)

Equation (13) gives the condition when the φi satisfies the
energy and symmetry matching condition for the case N =
3. Let us see two examples. The first one is that Z1 = −1,
Z0 = Z−1 = 0 then φi = π

6 . Let J1 = J2 = J3 = ei π
6 , that is,

the total phase is π/2, and the eigenvalues are El=0 = √
3,

El=1 = −√
3, and El=−1 = 0. From Eq. (9) we get ε = 3

√
3

and the time interval τ = 2π

3
√

3
. We numerically simulate the

time evolution of this case and show the probability of the wave
function in Fig. 2(a). The second one is that Z−1 = −1, Z0 =
2, Z1 = 1, then φi = arctan(− 2√

3
), ε = 3 cos(φi )

2 . We simulate
the time evolution of this case in Fig. 2(b).

In the examples, we give the values of Z−1, Z0, and Z1 and
then find the corresponding φi . Now the question is whether
there is a set of {Z−1, Z0, Z1} that makes Eq. (13) hold for
arbitrary φi . The answer is no, but we can always find the set
of Zs that make Eq. (13) hold approximately with arbitrary
high accuracy.

Equation (13) is equivalent to

−3

2
−

√
3

2
tan(φi) = 1 + 3Z4

Z3
, (14)

where Z3 and Z4 are two independent integers. Z3 = 2Z0 −
Z1 − Z−1 and Z4 = Z1 − Z0. For a given precision, we can
always find two integers P and Q; those make the approximate

equation,

−3

2
−

√
3

2
tan(φi) ≈ P

Q
,

hold. When Z3 � 1, we get

P

Q
≈ 3Z4

Z3
.

So Z3 = 3Z5Q and Z4 = Z5P with Z5 making sure that Z3 �
1. From the second equation of Eqs. (9) and Eq. (11) we get

ε = 6 cos(φi)

Z3
. (15)

So when Z3 � 1, τ � 1. It means that for the special case,
N = 3, the energy and symmetry matching condition can
always be satisfied approximately for arbitrary φi , but it is
most likely that we need to wait for a long time τ for a
quantum turnplate; see Fig. 2(c). The case that the total phase
φ = π/2 + kπ is one of the best conditions in which we get
the turnplate soon compared with the character time of the
system.

Given the single excitation condition, it was proved that
there is a pretty good state transfer between any two sites of a
uniform ring with total phase as π/2 + kπ , if the number
of the site of the ring is prime [41]. It indicates that the
energy spectrum and symmetry matching condition, Eq. (6),
is approximately satisfied when the length of the ring is prime.

IV. STRUCTURE OF THE SPECTRUM

In this section we analyze the energy spectrum of the system
described by the Hamiltonian in Eq. (5). We start with the
definitions of some notations. We denote the characteristic
polynomial as AN , that is, AN = det(HN − λ). And denote
BN as BN = det(HN (JN = 0) − λ), where HN (JN = 0) rep-
resents the Hamiltonian where the coupling between the first
site and the last site is zero, i.e., the chain is an open one. From
Ref. [42] we know that

BN =
{
λg(λ2) if N is odd,
g(λ2) if N is even,
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0

0.2

0.4

0.6

0.8

1

τ 2τ 3τ

|J1|t

P
(t

)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

τ

|J1|t
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

τ

|J1|t
(a) φi = π

6 (b) φi = arctan − 2√
3

(c) φi = π
7

FIG. 2. (Color online) Numerical stimulation of the time evolution of the system consisting of three sites with the parameters J1 = J2 =
J3 = eiφi and the initial state |100〉. (a) φi = π

6 . (b) φi = arctan(− 2√
3
). (c) φi = π

7 . P (t) is the probability of the wave function. The solid line,
dashed line, and dash-dotted line describe the probability at site 1, site 2, and site 3, respectively. At time τ the excitation transfers from site 1
to site 2 and it transfers to site 3 after the next time interval τ . The system acts like a turnplate of the excitation.
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where g (x) is an arbitrary function of x. So the determinate
of AN with odd N is

det AN = −λ det BN−1 − J 2
1 det BN−2

+
N∏

l=1

Jle
iφ +

N∏
l=1

Jle
−iφ − J 2

N det BN−2

= λf (λ2) + λg(λ2) + 2
∏

l

Jl cos φ

= λF (λ2) +
∏

l

Jl2 cos φ,

where φ is the total phase. When φ = π
2 + kπ , k = 0, ± 1, ±

2, . . ., the spectrum has the structure {0, ± El}, that is, the
spectrum is symmetric around 0. Let us consider the system
that has the Cn symmetry and contains N = n × p sites. The
eigenvalues of the operator Ln is 0, ± 1, . . . , ± n−1

2 , which
we label as l, and every eigenvalue has p-fold degeneracy. We
can easily write out the eigenvector of Ln,

|l, i〉 = 1√
n

(|i〉 + ωl
n|i + p〉 + ω2l

n |i + 2p〉

+ · · · + ω(n−1)l
n |i + (n − 1)p〉) .

So Ln can be expressed explicitly as

Ln =
n−1

2∑
l=− n−1

2

p∑
i=1

l|l,i〉〈l,i|. (16)

Let Pl = ∑
i |l,i〉〈l,i|. From the relation [H,L] = 0, we know

that

PlHPl′ = 0 for l �= l′.

This means that the Hamiltonian is block diagonalized under
the bases {|l, i〉}. Because the system has the cn symmetry, we
have the relation Ji = Ji+p. So there are only p parameters,
J1, J2, . . . , Jp. We can always let J1 = 1 and other parameters
be the ratio to J1. Then the property of the system doesn’t
change up to the time scales. So there are p − 1 parameters
that we need to consider.

Using the bra ket form of the Hamiltonian,

H = JN |N〉〈1| + J ∗
N |1〉〈N |

+
N−1∑
k=1

(Jk|k〉〈k + 1| + J ∗
k |k + 1〉〈k|), (17)

and acting the projector Pl on both sides of Eq. (17) we can
directly give

PlHPl = ωl
nJp|p〉〈1| + ωl∗

n J ∗
p |1〉〈p|

+
p−1∑
k=1

(
Jk|k〉〈k + 1| + J ∗

k |k + 1〉〈k|) . (18)

Comparing Eqs. (17) and (18) we get that in every block
the Hamiltonian is equivalent to the Hamiltonian of the ring
with length p and the moduli of the coupling strength are
not changed just with the total phase changing from φ/n to
φl = φ

n
+ 2lπ

n
(see Fig. 3). So the characteristic function can
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FIG. 3. The ring with nine nodes and c3 symmetry. Under the
bases |l,i〉 the Hamiltonian is block diagonalized consisting of three
blocks which is implied by c3. In every block the Hamiltonian
represents a ring with length 3 and the coupling strength is the
same as the original ring in the site bases with the total phase being
φ/3, φ/3 + 2π/3, and φ/3 + 4π/3 where φ is the total phase of the
original ring.

be written as

λF (λ2) + 2
p∏

k=1

Jk cos φl = 0,

where l = − n−1
2 , . . . , n−1

2 . Every function means a curve that
crosses with the axis of the variable p times corresponding to
the p roots; see Fig. 4(a). All the curves have the same shape.
When the total phase φ = π

2 + kπ , the curve corresponding
to l = − n+1

4 (or l = n−1
4 ) crosses the original point and we

call it curve 0. Other curves can be obtained from the curve
0 by translating 2

∏
k Jk cos φl along the vertical axis. So if∏p

k=1 Jk are little enough the spectrum of the Hamiltonian has
the shape indicated in Fig. 4(b), that is, the spectrum consists
of separated groups.

(a)

−4 −2 2 4

−40

−20

20

40 (b)

FIG. 4. (Color online) Spectrum structure of the Hamiltonian H9

with length N = 9 and C3 symmetry. The coupling strength is
J1 = J3 = e

π
18 , J2 = 4J1. So the total phase is φ = π/2. (a) Pictures

of the characteristic polynomials of three equivalent Hamiltonians
obtained from the Hamiltonian H9. The dash-dotted line is the curve
0 corresponding to l = −1, and the other two lines can be obtained
from curve 0 by translating along the vertical axis. (b) Spectrum of
the Hamiltonian H9. Every energy lever corresponds to one cross
point of the curve and the horizontal axis in (a).
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V. EFFECTIVE HAMILTONIAN

Now we introduce the approximate method based on the
spectrum structure. To discuss concretely, we consider the
system with nine sites (N = 9) and the c3 symmetry. Its
configuration is shown in Fig. 3. The eigensystem of the
Hamiltonian H is equivalent to the Hamiltonian H ′ with

J ′
k = |Jk|, for k �= 1,

J ′
1 = |J1|eiφ,

where φ = ∑
k φk . So we consider the Hamiltonian H ′. Let

J ′
2 � J ′

1,3 and write the Hamiltonian H ′ into two terms, H ′ =
H ′

0 + V . Given that the H ′ is represented in the site basis |i〉,
H ′

0 consists of the terms containing J ′
2, and V consists of the

terms containing J ′
1,3. V is the perturbation compared with H ′

0.
The eigenvalues of the Hamiltonian H ′

0 are α ∈ {0, ± J
′
2}

and every energy level has threefold degeneracy. So the
energy levels are separated into three groups (manifold)
corresponding to three αs. Using i to label the different bases
we denote the three manifolds as |i, α〉. In the manifold with
α = 0 the three bases are

|1〉, |4〉, |7〉.
And the manifolds with α = ±|J2| are spanned by the bases,

|X+
23〉, |X+

56〉, |X+
89〉,

and

|X−
23〉, |X−

56〉, |X−
89〉,

respectively, where

|X+
ij 〉 = |0〉i + |1〉j√

2
, and |X−

ij 〉 = |0〉i − |1〉j√
2

.

We take V as perturbation then compute the effective
Hamiltonian in the manifold α = 0. And the effective Hamil-
tonian is

Hα=0
eff = −

⎡
⎣ 0 geiφ g

ge−iφ 0 g

g g 0

⎤
⎦,

where g = J1J3
J2

. Hα=0
eff is identical to the representation of the

Hamiltonian of the ring consisting of three nodes with uniform
coupling strength g and total phase φ. From the analysis in
Sec. III we know that when φ = π

2 + kπ the system is a
turnplate of a quantum state with three scales and the time
interval of the transfer state from one node to the next is 2π

3g
√

3
.

We numerically simulate the time evolution of the system
with parameters J1 = J3 = 1, J2 = 100 and φ = −π

2 from
the initial state |ψ(0)〉 = |1〉 in Fig. 5. At time τ = 120.92 the
excitation transfers from site 1 to site 4 and after the same time
interval it transfers to site 7 then back to site 1 circularly. The
sites, except the sites 1, 4, and 7 can’t be excited.

The correspondence between the propriety of the system
with site number N = n × p and N = n, where n is decided
by the symmetry of the large system, can be generalized to
the general case. Let J1(p) 
 Jl �=1(p), then the Hamiltonian
can be written as H = H0 + V , where V is the perturbation
term consisting of the terms containing J1(p), and H0 is the
other term. The spectrum of the Hamiltonian H0 has the

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

J1t

P
(t

)

FIG. 5. (Color online) Numerically simulate the time evolution
of the system with nine sites. J1 = J3 = 1, J2 = 100, and φ = − π

2 .
The initial state is |ψ(0)〉 = |100000000〉 with |1〉 as the input state.
The solid line presents the fidelity of the state transfer for the state of
the first site at a different time. The dashed line and the dash-dotted
line corresponding to the fidelity for the seventh site and fourth site,
respectively.

form depicted in Fig. 6. The zero energy level is n-fold
degeneracy with degenerate ket |m(0)〉, where m = 1 + l × p

and l = 1,2, . . . ,n − 1. All the |m〉s span the manifold Mα=0.
The energies greater and less than zero distribute two sides of
the zero-energy level symmetrically with an energy gap and
every energy level is n-fold degeneracy. From the perturbation
theory in the degenerate case we know that up to the first order
the eigenkets of Hamiltonian H corresponding to the manifold
Mα=0 are

|φ〉 =
∑
m

cm|m〉 −
∑
k /∈M

|k(0)〉Vk,m

E
(0)
k

,

where Vk,m = 〈k|V |m〉 and |k(0)〉 is the eigenket of H0 which is
not in the manifoldMα=0. So when Vk,m is much less than E

(0)
k

(the gap on the zero energy level), the manifold Mα=0 is close,
i.e., if the initial state is |m〉 then the system is governed by the
effective Hamiltonian Hα=0

eff which represents a Hamiltonian
of the n-site cycle. So the system with N = n × p and cn

symmetry can be reduced to the system with N = n and with
cn symmetry.

p − 1 p − 1

· · · · · ·
J1

J
1

J1

J
1

J
p

Jp
0

FIG. 6. Spectrum of the H0 which is the main part of the
Hamiltonian. Every zero energy level denotes the Hilbert space of the
sites labeled by number (1 + l × p), and every grouped p − 1 level
denotes the Hilbert space of the sites from (2 + l × p) to p + (l × p),
respectively, where l = 0,1, . . . ,n − 1.
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VI. QUANTUM TURNPLATE ON THE CROW RING

Now we come back to the physical system, the CROW
ring. For the ring containing three resonators, they can be
connected by three identical connecting waveguides, which
contribute the same coupling strength |Jl| and phase φl . In
order to make a quantum turnplate we just need to modify the
optical path to make total phase φ = π/2 + kπ . Initially we
input the photonic state to node 1. Then we will see that the
photonic state will transfer from node 1 to node 2, node 3, and
back to node 1 cyclicly with perfect fidelity every time interval
τ . For the ring containing N = 3 × p resonators, which has
the c3 symmetry, we need to modify the coupling strength
between resonators and connecting waveguides to satisfy the
condition J1(p) 
 Jl �=1(p) and change the optical path to make
the total phase be φ = π/2 + kπ . Then photonic states can be
transferred among the site 1, p + 1, and 2p + 1 cyclicly with
high fidelity.

We simulate the QST along the CROW ring consisting
of nine resonators with c3 symmetry. The parameters are
|J1| = |J3| = 1, |J2| = 100 and the total phase φ = π/2.
Initially the state |ψ〉 = (|0〉 + |1〉 + |2〉)/√3 is input into the
first resonator. Then we observe transfer of |ψ〉 along the ring.
In Fig. 7 we plot the time evolution of the fidelity,

F (t) = 〈ψ |ρi(t)|ψ〉,

of sites 1, 4, and 7 and it behaves as a quantum state turnplate.
ρi means the reduced density matrix of site i.

VII. DISCUSSION AND SUMMARY

Using the similar method we used to get Eq. (7) we have
the equation,

âl(τ ) = eiπε0/ε âl−p, (19)

for the annihilation operator of the photon in the CROW
ring. So the basis for the quantum state in different sites
should be identified. For example, in the ring with nine sites
the bases for site 1 and site 4 should be {|0〉,|1〉,|2〉, . . .}
and {|0〉,eiπ/3|1〉,ei2π/3|2〉, . . .}, respectively. Light scattered
from the resonators can be imaged using an infrared camera.
Directly the quantum turnplate will be observed from the
image of the camera.
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FIG. 7. (Color online) Numerically simulate the time evolution
of the fidelity of the CROW system with nine resonators. J1 =
J3 = 1, J2 = 100, and φ = π

2 . The initial state is 1√
28

(|0〉 + 2|1〉 +
3|2〉)(|1000000〉 + |1100000〉) with 1√

14
(|0〉 + 2|1〉 + 3|2〉) as the

input state. The solid line represents the fidelity of the state transfer
for the state of the first site at a different time. The dashed line and
the dash-dotted line correspond to the fidelity for the fourth site and
seventh site, respectively.

In summary, we study the QST on the ring of coupled
cavities with time-reversal asymmetry. The transfer of any
single mode photon state in the CROW ring has the same
physical picture as the single excitation model, and we do
not need to initialize the state of other sites except the input
one. To act as a quantum state turnplate the eigenvalues of the
equivalent single excitation model should satisfy the matching
condition Eq. (6). We study the case N = 3 in detail. It is shown
that the matching condition can be satisfied approximately for
arbitrary phase φ and if the total phase φ = π/2 + kπ , the
matching condition is satisfied exactly with good scale time
τ . Furthermore, we study the structure of the spectrum of the
single excitation ring in general condition and prove the QST
equivalent between the ring consisting of n sites and the one
consisting of n × p sites with cn symmetry. Utilizing the time-
reversal asymmetry the CROW consisting of 3 × p resonators
can sever as a quantum turnplate without initialization, which
can also be observed in experiments. Quantum state turnplates
would be useful to build a complex quantum network.
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