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Repeat-until-success (RUS) circuits can approximate a given single-qubit unitary with an expected number of
T gates of about 1

3 of what is required by optimal, deterministic, ancilla-free decompositions over the Clifford + T

gate set. In this work, we introduce a more general and conceptually simpler circuit decomposition method that
allows for synthesis into protocols that probabilistically implement quantum circuits over several universal gate
sets including, but not restricted to, the Clifford + T gate set. The protocol, which we call probabilistic quantum
circuits with fallback (PQF), implements a walk on a discrete Markov chain in which the target unitary is
an absorbing state and in which transitions are induced by multiqubit unitaries followed by measurements. In
contrast to RUS protocols, the presented PQF protocols are guaranteed to terminate after a finite number of steps.
Specifically, we apply our method to the Clifford + T , Clifford + V , and Clifford + π/12 gate sets to achieve
decompositions with expected gate counts of logb(1/ε) + O{ln[ln(1/ε)]}, where b is a quantity related to the
expansion property of the underlying universal gate set.
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I. INTRODUCTION

Techniques to efficiently compile higher-level quantum
algorithms into lower-level fault-tolerant circuits are a critical
step for the implementation of a scalable, general purpose
quantum computer. Several universal fault-tolerant gate sets
arise from augmenting the set of Clifford gates by additional
gates that arise naturally from the underlying fault-tolerance
scheme. An important example is the Clifford + T basis,
consisting of controlled-NOTs (CNOT) and Hadamard (H )
gates, together with the T gate, which is given by T =
[1 0
0 eiπ/4]. Further examples of interest are the Clifford + V

basis in which the set of Clifford gates is augmented by the
six non-Clifford gates 1√

5
(1 ± 2iP ), where P ∈ {X,Y,Z}, and

the Clifford + π/12 basis in which the gate K = [1 0
0 eiπ/6] is

added.
While the Solovay-Kitaev algorithm [1,2] allows us to solve

the synthesis problem for any universal gate set, there are
certain disadvantages to this approach, in particular the large
depth of the resulting circuits: to the best of our knowledge,
the resulting depth is only known to scale as O[log3.97

2 (1/ε)],
where ε is the target approximation error with which the single-
qubit unitary has to be implemented. Also, the compilation
time of the Solovay-Kitaev method, i.e., the time it takes to
execute the classical algorithm that produces the output circuit
is quite high, namely, almost cubic in ln(1/ε). This makes
the application of the algorithm for small values of the target
precision, say in a regime where ε ∼ 10−15, difficult if not
impossible. On the other hand, there exist several quantum
algorithms that would require this level of target approximation
error in order to scale to instance sizes of practical interest.

Happily, it was shown recently [3–6] that for the Clif-
ford + T basis, elementary number theory can be leveraged
to obtain much more efficient algorithms for approximating
a single-qubit gate. We refer to these methods as being
deterministic and ancilla free as they lead to a decomposition
of the target unitary that can be executed in an entirely
predetermined sequence of single-qubit unitaries over the

given gate set. The number of T gates in the resulting
circuits scales close to 3 log2(1/ε) for Z rotations, which is
within a constant factor of the information-theoretic lower
bound. Also, the compilation time of these methods is low:
using reasonable number-theoretic conjectures for which there
exists an overwhelming amount of empirical evidence, the
compilation time follows the same scaling (up to logarithmic
factors). Any nonaxial rotation V can be decomposed into
axial rotations such that [1]

V = eiδRz(α)HRz(β)HRz(γ ) (1)

for real values α,β,γ,δ. This yields an upper bound of
9 log2(1/ε) for all of the above-mentioned deterministic,
ancilla-free methods for general rotations.

In contrast, it was recently shown [7] that by using
nondeterministic circuits that employ a small number of ancilla
qubits, the number of T gates can be further reduced by a factor
of 2.5 on average for axial rotations, to a count with leading
term 1.15 log2(1/ε). Using Euler angles as in Eq. (1) this
leads to a leading term for the expected number of T gates of
3.45 log2(1/ε) for general rotations. Remarkably, RUS circuits
are able to surpass the theoretic bound for purely unitary
decomposition (see Appendix A). For decomposition of a
given unitary U , these so-called repeat-until-success (RUS)
circuits [8] consist of repeated application of a Clifford + T

sequence on an input state |ψ〉 and an ancilla qubit, followed
by measurement of the ancilla qubit to project the input state
|ψ〉 to the state U |ψ〉 [7,8].

An RUS circuit allows for a potentially unlimited sequence
of trial and correction cycles with guaranteed finite expected
cost below the lower bound achieved by a purely unitary
circuit design. The correction circuit in each cycle can be
designed to have zero cost, namely, by requiring it to be a
circuit consisting only of Pauli gates. The synthesis algorithm
for RUS circuits over the Clifford + T basis is based on a
randomized search and achieves an expected mean T count
with a leading term of (1 + δ) log2(1/ε), where δ = 0.15 was
achievable for practically important precisions ε [7].
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In contrast, the probabilistic quantum circuit with fallback
(PQF) protocols introduced in this work entails at most a small
finite number of trials (possibly all different), and one final,
purely unitary, correction step. The final correction step, or
fallback, may have considerable cost, however, the probability
of requiring the fallback step can be very small allowing for
an improved expected cost for decomposition. Synthesizing
a PQF circuit to approximate a given target is remarkably
simpler than in the RUS case. In addition, we generalize PQF to
three universal quantum bases: Clifford + T , Clifford + V [9],
and Clifford + π/12. Clifford + V was previously considered
for purely unitary, deterministic decomposition of single-qubit
gates and resulted in the shortest known single-qubit circuits
[10,11]. Clifford + π/12 has been identified as relevant for
quantum computer architectures based on metaplectic anyons
[12].

We present an efficient algorithm for single-qubit de-
composition based on our PQF protocol. We describe the
algorithmic steps in detail for each of the three bases
considered. Our algorithm achieves an expected gate count of
logb(1/ε) + O{ln[ln(1/ε)]}, where b is related to the scaling
of the number of unique circuits that can be formed over the
underlying basis. More precisely, b is defined so that for a
given depth t the number of unique circuits scales as 	(bt ),
i.e., b characterizes the expansion of the underlying set of
generators. Specifically, we have b = 2 for Clifford + T , b = 5
for Clifford + V , and b = 4 for Clifford + π/12. The PQF
protocol can be generalized to several bases as the exactly
representable unitaries over a given basis are representable as
unitarizations of matrices over rings of cyclotomic integers of
order 4m, m ∈ {1,2,3}, where m = 1 for Clifford + V , 2 for
Clifford + T , and 3 for Clifford + π/12. We aim to generalize
our designs to other cyclotomic orders in future work.

II. DESIGN OF PROBABILISTIC QUANTUM CIRCUITS
WITH FALLBACK

In this section, we define probabilistic quantum circuits with
fallback (PQF). Our PQF protocol employs both probabilistic
and deterministic subcircuits. The former are referred to as
primary and the latter as fallback. We focus on the case of PQF
circuits for single-qubit unitaries that are axial rotations around
the Z axis, which by the Euler angle decomposition [Eq. (1)]
will imply PQF protocols for arbitrary single-qubit unitaries.
However, we point out that in principle the probabilistic circuit
design described in this paper can also be applied to multiqubit
unitaries and even to systems consisting of higher-dimensional
subsystems such as, e.g., qutrits.

The primary subcircuits can be synthesized using existing
synthesis methods [9,13] that given G and ε generate a
probabilistic circuit P (G,ε) to perform an ε approximation
of the gate G with probability p > 0 and performs some other
unitary gate G1 with probability 1 − p. Let CP (G,ε) be the
execution cost of the P (G,ε) circuit. The fallback subcircuit
can be constructed using a synthesis method that for a given
unitary target gate G and a desired precision ε generates an
ε-approximation circuit F (G,ε) with a known execution cost
CF (G,ε), such as those in [4,6,9].

If CP (G,ε) is uniformly smaller than pCF (G,ε), then an
ε approximation of the gate G using PQF will have lower

|0〉
U(Gk, ε)

. . . |0〉
U(G1, ε)

|ψ〉 ? . . . ? U(G0, ε) G|ψ〉

FIG. 1. PQF protocol to implement a unitary gate G.

expected cost than implementing the fallback circuit at cost
CF (G,ε). To this end, we create a circuit with classical
feedback that first performs the subcircuit P (G,ε) with the
(desired) outcome ∼G|ψ〉 upon measuring 0 or (undesired)
outcome G1|ψ〉 upon measuring 1. If the measurement
outcome is 1, the circuit then performs F (GG

†
1,ε) on G1|ψ〉.

The expected cost of the entire circuit protocol is CP (G,ε) +
(1 − p)CF (GG

†
1,ε), which is smaller than CF (G,ε) if and only

if CP (G,ε) < pCF (GG
†
1,ε).

The concatenated circuit, denoted as PQF (G,ε,1), is a
special case of a nested probabilistic circuit, PQF (G,ε,k),
k ∈ Z, k � 0, defined inductively as follows:

PQF (G,ε,0) = F (G,ε),

PQF (G,ε,k) = P (G,ε) ∪ BC[PQF (GF
†
k ,ε,k − 1)],

(2)

where Fk is the undesirable outcome of the P circuit and BC

denotes binary classical control on such an outcome.
The general layout of a PQF circuit is shown in Fig. 1.

The “question mark” box denotes the binary classical control
switch that implements the remainder of the circuit if and only
if the measurement result is 1. Let Fj |ψ〉 be the undesired
result upon measurement of 1 at the j th round of the protocol.
Then, Gj−1 = GjF

†
j and we note that the synthesis algorithm

computes 
k−1
j=0Gj .

Assuming that all rounds of the PQF circuit have a
similar probability of success p and that for fixed ε the
cost CF (G,ε) is similar for all target gates G, then it it
follows that if PQF (G,ε,1) is a cost improvement over
PQF (G,ε,0), then PQF (G,ε,k) is a cost improvement over
PQF (G,ε,k − 1) for any k > 0. However, we show that
the incremental improvement scales like O[(1 − p)k] and
therefore near-optimal performance can be achieved with a
relatively small number of rounds k.

Both the PQF and RUS protocol require synthesis of unitary
subcircuits. In PQF, the primary probabilistic subcircuits vary
at each round, and the final fallback circuit, if necessary, is
deterministic. In RUS, the same probabilistic subcircuit is
applied in each round, followed by the same correction if
necessary.

In Fig. 2, we compare the Markov chain [14] corresponding
to the implementation of an RUS protocol to that corre-
sponding to a PQF protocol. Both protocols implement a
target single-qubit unitary transformation G for a given target
approximation ε by performing a random walk on the nodes,
where the target unitary G is an absorbing state, i.e., the walk
terminates once it arrives in this state. In general, each node
represents the unitary transformation that has been applied to
the input state at the respective stage in the protocol. Both
in case of RUS and PQF protocols, each transition between
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FIG. 2. Markov chains for the implementation of a target unitary transformation G. Shown are state transitions for (a) repeat-until-success
(RUS) protocols and (b) probabilistic circuits with fallback (PQF) protocols.

nodes is probabilistic and is induced by the success or failure
of a multiqubit unitary followed by a measurement. In the
case of the RUS protocol shown in Fig. 2(a), the applied
transformation in case of failure is always the identity, or,
more generally, a local Clifford operation which however can
easily be corrected to become the identity, whence we represent
this case by the identity operator I also, whereas in case of
the PQF protocol each intermediate node corresponds to an
operation Fj , i.e., as shown in Fig. 1(b), the state is Fj |ψj 〉,
where Fj is the undesired result upon measurement of 1 at
the j th attempt of the protocol and |ψj 〉 was the state in the
previous round, where j = k,k − 1, . . . ,1. The probability of
success of this step is denoted by pj and the probability of
failure correspondingly by 1 − pj .

If we find ourselves in node j of the protocol, we not
only know the entire history of previous failed attempts
to implement the target gate G, we can also attempt to
reach the target state G by applying a probabilistic circuit
that implements Gj−1 := GjF

†
j where Gj was defined in a

previous round. In any case, we will implement G after at
most k steps as G = 
�

j=0Gj , where � ∈ {0, . . . ,k} denotes
the first point in time where the protocol had a successful
transition to the target gate G.

It is useful to think of the probabilistic transitions into the
nodes labeled with Fj for j = k,k − 1, . . . ,2 as being very
cheap, whereas the last transition (the “fallback”) from F1 →
G is expensive, but will always lead to the absorbing state, i.e.,
it guarantees that the protocol implements G with precision ε

after at most k rounds.
Note the that RUS designs might require a potentially

unbounded number of iterations to reach the accepting state to
implement the target gate G. In contrast, a PQF design with k

stages is guaranteed to always implement the target gate after
at most k attempts.

Clearly, in Fig. 2(a) all deterministic nodes attempt to
implement one and the same target G, while in (b) the target
gate of each deterministic node can and will be different.
Despite this distinction, the quantum cost of a deterministic
node in both Figs. 2(a) and 2(b) is defined by the set precision
ε and in general this cost is about the same across all the
nodes. The two main advantages of using the PQF designs is
that with PQF it is easier to synthesize circuits for various
different universal gate sets and that the finiteness of the
designs might facilitate the layout of the circuits onto a
selected fault-tolerant quantum computer architecture. The
latter applies in particular if the underlying hardware supports
on-demand scheduling of future operations depending on ear-
lier measurements and if guaranteed execution time is a design
objective.

III. COST ANALYSIS OF PQF CIRCUITS

The optimal T count has been proven to be an invariant of
the unitary operation represented by a Clifford + T circuit
[15–17]. In particular, the optimal T count is the same
across various definitions of canonical and normal forms for
Clifford + T circuits. At present, similar invariants have not
been shown for the Clifford + π/12 basis. For the analysis that
follows, the upper bounds proven in Appendix E suffice.

Consider a measurement of the ancilla qubits in the
PQF design, such that one measurement outcome is labeled
“favorable” and all other measurement outcomes are labeled
“unfavorable.” Let the probability of the “favorable” outcome
be p and the unitary applied to the target qubits upon favorable
measurement be V . Let C(U ) be the cost of a circuit that
performs U . Assuming that the cost of performing Clifford
gates is negligible, the expected T count of an RUS circuit is
approximately E[C(V )] = C(U )/p [7].

We assume that all rounds of the PQF circuit shown in Fig. 1
have the same probability pk of the favorable outcome that are
all roughly equal to the same value, say p. Furthermore, we
assume that the probability q of unfavorable outcome satisfies
q = 1 − p � p and that each round roughly has the same
execution cost CP (ε). We note that all these assumptions are
justified by the properties of the PQF protocol derived in the
following sections and obtain the following:

Lemma 1. For a fixed ε, the following holds:
(1) The expectation of the cost of the PQF protocol with

k > 0 rounds is

CP (ε)/p + O(qk).

(2) The variance is given by

CP (ε)2q/p2 + O(qk).

Proof.
(1) Let Ek be the expected cost of the k-round protocol.

Assuming q = 1 − p � p we note that p = 1/p − q(p +
1)/p = 1/p + O(q). Clearly, we have that

E1 = pCP (ε) + q[CP (ε) + CF (ε)]

= CP (ε)/p + O(q)CP (ε) + q[CP (ε) + CF (ε)]

= CP (ε)/p + O(q).

This provides a basis for induction on k. We have Ek+1 =
pCP (ε) + q[CP (ε) + Ek] = CP (ε) + qEk . By the induction
hypothesis this is equal to CP (ε) + q[CP (ε)/p + O(qk)] =
(p + q)CP (ε)/p + O(qk+1) which proves claim (1).

(2) Let E
(2)
k be the expectation of the square of the

cost. We are going to prove by induction that E
(2)
k = (1 +
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q)/p2CP (ε)2 + O(qk). For the basis of the induction we
observe that

p = (1 + q)/p2 + p − (1 + q) + O(q2)

= (1 + q)/p2 − 2q + O(q2)

= (1 + q)/p2 + O(q).

Therefore, we obtain that

E
(2)
1 = pCP (ε)2 + q[CP (ε) + CF (ε)]2

= (1 + q)/p2CP (ε)2 + O(q)CP (ε)2

+ q[CP (ε) + CF (ε)]2.

This in turn implies

E
(2)
k+1 = pCP (ε)2 + qCP (ε)2 + 2qCP (ε)Ek + qE(2)k

= CP (ε)2 + 2qCP (ε)[CP (ε)/p + O(qk)]

+ q[(1 + q)/p2CP (ε)2 + O(qk)]

= [(p + q)2 + q]/p2CP (ε)2 + O(qk+1),

which concludes the induction step. Thus, the variance of the
cost of the k-round protocol is

E
(2)
k − E2

k = (1 + q)/p2CP (ε)2

+O(qk) − [CP (ε)/p + O(qk)]2

= CP (ε)2q/p2 + O(qk).

�
Note that in contrast to unitary protocols, which are deter-
ministic in the sense that they have a fixed cost, the cost
of the PQF protocol becomes a random variable. While
Lemma 1 bounds the expectation and the variance of the cost
of implementing a target unitary, in a given run of the
protocol we might get unlucky and require a significantly
higher cost compared to the expected value. An interesting
problem that ensues is to study the behavior of larger scale
circuits that are composed of such probabilistic primitives.
This is of particular interest in cases where the primitives
are allowed to be executed in parallel and might have to
wait at certain, well-defined synchronization points before a
subsequent computation can proceed.

Recent work [18, Sec. 2A] considered the case of large-
scale circuits composed from probabilistic elements in such a
way that they can be arranged into a finite number of rounds r ,
each of which must complete before the next round is allowed
to start. In this context, the authors established a composition
theorem that asserts an exponentially decaying tail bound for
the probability of the computation taking longer than c1r +
c2 ln(n), where n is the total number of qubits and c1 and c2 are
constants that depend only on the maximum number of wires
entering and leaving a gate and on the probability of failure.
While a more detailed analysis of the exact value of these
constants depends on the exact details of the implementation
and is an interesting question for future research, the results
of [18] imply that by making the probability of success of the
gates arbitrarily close to 1, which can be achieved by choosing
suitable modifiers as described in the following sections, the
constant c1 can be chosen to be arbitrarily close to 1. Hence,
the overhead that arises from using probabilistic components in

larger-scale networks asymptotically leads to only a moderate,
additive time overhead of O[ln(n)] steps. In particular, the
asymptotic advantage that arises from improving the constant
in front of the ln(1/ε) term carries over to larger-scale networks
of probabilistic gates.

IV. OVERVIEW OF THE PQF ALGORITHM

In this section, we provide an overview of the stages of our
PQF algorithm. The algorithm returns a probabilistic quantum
circuit with fallback over the chosen basis that approximates
a given rotation by angle θ about the z axis, denoted as
V = Rz(θ ), to precision ε. For a multiround PQF protocol with
k rounds, the algorithm sequentially generates a subcircuit
for each round. Each subsequent round of the protocol is
conditional on the failure of all previous rounds, and aims to
first “correct” the cumulative undesired z rotations and second
to apply the target z rotation.

We develop our PQF decomposition algorithm for axial z

rotations, which in turn allow the implementation of arbitrary,
nonaxial rotations by Euler angle decomposition, given in
Eq. (1). As a matter of principle, a PQF decomposition for a
single-qubit nonaxial unitary may be directly achieved without
invoking Euler angle decomposition. However, devising a
practical method for such synthesis is currently an open
problem.

Our algorithm takes a predefined number of PQF rounds k

as input. For each round k, it generates a primary subcircuit.
After determining the k subcircuits, it generates a single
unitary fallback circuit that terminates the PQF protocol.
The fallback circuit is only applied if all k rounds fail, and
is constructed to both correct all accumulated undesired z

rotations and apply the target z rotation.
The value of k can be optimized at compile time based on

the appropriate cost measure. It follows from the analysis in
Sec. III that the mean expected improvement in gate count of
a k + 1-round PQF circuit over a k-round PQF circuit scales
down as O[(1 − p)k], where p is the typical single-round
success probability. In this paper, we show that the probability
can be boosted to [1 − 1/ ln(1/ε)] level. Consequently, in our
numerical experiments we observe insignificant improvements
due to adding a second round.

The compilation stages for each round are outlined in Fig. 3.
In stage 1, detailed in Sec. V, an initial approximation of the
target rotation phase factor eiθ is obtained. Namely, we find an
an algebraic number of the form z∗/z, where z belongs to a set
based on the chosen gate basis, to approximate eiθ by finding
an approximate solution to an integer relation problem. We
note that z is defined up to an arbitrary real-valued factor. The
approximation is modified if needed in stage 2, by seeking
either a solvable norm equation in the case of Clifford + T

and Clifford + π/12 or a solvable two squares equation in the
case of Clifford + V , and high success probability. Stage 2
is described in Sec. VI. A two-qubit unitary corresponding
to the (modified) rational is composed in stage 3 and finally
synthesized into a PQF subcircuit over the chosen basis in
stage 4. If an undesired measurement outcome occurs in the
current round, the undesired rotation angle υ and the next
target angle θ − υ are generated and the latter is then used,
recursively, to generate the next round of the PQF protocol.
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FIG. 3. Overview of compilation flow for one round of the PQF
circuit. If a number of rounds k strictly larger than one is intended,
stages 1–4 need to be repeated for modified target angles as described
in the text.

The PQF algorithm over Clifford + T and Clifford + π/12 is
detailed in Sec. VIII, and in Sec. VII for Clifford + V .

V. STAGE 1: CYCLOTOMIC RATIONAL APPROXIMATION

In this section, we review the most general stage of our
synthesis method. It requires very few modifications when
considering different basis sets.

Let ζ = e2πi/m be the mth primitive root of unity and
consider the corresponding ring of cyclotomic integers Z[ζ ].
It is well known (cf. [19]) that the minimal polynomial of ζ

over rationals is monic and has degree d = φ(m) < m where
φ is the Euler totient function. We analyze the representation
of an arbitrary phase factor by a unimodal cyclotomic rational
z∗/z, where z ∈ Z[ζ ].

Let θ be a real angle. By direct complex expansion
|z∗/z − eiθ | = 2| Im(zeiθ/2)|/|z|. The phase factor eiθ is rep-
resentable exactly as z∗/z if and only if Im(zeiθ/2) = 0. It
is approximately representable at precision ε if and only if
|2 Im(zeiθ/2)| < ε|z|. Now, consider the standard integer basis
{1,ζ, . . . ,ζ d−1} in Z[ζ ]. Representing z in this basis results in
z = a0 + a1ζ + · · · + ad−1ζ

d−1, where {a0,a1, . . . ,ad−1} are
ordinary integers.

Again, by direct complex expansion we observe
that Im(zeiθ/2) is a linear form with real coeffi-
cients in {a0,a1, . . . ,ad−1}. We expand this form as
F [a,x(θ )] = a0x0(θ ) + a1x1(θ ) + · · · + ad−1xd−1(θ ), where
xj (θ ) = sin(θ/2 + 2πj/m) and j = 0, . . . ,d − 1 is the cor-
responding real vector. It is easy to see that for θ in a general
position, the vector does not have zero components. It is also
helpful to observe that for |θ | < π/2 at least one xj is well
separated from zero [e.g., at least one xj (θ ) has to be greater
than sin(2π/m)].

Representing the phase factor eiθ exactly as a cyclotomic
rational is equivalent to solving an integer relation with real
coefficients, namely, solving F [a,x(θ )] = 0 for a. Further-
more, when it is not solvable we consider finding approx-
imate integer relations, i.e., finding {a0,a1, . . . ,ad−1} that
|F (a,x(θ ))| < δ. It is well known [20] that such approximate
relations can be algorithmically found for arbitrarily small
positive δ.

Lemma 2. For a fixed θ in a general position, |θ | <

π/2, and sufficiently small δ > 0, there exists an integer
solution a of |F [a,x(θ )]| < δ such that |aj | = O(δ−1/(d−1)),
j = 0, . . . ,d − 1.

Proof. The proof follows from a more general theorem
regarding the quality of multivariate Diophantine approxima-
tions (cf., [21], Sec. II, Theorem 1C): For any real numbers
x1, . . . ,xn and 0 < ε < 1 there exist integers q1, . . . ,qn,p such
that |q1x1 + · · · + qnxn − p| < ε and max(|q1|, . . . ,|qn|) <

ε−1/n.
We apply this theorem to our case for n = d − 1.

As observed, at least one of the coefficients xj (θ ) =
sin(θ/2 + 2πj/m) is in the interval [sin(2π/m),1]. We can
relabel the xj (θ ) for convenience so that one of the coefficients
belonging to the interval [sin(2π/m),1] is labeled x0(θ ). Set
xj = xj (θ )/x0(θ ), j = 1, . . . ,d − 1. By applying Theorem
1C, we conclude that there exists an integer solution a of
|F [a,x(θ )]|/|x0(θ )| < ε with |aj | < ε−1/(d−1), j=1, . . . ,d−1.

By the triangle inequality, |a0| � |a1||x1| + · · · +
|ad−1||xd−1| + ε, where ε is negligibly small compared
to ε−1/(d−1) and where, by design, |xj | < 1/|x0(θ )|,
j = 1, . . . ,d − 1. Thus, |a0| < (d − 1)/|x0(θ )|ε−1/(d−1).
Setting ε to be smaller than δ/|x0(θ )| concludes the proof of
the lemma. �

Corollary 3. For a fixed θ in a general position, |θ | <

π/2, and sufficiently small ε > 0, there exists a cyclotomic
rational approximation |z∗/z − eiθ | < ε, z ∈ Z[ζ ] with |z| in
O(ε−1/d ).

Proof. Per Lemma 2, a solution z to |z∗/z − eiθ | < ε must
exist. Setting δ = ε|z|/2 in the lemma, we infer the exis-
tence of a solution z in O(|z|−1/(d−1)ε−1/(d−1)). This implies
|z|d/(d−1) in O(ε−1/(d−1)), or |z|d in O(ε−1), and the corollary
follows. �

In order to find the solutions algorithmically, we cus-
tomize the PSLQ integer relation algorithm [20,22], where
PSLQ stands for “partial sums of squares lower trapezoidal-
orthogonal matrix factorization”. PSLQ is an iterative algo-
rithm to solve integer relations of the form a.x = a1x1 + · · · +
adxd , where |a.x| can be made arbitrarily small after a large
enough number of iterations. Our customization terminates
when the equivalent of the |z∗/z − eiθ | < ε inequality is first
satisfied. The performance proofs in [20,22] can be modified
to show that |z| upon termination is in O(ε−1/d ).

Our numerical experiments provide an estimate of the
asymptotics of |z| in cases m = 4,8,12 (which correspond
to the Clifford + V , Clifford + T , and Clifford + π/12 bases,
respectively). For example, when m = 8 (Clifford + T ) we
find |z| < κε−1/4, where κ = 3.05 ± 0.28.

The following observation will be necessary for compila-
tion stage 2 in designing a matrix over the Clifford + T and
Clifford + π/12 bases. In that context, not only the size of z

but also the size of its “Galois conjugate” z• comes into play.
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Observation 4. In the context of Corollary 3, consider
z• which is obtained from z by formally replacing ω by
−ω. That is, z• = a0 + a1(−ω) + · · · + ad−1(−ω)d−1 when
z = a0 + a1ω + · · · + ad−1ω

d−1. The z• is also in O(ε−1/d ).
Indeed, the proof of Lemma 2 relies only on the bounds

for absolute values of the coefficients, and does not change
if only the signs of the coefficients are altered. Thus, z• is in
O(|z|−1/(d−1)ε−1/(d−1)) and the observation follows.

Observation 5. In this context we can assume, without loss
of generality, that ln(|z|) > 1/(2 d) ln(1/ε).

If this is not the case, pick the integer s = 
ε−1/(2 d)/|z|�
and replace z with s z.

VI. STAGE 2: SEARCH FOR A MODIFIER

In this section, we present the design of our algorithm
and supporting mathematical rigor required for applying the
algorithm to each gate basis. Following the previous section,
let ζ = e2πi/m. We limit our analysis to values of m that are
multiples of 4 such that the ring Z[ζ ] contains i = √−1.

We introduce the unitarization base ν, where ν = √
2 for

m > 4 and ν = √
5 for m = 4 (the latter will be relevant for

the V basis). Let θ be the target angle of rotation about the Z

axis and z∗/z, where z ∈ Z[ζ ], be an ε approximation of the
phase factor eiθ .

The synthesis of both purely unitary and measurement-
assisted decomposition circuits hinges on the existence of a
unitary matrix of the form

1

νL

[
z y

−y∗ z∗

]
, (3)

where y ∈ Z[ζ ] and L ∈ Z. The unitary condition for this
matrix |y|2 = ν2L − |z|2 is restrictive; the matrix need not
exist for an arbitrary z as z being part of a cyclotomic rational
approximation does not imply its existence.

For measurement-assisted circuit decomposition, another
constraint is also relevant. Assuming the unitary matrix of
the form (3) exists, we may introduce p1 = |z|2/ν2L < 1. For
the measurement-assisted circuits to have sufficient quality we
will need p1 to be greater than 1 − O(1/L), which we show
in the following.

For m �= 4, we introduce ρ = ζ + ζ ∗ and the real subring
R = Z[ρ] ⊂ Z[ζ ]. In the special case of m = 4, we set R = Z
(note that ρ = 0 in this special case and we would be reluctant
to argue that Z[0] = Z.). Any element r ∈ R evaluates to a
real number.

To address both of the above constraints in one design, we
note that for any nonzero r ∈ R, we have (rz)∗/(rz) = z∗/z.
Thus, replacing z with rz does not change the cyclotomic
approximation.

Lemma 6. (Metastatement) In the above context, let L1 =

logν(|z|)�. There exists an algorithmically defined subset
Sz ⊂ R of cardinality 	(L1) such that for any r ∈ Sz

(1) 0 < 
logν(|rz|)� − logν(|rz|) < O(1/L1), and
(2) logν(|r|) is in O[ln(L1)].
We currently do not have a proof of this lemma for arbitrary

cyclotomic rings, but in the following we provide evidence that
it does hold for the rings that arise from the gate sets considered
in this paper.

Assuming Lemma 6 holds, for any r ∈ Sz let Lr =

logν(|rz|)�. Claim 1 of Lemma 6 directly implies that pr =
|rz|2/ν2Lr > 1 − O(1/L1) while claim 2 implies that Lr is in
L1 + O[ln(L1)]. There is also an algorithmically defined set
of at least 	(L1) values with these properties.

Intuitively, in the subsequent designs for the probabilistic
measurement-assisted circuits pr > 1 − O(1/L1) means there
will be a high one-round success rate. The asymptotics for Lr

implies that no r from Sz will substantially increase the depth
of the resulting circuit.

The existence of the matrix

1

νLr

[
rz y

−y∗ rz∗

]
, (4)

for some chosen r ∈ Sz, is equivalent to solving the equation

|y|2 = ν2Lr − |rz|2 (5)

for y ∈ Z[ζ ]. Equation (5) is known as a norm equation over
the cyclotomic integers. Its solvability and solutions are well
understood [19].

Consider the absolute norm map N : Q(ρ) → Q. It is a
general fact that N (R) ⊂ Z. We use terminology and facts
from [19] in our following description. We first address a
particular case where p = N (ν2Lr − |rz|2) is a prime integer.
As per Theorem 2.13 [19], the norm equation in Eq. (5)
is solvable if and only if p = 1 mod m. Intuitively, this
means that solvable norm equations are not rare. Let B be
an arbitrarily large positive integer. It is well known that the
density of prime numbers in, say, the segment [B/2,B] is in
[1/ln(B)]. It is also well known that if m � B, then the
density of such prime numbers p such that p = 1 mod m in
that segment is still in [1/ln(B)].

Suppose we have identified a large enough subset Sz ⊂ R so
that the set of integers {N (ν2Lr − |rz|2)|r ∈ Sz} intersects with
some segment of the form [B/2,B] and the intersection has
	[ln(B)] distinct integers, i.e., the number of distinct integers
in the intersection is ln(B) times some significant factor. Then,
with some high probability there is an r ∈ Sz such that p =
N (ν2Lr − |rz|2) is prime and p = 1 mod m.

However, this is a minimalistic approach. If p = N (ν2Lr −
|rz|2) is not prime, and its prime factorization is known,
then the complete analysis of solvability of Eq. (5) can be
algorithmically performed in polynomial time. Therefore, we
can broaden the search for feasible values of r by looking at
such values where N (ν2Lr − |rz|2) is easy to factor (e.g., it
is a smooth integer). We refer to Eq. (5) as easily solvable
when N (ν2Lr − |rz|2) is easy to factor and the equation has a
solution.

Conjecture 7. (Metaconjecture) For any z ∈ Z[ζ ] in a
general position there exists a certain subset Sz ⊂ R that
satisfies the claims of Lemma 6, has cardinality in O(L1),
and contains at least one r for which Eq. (5) is easily solvable.

Assuming this conjecture holds, we can manufacture a
unitary matrix of the form (4) in polynomial classical runtime
with the promise that its Lr is in logν(|z|) + O{ln[ln(|z|)]}. We
proceed by describing how to apply the described framework
in the context of each of the three basis sets.
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VII. PQF OVER CLIFFORD + V

Unitary decomposition of single-qubit rotations over the
so-called V basis was described in Ref. [9]. While RUS
decomposition over Clifford + V has not yet been shown,
the PQF protocol allows generalization to the V basis. We
generalize PQF to Clifford + V in this section, and show that
it is remarkably simpler than in the Clifford + T case.

Recall that the single-qubit V gate is given by V =
(I − 2iZ)/

√
5. The group of circuits generated by the Clifford

group and the V gate is universal for quantum computation
[9]. It has also been shown that an arbitrary single-qubit
unitary gate can be approximated to precision ε by a single-
qubit unitary Clifford + V circuit with V count bounded
by 3 log5(1/ε) + O{ln[ln(1/ε)]} [10]. For approximation of
axial rotations, the algorithm is efficient. For arbitrary single-
qubit targets, the same V count can be achieved using an
exponential-time algorithm [9] that is practically feasible for
a reasonable range of precisions.

The guarantees for the unitary decomposition algorithm
are based on the following result which was shown in [9] and
which is the basis for our efficient algorithm to approximate
an arbitrary axial rotation Rz(θ ) with a PQF circuit over
Clifford + V :

Lemma 8. A unitary matrix of the form 1√
5

L [ z y

−y∗ z∗],

where y,z are Gaussian integers and L ∈ Z, can be exactly
and algorithmically decomposed into a Clifford + V circuit of
V count at most L.

Following Lemma 8, we consider the case ζ = i (which
corresponds to m = 4). Here, Z[i] is a quadratic extension
of Z so d = 2. By Corollary 3, any phase factor eiθ can be
approximated with a Gaussian rational z∗/z,z ∈ Z[i], where
|z| is in O(ε−1/2).

Observation 9. Without loss of generality, we can assume
that ln(|z|) > 1/4 ln(1/ε).

If it is not the case, we pick the integer s = 
ε−1/4/|z|� and
replace z with s z.

A. Stage 2: Probability modifier

We now prove Lemma 6 over Clifford + V . Let L1 =

log√

5(|z|)�. We want to define a subset Sz ⊂ Z such that
∀ r ∈ Sz,
log√

5(|rz|)� − log√
5(|rz|) < 1/L1. Let λ = L1 −

log√
5(|z|). We select values of r such that 0 < log√

5(|r|) −
�log√

5(|r|)� < λ. Under this assumption, 
log√
5(|rz|)� −

log√
5(|rz|) = λ − ( log√

5(|r|) − �log√
5(|r|))�.

We define the desired Sz as a subset of positive integers r

satisfying the inequality

λ − 1/L1 < log√
5(|r|) − �log√

5(|r|)� < λ.

It is necessary and sufficient that log√
5(|r|) is in an interval

of the form (k + λ − 1/L1,k + λ), where k ∈ Z or |r| is in

the interval Ik = (
√

5
k√

5
λ−1/L1

,
√

5
k√

5
λ
). It follows that the

number of integers contained in Ik grows exponentially with
k � k0 = 
log√

5(L1)�.
We define the desired Sz as the ordered sequence of all

integers in �k�k0Ik . While Sz is an infinite sequence, any
of its initial subsequences of length O(L1) is contained in
�k0�k�O[ln(L1)]Ik . This concludes the proof.

Next, we specialize Conjecture 7 for m = 4 and discuss
its implications. Let S ′

z be some initial subsequence of length
	(L1) in Sz and let S ′

z(easy) ⊂ S ′
z be the subsequence of such

r ∈ S ′
z for which the norm equation |y|2 = 5L

r − |rz|2 is easily
solvable for y ∈ Z[i].

Conjecture 10. The density of S ′
z(easy) in S ′

z is in
[1/ ln(L1)]. It suffices to inspect O(L1) initial values in Sz

in order to find one for which the norm equation is easily
solvable.

Conjecture 10 implies that we need to test at most O(L1) =
O[ln(|z|)] = O[ln(1/ε)] norm equations for easy solvability
to find one that is easily solvable. It also implies that the value
of Lr corresponding to the solution is in L1 + O[ln(L1)] =
log√

5(|z|) + O{ln[ln(|z|)]} = log5(1/ε) + O{ln[ln(1/ε)]}.

B. Stages 3, 4: Design and synthesis of PQF subcircuits

We now have the unitary matrix W = 1√
5

Lr
[

rz y

−y∗ rz∗],

where Lr = 
log5(r2|z|2)� � log5(|z|2) + O{ln[ln(|z|2)]} and
r2|z|2/5Lr > 1 − 1/ log5(|z|2).

As observed in [9], V is exactly represented by a unitary
Clifford + V circuit with V count at most Lr . Therefore,
the two-qubit PQF matrix U = CNOT(I ⊗ W )CNOT is exactly
represented by a circuit with the same V count.

By direct computation, when U is applied to |ψ〉|0〉 and the
second qubit is measured, then either

(i) on measurement outcome 0 the �(z∗/z) ∼ �(eiθ )
rotation gate is effectively applied to the primary qubit, or

(ii) on measurement outcome 1 the �(−y/y∗) rotation gate
is applied to the primary qubit.
Thus, the round-one fallback circuit must be a unitary ε

approximation of the rotation gate �(−y∗/yeiθ ). Fallback
circuits at subsequent rounds have similar structure.

As per [10], any of the fallback circuits can be implemented
at V count of at most 3 log5(1/ε) + O{ln[ln(1/ε)]}. Following
the guarantees derived for stage 1 of this algorithm, |z|2 is in
O(1/ε), therefore, the V count of the two-cubit circuit for U =
CNOT(I ⊗ V )CNOT is bounded by log5(1/ε) + O{ln[ln(1/ε)]}.

The one round “failure” rate of the circuit, which
is the probability q of measuring 1, is less than
1/ log5(|z|2). As per Observation 9, we can assume that
log5(|z|2) > 1/2 log5(1/ε) and therefore q < 2/ log5(1/ε).
Thus, the expected V count of the one-round PQF protocol
is bounded by log5(1/ε) + O{ln[ln(1/ε)]} + q (3 log5(1/ε) +
O{ln[ln(1/ε)]}) < log5(1/ε) + O{ln[ln(1/ε)]}. Simil-
arly, the V count of the two-round PQF protocol is bounded
by log5(1/ε) + O{ln[ln(1/ε)]}.

VIII. PQF OVER CLIFFORD + T AND CLIFFORD + π/12

The Clifford + T basis is arguably the most popular univer-
sal quantum basis [1]. It consists of the multiqubit Clifford

group and the single-qubit T gate, where T = [1 0
0 eiπ/4].

Alternatively, the basis can be viewed as being generated by
{T ,H,CNOT}. We cost our synthesized circuits by the number
of T gates, which is motivated by the high cost of fault-tolerant
implementations of the T gate (or other non-Clifford gate)
[23–25].
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The Clifford + π/12 basis analogously consists of the
multiqubit Clifford group and the single-qubit K = π/12 gate,

where K = [1 0
0 eiπ/6]. It is generated by the set {K,H,CNOT}.

The study of this set is motivated by recent results on the
universality of metaplectic anyons [12]. While we present
an algorithm to decompose into this basis, an efficient fault-
tolerant implementation of the K = π/12 gate, for example
by magic state distillation, remains open for future research. In
this analysis, however, we assume, paralleling the Clifford + T

basis, that the cost of executing a π/12 gate is significantly
higher than the cost of executing a Clifford gate. We also
assume that K , K−1, K2, and K−2 have the same unit cost.
Therefore, the cost of a Clifford + π/12 circuit is dominated
by the number of K monomials occurring in the circuit.

In all other technical aspects, the Clifford + T and Clif-
ford + π/12 systems are strikingly similar. For the Clif-
ford + T and Clifford + π/12 bases, the first stage of the
algorithm approximates the phase factor eiθ with a unimodal
cyclotomic rational, i.e., an algebraic number of the form
z∗/z, where z ∈ Z[ω], by finding an approximate solution
of an integer relation problem. The second stage performs
the modification z �→ (rz), where r ∈ Z[ρ] using Lemma
12 developed below. The third and fourth stages design and
synthesize the PQF subcircuit. We review the algorithm in the
case of these two bases in the following.

A. Exactly representable unitaries

We denote ω = eiπ/4 and ω12 = eiπ/6. Both ω and ω12

are algebraic integers of degree 4. We intentionally omit
the superscript 12 and use ω when the algebra of these
two algebraic integers is identical, and denote it otherwise.
We denote ρ = ω + ω∗ = √

2 and ρ12 = ω12 + ω∗
12 = √

3.
Again, we use ρ without subscript when no distinction is
necessary. The fundamental unit υ = 1 + ρ of the Z[ρ] ring
and the fundamental unit υ12 = 2 + ρ12 of the Z[ρ12] ring. We
use υ without subscript when distinction is unnecessary.

The algebraic number ring Z[ω] is a degree 4 extension
of Z. The Galois group of this extension is the direct product
Z2 × Z2 generated by complex conjugation ∗ and one other
automorphism • that extends ω• = −ω. The ring Z[ω] has an
integer basis of four elements, with the most obvious basis
being {ω3,ω2,ω,1} [13]. It consists of all numbers of the form
aω3 + bω2 + cω + d, where a,b,c,d are arbitrary integers.

It was shown in [13] for the Clifford + T system that
a unitary operation V on n qubits is representable exactly
by a Clifford + T circuit if and only if it is of the form

V = 1/
√

2
k
M , where M is a matrix with elements from

Z[ω] and k is some non-negative integer. To satisfy the
unitary condition, we require MM† = 2k12n . Moreover, it was
shown that a matrix of this form can be represented as an
asymptotically optimal Clifford + T circuit using at most two
ancilla qubits [6,26], and no ancilla qubits when either the

target is a single-qubit unitary or when det(1/
√

2
k
M) = 1 [26].

In Appendix C, we extend this claim to single-qubit
unitaries over the Clifford +π/12 basis. We prove that a
V ∈ U (2) is representable exactly as a Clifford + π/12 circuit

if it is of the form V = 1/
√

2
k
M , where M is a 2 × 2 matrix

over Z[ω12] such that MM† = 2k12. Additional details on the
norm equation in this case are given in Appendix B.

We note that the PQF and RUS protocols share that when
the phase factor eiθ is approximated by some y/

√
2�, where

y ∈ Z[ω], and by some z∗/z, where z ∈ Z[ω] for the same
precision, then z will in general have much smaller bit size
than y for that precision.

B. Stage 2: Probability modifier

Let z∗/z,z ∈ Z[ω] be a cyclotomic rational approximation
of eiθ as explained in Sec. V. In stage 2, we include z in a
unitary of the form (3), where in this context ν = √

2, y ∈
Z[ω], and L ∈ Z. We would like |z|2/2L to be reasonably
large since this value equals the success probability of the
current round in the PQF protocol. Unfortunately, the majority
of z values do not allow this. To create a unitary of the form
(3), we seek a y that satisfies the normalization condition
(|y|2 + |z|2)/2L = 1 or, equivalently, |y|2 = 2L − |z|2. It is
easy to see that |z|2 belongs to the real-valued ring Z[ρ] and
thus so does 2L − |z|2.

Given an arbitrary ξ ∈ Z[ρ], the identity

|y|2 = ξ, (6)

considered as an equation for an unknown y ∈ Z[ω], is called
a norm equation in Z[ω]. Deciding whether a given norm
equation is solvable and finding a solution is in general at least
as hard as performing factorization of an arbitrary integer. For
our algorithm to be efficient, we need to find norm equations
that are easy to solve.

A necessary solvability condition to construct a matrix of
the form (3) with ν = √

2 is given by |z|2 � 2L and |z•|2 � 2L,
where ()• : Z[ω] → Z[ω] extends the map ω �→ (−ω). We can
arbitrarily replace z in z∗/z by rz, where r ∈ Z[ρ], without
changing the fraction.

Our strategy generalizes that of Ref. [3]. Consider a fixed
z ∈ Z[ω]. Introduce L1 = 
log2(|z|2)�. Note that for z defined
at stage 1, L1 follows the asymptotics of log2(1/ε)/2 + c,
where c is a constant. Thus, for asymptotically small ε, L1 is
asymptotically large. For a randomly chosen r ∈ Z[ρ], we set
Lr = 
log2(|rz|2)�.

Further design and analysis of our algorithm is based on
the following:

Conjecture 11. In the above context, consider the set
S+(z) = {r ∈ Z[ρ] | 2Lr − |rz|2 � 0, 2Lr − |(rz)•|2 � 0}. Let
Ssolvable(z) ⊂ S+(z) be the subset of such r ∈ Z[ρ] for which
the norm equation |y|2 = 2Lr − |rz|2 is solvable in Z[ω].
Then, the average density of Ssolvable(z) in S+(z) belongs to
(1/L1), when |z| → ∞ and L1 → ∞.

This conjecture is a special case of Conjecture 7. The
motivation for conjectures of this type was discussed in Sec.
VI. In our numeric experiments for over 1000 random angles
and 30 levels of precision we have not encountered a single
failure, suggesting the conjecture does hold.

Lemma 12. For sufficiently large L1, an r ∈ Z[ρ] can
be algorithmically found, in a probabilistically polynomial
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number of steps, such that
(1) Lr � L1 + log2(|z•/z|) + O[ln(L1)],
(2) p(r) > |rz|2/2Lr > 1 − 1/L1,
(3) 2Lr − |r•z•|2 � 0,
(4) the norm equation |y|2 = 2Lr − |rz|2 is easily solvable

in Z[ω].
Proof. As per Conjecture 11, it suffices to find a set of

values r that satisfy (1)–(3) in Lemma 12 of size O(L1). Then,
there is at least one value r in a set of size O(L1) for which
the norm equation is easily solvable. Before algorithmically
constructing such a set, we note that condition 3 is somewhat
redundant. It is a necessary condition for the norm equation
to be solvable and conveniently helps reduce the search space
for r .

Let ζ = log2(2L1/|z|2) = L1 − log2(|z|2). We rewrite con-
ditions 1 and 2 in terms of R = �log2(|r|2)� and f =
log2(|r|2) − R. The first condition can be restated as R is
in log2(|z•/z|) + O[ln(L1)]. The second condition means that
2−(ζ−f ) > 1 − 1/L1. We subsequently design f to be smaller
than, but close enough to, ζ . It follows that (1 − 1/L1)2ζ <

2f < 2ζ . As per the definitions of ζ,f,R a slightly stronger
(asymptotically equivalent) condition on |r| is given by

[1 − 1/(2L1)]2(R+ζ )/2 < |r| < 2(R+ζ )/2.

We then rewrite condition 3 as |r•| � 2L1/2/|z•| × 2R/2.
We are now ready to describe the construction of a sufficient

set of values r . This is one of the few places where the
distinction between Clifford + T and Clifford + π/12 must be
made. Recall the fundamental unit υ = 1 + ρ we have defined
for Clifford + T and the fundamental unit υ12 = 2 + ρ12

defined for Clifford + π/12.
Our construction for Clifford + T exploits Lemma 17 from

[3]: given real numbers x0,x1,y0,y1 such that |(x1 − x0)(y1 −
y0)| > υ2, one can algorithmically find an r ∈ Z[

√
2 = ρ]

such that r ∈ (x0,x1) and r• ∈ (y0,y1).
The construction for Clifford + π/12 is based on a version

of the lemma developed in Appendix D: given real numbers
x0,x1,y0,y1 such that |(x1 − x0)(y1 − y0)| > υ2

12, one can
algorithmically find an r ∈ Z[

√
3 = ρ12] such that r ∈ (x0,x1)

and r• ∈ (y0,y1).
The two lemmas are identical except for the 12 sub-

script. We omit the subscript in the following narra-
tion which is common for the two cases. We collec-
tively refer to the two lemmas as the “bullet lem-
mas.” Set x0(R) = [1 − 1/(2L1)] 2(R+ζ )/2, x1(R) = 2(R+ζ )/2,
y0(R) = −2L1/2/|z•| × 2R/2, and y1 = +2L1/2/|z•| × 2R/2.
Then, |[x1(R) − x0(R)][y1(R) − y0(R)]| = 2R|z/z•|1/L1. If
the latter value is greater than υ2 or, equivalently, 2R >

υ2|z•/z|L1 ∈ O(L1), then one can algorithmically find at
least one r ∈ Z[ρ] that satisfies conditions 1–3. Con-
sider R0(z) = 
log2(υ2|z•/z|L1)�. Obviously, R0(z) is in
log2(|z•/z|L1) + O[ln(L1)] = log2(|z•/z|) + O[ln(L1)]. We
note that |[x1(R) − x0(R)]| grows exponentially with R � R0.

Having defined Sz(R) as an ordered sequence of r ∈
Z[ρ] such that r ∈ [x0(R′),x1(R′)] for some R′ ∈ [R0,R], we
conclude that the cardinality of Sz(R) grows exponentially
with R � R0. Indeed, when |[x1(R) − x0(R)]| is exponentially
large, we can subdivide it into exponentially large number
of subsegments, each minimally satisfying the condition of

FIG. 4. Algorithm to find a probability modifier r .

the appropriate bullet lemma, and algorithmically find an
element of theZ[ρ] in each subsegment. Therefore, if an initial
subsequence of any Sz(R) has cardinality in O(L1), then that
subsequence is also contained in some Sz(R′), where R′ is in
log2(|z•/z|) + O[ln(L1)].

Per Conjecture 11, it would be sufficient to inspect O(L1)
initial elements of a large enough Sz(R) in order to find
r ∈ Sz(R) such that the norm equation |y|2 = 2Lr − |rz|2 is
solvable. By the above observation, such an r will be also
in some Sz(R′), where R′ = log2(|z•/z|) + O[ln(L1)], and the
lemma follows. �

Corollary 13. In the context of Lemma 12 one can effi-
ciently find an r ∈ Z[ρ] such that

Lr � log2(1/ε)/2 + O{ln[ln(1/ε)]} + c,

where c is a constant.
Proof. We find an r ∈ Z[ρ] that satisfies the conditions of

Lemma 12. Recall that up to an additive fractional part L1 =
2 log2(|z|). By condition 1, Lr � log2(|z|) + log2(|z•|) +
O{ln[ln(|z|)]}. As per Corollary 3 and Observation 4, both
|z| and |z•| are in O(ε−1/4) and our claim follows. �

We now have an algorithm for stage 2 that iterates through a
sufficient set of candidate values of r until one yields a solvable
norm equation. The pseudocode is shown in Fig. 4.

C. Stage 3: PQF unitary design

When the algorithm to modify the probability succeeds for a
given z, we can construct a single-qubit unitary V of the form
(3), where y,z ∈ Z[ω], L ∈ Z, ν = √

2, and the probability
of success of the current round is |z|2/2L > 1 − 1/L. For
Clifford + T , the unitary V can be decomposed exactly into
an optimal ancilla-free Clifford + T circuit using methods in
[13]. For Clifford + π/12, we decompose it using a similar
technique described in Appendix C.

The following theorem summarizes the theoretical upper
bounds on the mean expected cost of a PQF circuit over the
Clifford + T and Clifford + π/12 bases. For completeness,
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we highlight that the same bound in fact applies to RUS
circuits over the Clifford + T , resulting in a small but definitive
asymptotic improvement over the bound given in Ref. [7].

Theorem 14. In the context of both PQF and RUS protocols
where modifier sampling is based on Lemma 12, note the
following:

(1) For the Clifford + T basis, if the T cost of the fallback
round of PQF is in O[ln(1/ε)] then the overall expected T cost
of a one-round PQF protocol is

log2(1/ε) + O{ln[ln(1/ε)]}. (7)

(2) The expected T cost of an RUS protocol is also given
by Eq. (7).

(3) For the Clifford + π/12 basis, the overall expected K

cost of a one-round PQF protocol is

1/2 log2(1/ε) + O{ln[ln(1/ε)]}. (8)

Proof.
(1) For the PQF protocol over the Clifford + T basis, the

expected T cost is 2Lr + CF [1 − p(r)], where CF is the
fallback cost. As per the above and Observation 5, 1 − p(r) <

2/ log2(1/ε) and by Corollary 13, the claim follows.
(2) For the RUS protocol with Lemma 12, the expected T

cost is 2Lr/p(r). As per condition 2 of the lemma, the expected
cost is dominated by 2Lr (1 + 1/L1) = 2Lr [1 + 2/ log2(1/ε)]
and the claim follows from Corollary 13.

(3) For the PQF protocol over the Clifford + π/12 basis,
the expected K cost is bounded by Lr + 2 + CF [1 − p(r)],
where CF is the fallback cost. As per the above and Observa-
tion 5, 1 − p(r) < 2/ log2(1/ε) and by Corollary 13 the claim
follows. �

D. Stage 4: Synthesis of PQF subcircuit

From the unitary matrix V , we construct a two-qubit unitary
U given by

U = CNOT(I ⊗ V )CNOT =
[
V 0
0 XV X

]
.

We denote the primary input state for round k as |ψk〉. The
subcircuit U for round k acts on the state |ψk〉 ⊗ |0〉, where
the second qubit is an ancilla. We then measure the second
(ancilla) qubit. When the measurement outcome is 0, the first

qubit is left in the state [1 0
0 z∗/z]|ψk〉 which is the desired ε

approximation of Rz(θ ). When the measurement outcome is 1,

the first qubit is left in the state [1 0
0 −y/y∗]|ψk〉. Unless −y/y∗

is ε close to eiθ , in this case we must apply the rotation Rz(θ ′),
where θ ′ = θ − arg(−y/y∗) in the next round.

The unitary U at round k has the same T count (K
count) as the T count (K count) of the optimal single-qubit
Clifford + T (Clifford + π/12) circuit for unitary V since we
invoke the optimal single-qubit deterministic decomposition of
V to obtain its circuit. The only other gates involved are two
CNOT gates. For Clifford + T , the techniques in Refs. [3–6] can
be used to optimally decompose V . In Appendices C–E, we
show how to optimally decompose a single-qubit gate into the
Clifford + π/12 basis. The T count (K count) of the two-qubit
unitary at any subsequent round is defined (asymptotically) by

FIG. 5. (Color online) Precision ε versus mean expected T count
of PQF circuits over Clifford + T for set of random angles.

the precision ε. The difference in cost between the rounds is
asymptotically bounded by an O{ln[ln(1/ε)]} term.

IX. NUMERICAL RESULTS

We evaluate the performance of our algorithm on a set
of 1000 angles randomly drawn from the interval (0,π/2) at
30 target precisions ε ∈ {10−11, . . . ,10−40}. In all numerical
experiments, expected cost statistics have been collected for
one-round PQF circuits. Adding the second round to the
compiled circuits only improves the mean expected gate count
by three gates on average. This is due to the probability mod-
ification during stage 2 for each round k of PQF compilation.
Modification boosts the probability of success to typical values
above 0.97 and above 0.985 for at least half of the cases.

Figure 5 plots the precision ε versus the mean (and
standard deviation) of the expected T count across the PQF
circuits generated for the set of 1000 random angles. The
maximum likelihood estimate for the mean expected T count
is log2(1/ε) + 4 log2[log2(1/ε)] + 1.187.

FIG. 6. (Color online) Precision ε versus mean expected K count
of PQF circuits over Clifford + π

12 for set of random angles.
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FIG. 7. (Color online) Precision ε versus mean expected V count
of PQF circuits over Clifford + V for set of random angles.

Figure 6 plots the precision ε versus the mean (and
standard deviation) of the expected K count for the PQF
Clifford + π/12 circuits generated for the set of 1000 random
angles. The maximum likelihood estimate for the mean ex-
pected K count is 1/2 log2(1/ε) + 2 log2[log2(1/ε)] + 3.48.

Figure 7 plots the precision ε versus the mean (and standard
deviation) of the expected V count for the PQF Clifford + V

circuits generated for the set of 1000 random angles. The
maximum likelihood estimate for the mean expected V count
is log5(1/ε) + 0.95 log5[log5(1/ε)] + 7.26.

X. CONCLUSION AND FUTURE WORK

We have established a method of synthesizing circuits of
certain type called probabilistic quantum circuits with fallback
(PQF), which is more general and less technically challenging
than the synthesis of repeat-until-success (RUS) circuits.
We have demonstrated that the method can be applied to
implementing single-qubit unitaries over at least three different
universal quantum bases. The mean expected cost of resulting
probabilistic circuits has an asymptotic upper bound with a
leading term three times smaller than the leading term of the
corresponding optimal purely unitary ancilla-free circuit over
the same universal quantum circuit.

The design and cost analysis of the PQF circuits is
performed under conjectures that are substantially the same
as the norm density conjectures used in [3,4]. Our numerical
experiments covering around 30 000 synthesis instances per
each of the three universal quantum bases considered have not
produced a single instance that would violate an underlying
conjecture.

It is important to point out the general and largely open
problem of synchronizing probabilistic circuits with state
distillation protocols. We have estimated the costs of the
logical PQF circuits in terms of logical basis gates. In many
architectures, however, the key basis gates, such as π/8, π/12
gates or the V gate, require distilled magic states that are
commonly prepared external to the primary circuit, in either
an offline or online fashion. The demand of PQF circuits on
distilled states is probabilistic and, although the probability
of excessive demand is very low, in the worst-case scenario

this may add latency to the execution of quantum algorithms.
A direction for future work is to determine optimization and
compilation strategies that minimize the resource requirements
of PQF circuits in the context of a logical quantum circuit.
Such strategies could include considering the circuit depth
and width costs of PQF solutions when layered with quantum
error correction as well as state distillation protocols.

Recent methods have addressed the distillation of non-
Clifford states and Fourier states, and provide a starting point
for research [27,28] on other possible universal bases and their
fault-tolerant constructions. Consideration of generalization
to qudit computation models is also an avenue for future
exploration. Finally, formal, rigorous proofs of the underlying
conjectures is another important direction.

APPENDIX A: INFORMATION-THEORETIC BOUNDS

The density with which cyclotomic rationals are distributed
imposes information-theoretic limits on how much we can
reduce the expected T count of our nondeterministic solutions
compared to the T count of deterministic, unitary solutions.
Note that the analysis applies equally well to both PQF and
RUS methods.

Let us assume, temporarily, that for z ∈ Z[ω] and L =

log2(|z|2)�, the norm equation |y|2 = 2L − |z]2 is solvable.
By definition of L, |z|2 � 2L. We know that the optimal T

count of a single-qubit unitary circuit implementing a matrix
of the form of Eq. (3) is t = 2L or t = 2L − 2.

In either case we note that |z|2 = O(2t/2) and |z|4 = O(2t ).
We also note that given an upper bound b on the absolute value
of cyclotomic integer, there are no more than O(b4) cyclotomic
integers under this bound. Thus, we conclude that there are no
more than O(2t ) cyclotomic integers z for which the matrix of
the form of Eq. (3) may exist and be implemented at T count
t or less.

It follows that there are at most O(2t ) unimodular cyclo-
tomic rationals on the unit circumference for which our RUS
circuit can be built with design cost of T count = t or less.
Therefore, there exists a constant K such that for ε < K × 2−t

there is an arc of the unit circumference of length 2ε that does
not contain any such cyclotomic rational. If θ∗ is the angle in
the center of such an arc, then the rotation Rz(θ∗) cannot be im-
plemented by any of our circuits with design cost of T count =
t or less.

Conversely, ε � K × 2−t is the necessary condition for any
axial rotation to be implementable by one of our circuits with
design cost of T count = t or less. This necessary condition is
equivalent to

t � log2(1/ε) + log2(K), (A1)

which is a specific lower bound on the design cost given by
the T count of our solution.

The derivation of the above lower bound is specific to our
PQF and RUS designs. As follows from Corollary 14, our
existing PQF protocol for single-qubit decomposition based on
the PSLQ integer relation algorithm is within O{ln[ln(1/ε)]}
from this bound. Deriving a uniform lower bound under more
general assumptions would be a worthwhile problem for future
research.
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APPENDIX B: DETAILS ON THE NORM
EQUATION IN Z[ω]

This section combines the claims for ω = e2πi/m for m =
8 and 12. We reintroduce ρ = ω + ω∗. Recall that the real-
valued ring Z[ρ] is a unique factorization ring. That is, any of
its elements can be factored into a product of prime algebraic
integers and at most one unit. The primary category of right-
hand-side values for which Eq. (6) is easily solvable would
then be the set of algebraic integer primes.

The equation is easily solvable for the following kinds of
prime right-hand sides (cf. [19]):

(1) ξ = a + bρ, ξ > 0 and p = ξξ • is a positive rational
prime number with p = 1 mod m;

(2) ξ is a rational prime number and ξ �= −1 mod m.
We call an algebraic integer prime belonging to one of these
two classes a “good” prime.

For a composite ξ we consider a limited factorization of
the right-hand side to preserve efficiency. To this end, we
precompute a set Sprime ⊂ Z[ρ] of small prime elements and
consider factorizations of the form ξ = ξ

a1
1 , . . . ,ξ ar

r η, where
ξ1, . . . ,ξr ∈ Sprime and η passes a primality test. Equation (6)
is efficiently solvable if η is a good prime and for i = 1, . . . ,r ,
ξi is a good prime or ai is even.

Example 15. For m = 8, |y|2 = ξ = 1 270 080 +
211 680

√
2 is efficiently solvable since ξ = 2533572(2 +√

2)(5 − 2
√

2).
Note p = (5 − 2

√
2)(5 − 2

√
2)• = 17 = 1 mod 8. The

only “bad” prime in the above factorization is 7 but it appears
as an even power. We remark that the cyclotomic integer z

coming from the cyclotomic rational approximation of eiθ is
not unique. In fact, it is defined up to an arbitrary real-valued
factor r ∈ Z[ρ]. For any such r , (rz)∗/(rz) is identical to z∗/z.
However, the norm equation |y|2 = 2L − |rz|2 can and will
change quite dramatically.

When drawing r randomly from a subset of Z[ρ] one might
try and estimate the chance that the equation |y|2 = 2L − |rz|2
turns out to be solvable for a random r . This is an example of
an open and likely very hard number-theory problem. We will
not attempt to solve it here and will instead rely on a conjecture
that the “lucky” values of r are reasonably dense in Z[ρ].

APPENDIX C: EXACTLY REPRESENTABLE
SINGLE-QUBIT CIRCUITS IN CLIFFORD + π/12

We use the notation ω = ω12 = ei π/6 in this section. In this
and subsequent sections, we also use a shorthand notation for
single-qubit controlled phase gate. Given φ ∈ C,|φ| = 1 is a

phase factor, the controlled phase gate �(φ) is simply [1 0
0 φ

].

In particular, the π/12 gate K = �(ω12).
The single-qubit Clifford + π/12 group is generated by the

Hadamard gate H and the π/12 gate K . We note that ω3 = i

and therefore the common phase gate S = K3 is in the circuit
group, as is, by closure, the entire single-qubit Clifford group.

Any Clifford + π/12 circuit can be expressed as a product
of syllables of the form KkH , where |k| < 6, up to a possible
global phase factor. A slightly deeper analysis reveals that

we can rewrite a circuit to enforce k = ±1,±2 in all interior
syllables, but this is not very important in this section. The
important part is that the KkH syllable is a Clifford gate for
k ∈ {0,±3,±6,±9} and has zero K count.

We assume that the implementation cost of gates of the form
Kk , k /∈ {0,±3,±6,±9} is the same and that it is significantly
higher than the cost of a Clifford gate. This implies that the K

cost of a circuit composed of KkH syllables is upper bounded
by the number of syllables with k /∈ {0,±3,±6,±9}.

Consider the ring of cyclotomic integers Z[ω]. Any ωk is a

cyclotomic integer and H = 1√
2
[1 1
1 -1

], where ±1 are in Z[ω]

and 1√
2

is not in Z[ω]. Clearly, a finite product of the KkH

syllables evaluates to a unitary matrix of the form

1
√

2
L

[
z −y∗ω�

y z∗ω�

]
, (C1)

y,z ∈ Z[ω], �,L ∈ Z.
Lemma 16. A Clifford + π/12 circuit that evaluates to a

unitary in the form of Eq. (C1) with L = 0 has K cost 0 or 1.
Proof. The unitary condition of the matrix in Eq. (C1)

with L = 0 means |z|2 + |y|2 = 1. Since y,z are algebraic
integers, either |z| = 1, |y| = 0, or |z| = 0,|y| = 1. By stan-
dard algebraic units argument, if x ∈ Z[ω] and |x| = 1 then,
x = ωk,k ∈ Z. In the case |z| = 1 and z = ωk , the unitary in
the form of Eq. (C1) is ωk�(ω�−2k). As per the assumptions
we have adopted above, the π/12 cost of the latter is either 0
or 1. The case of |z| = 0 is reduced to the case of |z| = 1
by premultiplying the subject unitary times X = HZH =
H�(ω6)H . By our convention, the latter has zero K cost and
does not affect the K cost of the resulting circuit. �

Lemma 17. Consider a unitary 2-vector of the form v =
1√
2

L (z,y)T , y,z ∈ Z[ω], L ∈ Z : |y|2 + |z|2 = 2L. A Clif-

ford + π/12 circuit c with K cost at most L + 1 can be
algorithmically found such that c v = (1,0)T .

Proof. This rather technical lemma is inspired by the
“column lemma” from [26]. The proof is by induction in L.
The base of the induction is L = 0, and the claim has been
already established in the proof of Lemma 16.

Consider the subject vector with L > 0. The main step is
to algorithmically find a short circuit c with K cost at most
1 such that v′ = c v is or the form v′ = 1√

2
L′ (z′,y ′)T , where

L′ < L. Then, the desired circuit will be generally of the form
H�(ωk), except for one special case where it will be a global
phase. We generally attempt to find k ∈ Z such that all the
integer coefficients of the algebraic integers z ± ωky are even.
If we have succeeded in finding such a k then

H�(ωk)v = 1
√

2
L+1 (z + ωky,z − ωky)T

= 1
√

2
L−1 [(z + ωky)/2,(z + ωky)/2]T

and we have succeeded in reducing the denominator exponent.
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In order to develop a method for finding the desired k,
consider the parity morphism

μ : Z[ω] → Z2[ω],

μ : aω3 + bω2 + cω + d

�→ (a mod2)ω3 + (b mod2)ω2 + (c mod2)ω + (d mod2).

All coefficients of z ± ωky are even if and only if 0 = μ(z ±
ωky) = μ(z) ⊕ ωkμ(y) if and only if μ(z) = ωkμ(y), which
is going to be the desired property below.

Consider the action of the 12-element group {ωk} on Z2[ω]
by multiplication. Since ω6 = −1 and −1 = 1 mod 2 the
subgroup {1,−1} acts trivially on Z2[ω] and the action of
the 6-element factor group {ωk}/{1,−1} is well defined.

By direct computation we established that the the 16-
element set Z2[ω] is partitioned into four orbits of this action.
The orbit of zero O0 consists of just zero. The orbit of
1 + ω3 = 1 + i, O3 consists of three elements and the orbits
O1 and O2 of 1 and 1 + ω, respectively, consist of six elements
each.

It is important to note that the function N2 : x �→ μ(|x|2)
is constant on each of the orbits. More specifically, N2(O0) =
N2(O3) = 0, N2(O1) = 1, N2(O2) = ω3. The final key remark
is that the unitary constraint of the vector v implies N2(z) ⊕
N2(y) = N2(2L) = 0 and therefore N2(z) = N2(y).

We proceed by case distinction.
(1) (0,0) Case of O0: If both μ(z) and μ(y) belong to O0

then all the integer coefficients of y and z are already even and
we do not need to do any transformations in order to reduce
the vector.

(2) (1,2) Cases of O1 and O2: If μ(z) belongs to either of
the two orbits, then μ(y) must belong to the same orbit [since
we have established N2(z) = N2(y)]. Therefore, there exists k

such that μ(z) = ωkμ(y) which is what we were looking for.
(3) (3,3) Case of O3: If both μ(z) and μ(y) belong to O3,

then again there exists k such that μ(z) = ωkμ(y).
(4) (3,0): This is the only remaining case.

If one and only one of the μ(z), μ(y) belongs to O3, then the
other one must belong to O0 [since these are the only two
orbits with N2(orbit) = 0]. Assume, w.l.o.g. that μ(y) = 0.

This case needs to be treated differently from the general
context. First, we note that, since μ(z) ∈ O3 there exists a
k such that μ(ωkz) = 1 + ω3 = 1 + i. Next, we note that the
global phase operator (1 + i)/

√
2I2 is in the the Clifford group

and that μ[(1 + i)2] = μ(2ω3) = 0. Therefore, by multiplying
the vector v times the global phase ωk(1 + i)/

√
2I2 we obtain

a vector, where all the integer coefficients of both components
are even. We then reduce this latter vector to one of the form
1/

√
2

L−1
w.

This case concludes the induction step. �
Corollary 18. Unitary of the form in Eq. (C1), where y,z ∈

Z[ω],L,k ∈ Z, can be represented exactly and algorithmically
by a Clifford + π/12 circuit of π/12 count at most L + 2.

Proof. Consider a Clifford + π/12 circuit c of π/12
count at most L + 1 that reduces the fist column of the
matrix in Eq. (C1) to (1,0)T . Consider the unitary value
of c† = c†I2. Since c† maps (1,0)T into the first column of
Eq. (C1) it maps (0,1)T into a unitary vector that is Hilbert
orthogonal to that first column. Thus, c†(0,1)T is proportional

to 1√
2

L (−y∗ω�,z∗ω�)T with a unit coefficient from Z[ω].

Therefore, we can algorithmically find an integer k such that
the unitary in Eq. (C1) is exactly equal to the value of c†�(ωk).
Since the π/12 count of the �(ωk) is at most 1 the corollary
follows. �

APPENDIX D: APPROXIMATION OF REAL NUMBERS
BY NUMBERS FROM Z[

√
3]

This section is a direct extension of Sec. 5 in [3] to the
Z[

√
3] ring. Recall that the fundamental Galois automorphism

of that ring extends • :
√

3 �→ (−√
3). The following is an

analog of Lemma 17 from [3]:
Lemma 19. Let [x0,x1] and [y0,y1] be closed intervals

of real numbers. Let δ = x1 − x0 and � = y0 − y1, and
assume δ� � (2 + √

3)2. Then, there exists at least one α =
a + b

√
3 ∈ Z[

√
3] such that α ∈ [x0,x1] and α• = a − b

√
3 ∈

[y0,y1]. Moreover, there is an efficient algorithm for computing
such a and b.

The proof is almost identical to the proof of the lemma for
Z[

√
2] with the obvious replacements of

√
2 by

√
3 and of the

unit λ = 1 + √
2 by the unit υ = 2 + √

3.

APPENDIX E: APPROXIMATING SINGLE-QUBIT
CIRCUITS IN CLIFFORD + π/12

This section is a direct extension of Sec. 6 in [3] to the
Z[ω = eipi/6] ring. We prove that an axial rotation �(eiθ )
can be algorithmically approximated to any desired precision
ε > 0 by a Clifford + π/12 circuit with π/12 count of at most
2 log√

2(1/ε) + C, where C = 3/2 + log√
2(2 + √

3). Recall
that

√
3 = 2ω − ω3 and i = ω3 and consider the subring

Z[
√

3][i] ⊂ Z[ω]. Let θ ∈ R and ε > 0 be fixed.
Definition 20. Consider some u = (a + b

√
3) + (c +

d
√

3)i ∈ Z[
√

3][i]. Complex number u/
√

2
k
,k ∈ Z is called

a feasible candidate at round k for (θ,ε) if
(1) |u•|2 � 2k;

(2) |u|2 � 2k and Re(ueiθ/2) � (1 − ε2)
√

2
k
.

Theorem 21. Let ε > 0 and θ ∈ R be fixed and let k � C +
log√

2(1/ε), where C = 1/2 + log√
2(2 + √

3). Then, there

exists a set of at least n = �2
√

2/ε� feasible candidates at
round k for (θ,ε). Moreover, there is an efficient algorithm for
generating a sequence of random candidates from this set.

Proof. First note that k � C + log√
2(1/ε) implies 2k �√

2(2 + √
3)2/ε2. Define δ = √

2
k
ε2 and � = √

2
k+1

. and
observe that δ� � (2 + √

3)2 so that the criterion of Lemma
19 is satisfied for (δ,�). For convenience we assume w.l.o.g.
that −π/2 � θ � π/2.

Using the same geometric argument as in proof of Theo-
rem 22 in [3] we observe that condition 2 of Definition 20
defines a meniscus shape Rε on the complex plane. If we
parametrize the plane with x + yi,x,y ∈ R we observe that
there is a vertical segment [ymin,ymax] such that ymax − ymin �√

2ε and such that for any y ′ ∈ [ymin,ymax] the intersection of
the horizontal line {x + y ′i} with the meniscus Rε is a segment
of length at least ε2/2.
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Introduce n = �2
√

2/ε�. We now partition the seg-
ment [ymin,ymax] at points yj = j/n (ymax − ymin) + ymin,
j = 0, . . . ,n. By design, yj+1 − yj > ε2/2. Consider closed
subintervals Ij = [yj ,yj + ε2/2], j = 0, . . . ,n − 1, that are
nonoverlapping subintervals of the [ymin,ymax]. First, we

find βj ∈ Z[
√

3] such that βj ∈ [
√

2
k
yj ,

√
2

k
(yj + ε2/2)] and

β•
j ∈ [−√

2
k−1

,
√

2
k−1

]. This can be done algorithmically

because |[−√
2

k−1
,
√

2
k−1

]|√2
k
ε2/2 � (2 + √

3)2.

Let Hj = Rε ∩ {y = βj/
√

2
k}. As we have noted, the

length of Hj is at least ε2/2. Now find αj ∈ Z[
√

3] such that

αj ∈ √
2

k
Hj and α•

j ∈ [−√
2

k−1
,
√

2
k−1

]. This can be done
algorithmically for the same reason as above.

Clearly, (αj + βj i)/
√

2
k

is a feasible candidate at round k

for (θ,ε) and it is distinct from any other such candidate (αj ′ +
βj ′ i)/

√
2

k
,j �= j ′. By randomly selecting an integer 0 � j <

n without replacement, we now can algorithmically generate
a unique random feasible candidate as claimed. �

We now discuss a conjecture regarding solvability of a norm
equation that is needed for expanding a feasible candidate

z/
√

2
L
,z ∈ Z[ω] into a unitary matrix of the form in Eq. (C1).

Such expansion exists if and only if the norm equation |y|2 =
ξ = 2L − |z|2 can be solved for y ∈ Z[ω]. In Appendix B,
we have defined the notion of easily solvable norm equation
and also built up sufficient intuition the the effect that easily
solvable norm equations are not uncommon. They are more
common than the prime numbers with the additional property
p = 1 mod 12 among the integers. It is well known that in a
segment of the form [B/2,B], where B is sufficiently large,
the density of such prime numbers is in [1/ ln(B)].

Further steps in the single-qubit circuit synthesis rely on
the following conjecture (of the type that is now becoming
common in circuit synthesis):

Conjecture 22. For small enough values of ε > 0 and L

in [ln(1/ε)] it suffices to inspect O[ln(2L)] = O(L) feasible

candidates z/
√

2
L

for (θ,ε) in order to find at least one such
candidate for which the norm equation |y|2 = 2L − |z|2 is
easily solvable over Z[ω].

Rigorous proof of this conjecture may be a hard number-
theory problem. At this time, however, we have ample numeric
evidence for the conjecture for a range of ε down to 10−100.

Assuming this conjecture we can claim the following:
Theorem 23. Let θ be a fixed angle. There exists a synthesis

algorithm with probabilistically polynomial classical runtime
that solves the following problem: For a small enough value of
ε > 0 find a unitary ancilla-free Clifford + π/12 circuit with
π/12 count smaller than 2 log2(1/ε) + K {where K = 
5/2 +
2 log2(2 + √

3)�} that represents the axial rotation �(eiθ ) to
absolute precision ε.

Proof. Given (θ,ε), Theorem 21 algorithmically defines

a set of feasible candidates z/
√

2
L

or cardinality (1/ε).
For all these candidates L � 2 log2(1/ε) + K − 2 and is in
O[ln(1/ε)]. The outer loop of the desired algorithm randomly
samples feasible candidates from the above set without re-
placement. By Conjecture 22, with arbitrarily high probability
the algorithm finds a feasible candidate with an easily solvable
norm equation after O(L) trials.

Let z/
√

2
L

be such candidate and y ∈ Z[ω] be a solution
of the norm equation |y|2 = 2L − |z|2. Then, the unitary

1
√

2
L

[
z −y∗

y z∗

]
(E1)

is an ε approximation of the rotation �(eiθ ). Per Corollary 18,
this unitary can be exactly represented by a Clifford + π/12
circuit with π/12 count at most L + 2, and the theorem
follows. �

APPENDIX F: RUNTIME PERFORMANCE EVALUATION

In this section, we report empirical results for upper bounds
on the compilation time of the PQF synthesis algorithm,
focusing primarily on the more expensive stages 1 and 2, for
each universal gate set presented.

In the case of synthesis over V basis, phase-factor ap-
proximation is performed using a simple continued fraction
algorithm and has trivial cost compared to the stage 2 cost. In
the cases of Clifford + T and Clifford + π/12 bases, we have
implemented the PSLQ algorithm [22] in Mathematica.

The main theorem in Ref. [20] states that if exact integer
relations between the subject real values exist and M is the
minimum norm of such an integer relation, then the PSLQ
algorithm terminates after a number of iterations bounded by
O[ln(M)]. Both the theorem and the proof can be customized
to find approximate integer relations; the modification then
states that if Mε is the minimum size of an integer vector a

such that |a x| < ε, then the modified algorithm terminates
after a number of iterations bounded by O[ln(Mε)]. Since in
the case of both T and π/12 bases, Mε = O(ε−1/4), the bound
on the number of iterations before termination is linear in
ln(1/ε).

The Bertok implementation of the PSLQ algorithm [22]
appears to be asymptotically optimal. In our experiments on
1000 random target angles, the number of PSLQ iterations
scales on average as 1.16 log2(1/ε) for the Clifford + T basis
and as 1.04 log2(1/ε) for the Clifford + π/12 basis. The
standard deviation on the number of iterations scales roughly
as log2[log2(1/ε)].

The practical cost of stage 1 becomes quadratic in ln(1/ε)
for ε < 10−15 when measured in common arithmetic op-
erations native to a classical computer because the PSLQ
algorithm requires variable precision floating point arithmetic
with precision tightening as O(ε). Once the required precision
exceeds the available machine precision, software simulation
of variable mantissa arithmetic becomes necessary, causing a
one-time drop in speed and a subsequent quadratic trend in
compilation cost.

The compilation time for each stage 2 round is roughly
proportional to the number of candidate modification factors
evaluated until an easy solution to a suitable norm equation
is found. Each candidate factor is generated by an appropriate
enumerator, then the corresponding norm equation is tested for
easy solvability. The cost of generating a candidate is trivial
compared to the cost of analyzing the norm equation. The latter
cost is in principle similar to the cost of testing an integer for
smoothness; however, in our prototype implementation we
simply relied on the Mathematica FACTOR INTEGER function,
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time constrained to one quarter of a second. The cost of
analyzing the factors is trivial compared to the cost of the
factorization.

We can upper bound the compilation time of stage 2 by
t/4 seconds, where t is the number of the candidate factors
needed for termination. While t should be expected to scale like
O[ln(1/ε)] with precision, we find in practice that t and hence
the time required for stage 2 is a strongly stochastic variable.
While the time is practical in all cases, outlying cases might
require an order of magnitude more candidates to terminate
than typical cases.

For the V basis, the mean expected value of t scales as 1.2 +
0.36 log5(1/ε). The maximum number of candidates scales as
8.8 + 4 log5(1/ε). Somewhat surprisingly, the value t required
for stage 2 in the case of Clifford + T and Clifford + π/12
bases shows very little correlation with the target precision
(insignificant correlation coefficient) with a mean expectation
of t around 2.2 for the Clifford + T basis and around 2.1 for the
Clifford + π/12 basis. The expected maximum t also appears

uncorrelated and is around 23 for the Clifford + T basis and
22 for the Clifford + π/12 basis.

Thus, while t has single digits for the majority of (θ,ε)
pairs it occasionally grows significantly in outlying cases. The
outlying cases, however, still remain practically manageable
and finish in seconds due to throttling of integer factorization.
A conceptual explanation of the apparent stochastic behavior
remains to be found. It may be related to the apparent fractal
structure of the set of solvable norm equations.

To summarize, we find that the expected compilation
time for the PQF algorithm for all three bases is linear in
ln(1/ε) at coarse precisions and becomes quadratic in ln(1/ε)
at finer precisions. The compilation time can occasionally
spike for outlying (θ,ε) pairs due to fluctuations in the
required number of modifier candidates; this translates into
only seconds when run on a common desktop computer.
We believe the performance speed can be further opti-
mized by reimplementing the algorithm in a fully compiled
language.
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