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Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a
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A negatively charged nitrogen-vacancy (NV) center in diamond has been recognized as a good solid-state qubit.
A system consisting of the electronic spin of the NV center and hyperfine-coupled nitrogen and additionally
nearby carbon nuclear spins can form a quantum register of several qubits for quantum information processing or
as a node in a quantum repeater. Several impressive experiments on the hybrid electron and nuclear spin register
have been reported, but fidelities achieved so far are not yet at or below the thresholds required for fault-tolerant
quantum computation (FTQC). Using quantum optimal control theory based on the Krotov method, we show
here that fast and high-fidelity single-qubit and two-qubit gates in the universal quantum gate set for FTQC,
taking into account the effects of the leakage state, nearby noise qubits, and distant bath spins, can be achieved
with errors less than those required by the threshold theorem of FTQC.
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I. INTRODUCTION

Nitrogen-vacancy (NV) centers in diamond have many re-
markable properties. For example, the spins of NV centers have
relatively long relaxation and coherence time (even at room
temperature) [1–6], and the electron spin triplet ground state
can be initialized, manipulated, and read out with microwaves
and lasers [7–9]. These exceptional properties make the NV
center(s) a promising system for sensitive magnetic field and
weak signal sensing [10–20], biomarking tracking [21–24],
and quantum information processing [8,25–50].

Quantum gate operations in a quantum register of individual
electron spin or/and nearby individual nuclear spins associated
with a NV center in diamond have been demonstrated
experimentally [27,32–43,46]. However, the gate fidelities in
theses experiments or studies are limited to certain values
because the pulse sequences to perform the gates even in the
ideal unitary case are not optimally designed and come with
some sort of approximation.

There have been schemes proposed for protecting quantum
gates of NV center spins from decoherence, based on dynam-
ical decoupling (DD) protocols or/and dynamically corrected
gate (DCG) [40,44,45,51–53]. Experimental realizations of
noise-resilient or decoherence protected quantum gates on NV
centers have been reported [41]. So far, only the single-qubit
gates are shown to be of high fidelity. For example, the fidelity
of a dynamical-decoupling-protected X gate is shown to be
about 0.985 for a gate duration of 35.5 μs [44] and the fidelity
of a SUPCODEπ/2 gate is about 0.9961 with a gate time of
5.063 μs [45]. However, these gate times are much longer than
those of unprotected gates, and how to practically implement
the different protected gates for different qubits in parallel in
a many-qubit register is not clear.

An alternative approach to realize high-fidelity quantum
gate is through the quantum optimal control (QOC) [54–71].
A recent study [50] investigated the theoretically achievable
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fidelities when coherently controlling an effective three-
qubit system consisting of a negatively charged ( 15NV

−
)

center in diamond with an additional nearby carbon 13C
nuclear spin. The results in this study indicate that by using
square and two frequency component radio and microwave
frequency pulses, the best single-qubit gate fidelity is less than
98% and the multiqubit gate fidelities are somewhat lower
than that. It was thus suggested that to reach the fidelity
threshold(s) predicted by current models of fault-tolerant
quantum computation (FTQC) [72–75], going beyond the
square-pulse paradigm and using pulse-shaping techniques
like optimal control is required [50]. The QOC theory has been
applied to NV center based quantum information processing
[47–49]. Reference [49] considered only the electron spin and
designed fast single-qubit gates using the chopped random
basis quantum optimization algorithm without resorting to
the standard rotating-wave approximation condition. Refer-
ences [47] considered a system of a NV center’s electron
spin and nitrogen 14N nuclear spins as well as coupled
carbon 13C nuclear spins, forming a small quantum register,
and used the gradient ascent pulse engineering (GRAPE)
optimization algorithm [59–61] to perform phase-flip quantum
error correction on three qubits of one 14N nuclear spin and two
13C nuclear spins. Reference [48] performed quantum gates
and generated entangled states for two proximal NV centers
in diamond using the GRAPE optimization algorithm. With the
help of QOC, unwanted off-resonance transitions or crosstalk,
and unwanted dipolar couplings between the spins of the two
proximal NV centers were significantly suppressed. However,
in these QOC studies and experiments [47–49], the maximum
hyperfine interaction strength between the NV electron spin
and either the nitrogen nuclear spin or carbon nuclear spin is
only about a few MHz. This is different from the case studied
in Ref. [50] where the hyperfine interaction of the 15NV

−
is

about 3 MHz, while the hyperfine interaction with the nearest-
neighbor carbon 13C can be larger than 100 MHz. A large
hyperfine interaction potentially leads to fast quantum gate
operations in the hybrid spin register. It is, however, this large
hyperfine interaction that limits the maximum fidelity that can
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FIG. 1. (Color online) Schematic illustration of a negatively
charged 15NV− center (V denoting a vacancy site) with one nearest-
neighbor 13C atom. (a) For single-qubit operation, the electron spin
of the NV center (in blue) is the system qubit, while the 15N and 13C
nuclear spins are regarded as noise qubits (in red). (b) For two-qubit
operations, the electron spin and the 13C nuclear spin are regarded as
the system qubits (in blue), while the 15N nuclear spin is treated as a
noise qubit (in red). The shaded area denotes additional distant bath
spins.

be achieved in the square-pulse paradigm [50]. Furthermore,
these studies [47–49] do not take the decoherence effect
from the surrounding distant bath spins into the optimization
consideration when constructing their QOC gates.

In this paper, we present a detailed QOC study based on
the Krotov optimization method [55–57,62–64,69–71,76] for
single-qubit and two-qubit gates of a hybrid electron and
nuclear spin register of a NV center in diamond taking into
account the effects of leakage state, nearby noise spins, and
a bath of distant nitrogen spins or/and 13C nuclear spins
randomly distributed in the diamond lattice. In our model,
a nuclear spin of 13C which is in the first coordination
shell (nearest neighbor) around the 15NV− center and has
strong hyperfine interaction with the NV center electron spin
is considered (see Fig. 1 for a schematic illustration). The
Krotov optimization method we employ has several appeal-
ing advantages over the gradient methods [55–57,62,64,76]:
(a) monotonic increase of the objective with iteration number,
(b) no requirement for a line search, and (c) macrosteps
at each iteration. Quantum gates constructed via our QOC
scheme with experimentally available or realistic parameters
are all with very fast speed and very high fidelity. Setting
the gate operation times for our single-qubit X gate and Z

gate performed on the electron spin to be 10 ns, we obtain
corresponding gate infidelities or errors to be 3.9 × 10−5

and 6.0 × 10−4, respectively. The two-qubit controlled-NOT

(CNOT) gate performed on the NV center electron spin and a
proximal 13C nuclear spin can be operated within 50 ns with
an infidelity or error of about 4.3 × 10−4 even in the presence
of a host 15N noise nuclear spin and an additional spin bath
(environment) with a wide range of decoherence parameters.

This paper is organized as follows. We briefly describe
the model Hamiltonian of the NV-center-based hybrid spin
register we consider in Sec. II. To incorporate the effect of
distant nuclear spins which form a spin bath or environment
on the dynamics of the system qubits, we use the open-system
master-equation approach and the description of this approach
is presented in Sec. III. In Sec. IV, we define the infidelity or

error function to measure how well the gate operations of our
system qubits deviate the ideal target gates in the presence
of nearby noise qubits (spins) and a spin bath. The QOC
algorithm based on the Krotov method is also briefly described
here. In Sec. V, we explore the application of the QOC for
the implementations of Z gate, X gate, and also the gates
in the universal discrete quantum gate set for FTQC for the
hybrid spin register. Comparison to the traditional approach of
implementing quantum gates and the effect of spin bath on the
QOC gate operations are also presented. Finally, a conclusion
is given in Sec. VI.

II. MODEL HAMILTONIAN

We consider a negatively charged NV center associated
with a 15N nucleus (i.e., 15NV−) in diamond. The electronic
structure of the NV center has a spin-triplet ground state S = 1
with a zero-field splitting � = 2.87 × 2π GHz between the
ms = 0 and ms = ±1 levels. Note that the quantization axis
of this splitting is along the symmetry axis of the NV center,
which we take as the z axis. The 15N carries a nuclear spin
I = 1

2 . Also, we consider a 13C atom occupies one of the
nearest positions around the NV center, and other nuclear spins
further away are regarded as a spin bath. A schematic structure
of our system is shown in Fig. 1. Applying a static magnetic
field B along the z axis splits the levels ms = −1 and ms = +1.
In our study, we consider all the three electron spin levels, i.e.,
the ms = 0 and ms = ±1 levels, choose the spin levels ms = 0
and ms = −1 to be the two computational states of our electron
spin qubit, and treat the ms = +1 state as an ancilla or a leakage
state. The NV center electron spin is coupled to the proximal
15N and 13C nuclear spins and an additional spin bath.

It has been shown that the coupling of a spin bath of distant
nuclear spins to a NV center electron spin can be modeled
through classical magnetic-field noise that causes decoherence
by imprinting a random phase on the NV center electron
spin [77]. This semiclassical noise model emerges as the weak-
coupling limit of quantum-mechanical entanglement-induced
decoherence. The condition for this to be valid is when the
electron-nuclear spin couplings quantified by the magnetic
fields BNV.n of the NV center electron spin at the sites of the
nuclear spins are much smaller than the externally applied
magnetic field Bz (i.e., BNV.n � Bz) [77]. In our study, we
apply a relatively strong background magnetic field Bz to the
spin register. We thus treat the coupling of the spin bath to
the NV center electron spin to be approximated as a classical
random field B(t) which may depend on time acting on the z

component of the NV center electron spin, a pure dephasing
model [51,78–80]. The couplings of the nearby or neighboring
nuclear spins to the NV center electron spin are, however,
treated quantum mechanically.

The total Hamiltonian of the system we consider can be
written as follows:

H = H0 + Hcx + Hcy + HeB, (1)

H0 = �S2
z − γeBzSz − γCBzICz − γNBzINz

+AeC
‖ SzICz + AeC

⊥ (SxICx + SyICy)

+AeN
‖ SzINz + AeN

⊥ (SxINx + SyINy), (2)
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Hcx(t) = Bx(t)(−γeSx − γCICx − γNINx), (3)

Hcy(t) = By(t)(−γeSy − γCICy − γNINy), (4)

HeB = SzB̃(t), (5)

where Si is the spin-1 operator for the NV center electron spin
and ICi and INi are the spin-1/2 operators for the 13C and 15N
nuclear spins, respectively. γe = −2.8 × 2π MHz G−1, γC =
0.001 07 × 2π MHz G−1, and γN = −0.43 × 2π kHz G−1

are the gyromagnetic ratios for the electron, 13C and 15N
spins, respectively [53]. AeC

‖ = AeC
⊥ = 127 × 2π MHz is the

hyperfine coupling between the electron and the 13C nuclear
spin [42], and AeN

‖ = AeN
⊥ = 3.03 × 2π MHz is that between

the electron and the 15N nuclear spin [52,81]. The magnetic
fields Bx(t) and By(t) are time-dependent external control
fields. The random field B̃(t) represents the effect of the bath
spins with correlation function [51,78–80]

C(t,t ′) = 〈B̃(t)B̃(t ′)〉 = b2e−|t−t ′ |/τc , (6)

where b that can be regarded as the field inhomogeneity in
the effective semiclassical random noise model is associated
with the average coupling strength between the electron spin
and the spin bath, and τc is the correlation time of the spin
bath.

We will consider first the case where the quantum gate op-
erations of the system qubits are influenced by the interactions
with nearby noise qubits with a low number of degrees of
freedom [50,82,83]. In this case, the most general approach
is to describe the dynamics of both the system and noise
qubits and their interactions in Hamiltonian unitary approach
and then perform the QOC calculations for the quantum gate
operations. As the number of degrees of freedom of the noise
qubits increases, the computation of this approach becomes
expensive and challenging. Our strategy is that we treat the
spins which are close to and have large hyperfine interactions
with the system qubit(s) as the noise qubits and include them
and their interactions into the unitary Hamiltonian, and then
take the many randomly distributed distant spins as a spin bath
(environment) whose average effect on the dynamics of the
system qubit(s) is obtained by tracing out the environment
degrees of freedom (or more precisely by performing an
ensemble average over the classical random noise) using the
master equation approach of the reduced density matrix. So
our QOC treatment can simultaneously deal with the effects
of leakage states, a few nearby noise qubits, and a (spin) bath.

III. QUANTUM MASTER EQUATION

Since the ensemble average effect of the semiclassi-
cal random noise treatment of the spin bath in the ab-
sence of the external control fields can be modeled by a
pure dephasing open system model [84], we employ the
perturbative time-local non-Markovian master equation to
describe the coherent control and decoherence dynamics of the
NV center electron qubit in our QOC study. Thus, following
the standard perturbation theory with the Born approximation,
we can write the time-local non-Markovian master equation

for the reduced system density matrix as [85–87]

dρ(t)

dt
= Lsρ(t) + [LzD(t)ρ(t) + H.c.], (7)

where Ls = −i
�

[HS(t),•] and Lz = −i
�

[Sz,•], and the dissipa-
tor D can be written as [85,87]

D(t) = −i

�

∫ t

0
C(t − t ′)Us(t,t

′)Szdt ′, (8)

where the propagator superoperator Us(t,t ′) = T+e
∫ t

t ′ Ls (τ )dτ

with T+ denoting the time-ordering operator. The symbol H.c.
in Eq. (7) denotes the Hermitian conjugate of its previous term.
To solve the master equation (7) directly, one would need to
evaluate the term Us(t,t ′)Sz and then perform the integration
for the dissipator D(t) of Eq. (8). This procedure is often
numerically inefficient. Instead, since the bath correlation
function given in Eq. (6) is in an exponential form, one can
take the time derivative on Eq. (8) and obtain straightly the
differential equation for the dissipator D(t) as

d

dt
D(t) = −ib2Sz +

(
Ls(t) − 1

τc

)
D(t). (9)

Equations (7) and (9) form a coupled set of inhomogeneous
differential equations, and one can use the Runge-Kutta
method to solve these equations numerically.

For the convenience of numerical computation, we trans-
form the density matrix ρ into a column vector 	ρ and in
this case Eq. (7) becomes 	̇ρ(t) = �(t) 	ρ(t), where �(t) is
the corresponding operator associated with Eq. (7) in column
vector representation. It can be shown that the effective
propagator U (t) defined by the relation 	ρ(t) = U (t) 	ρ(0)
satisfies

U̇ (t) = �(t)U (t) with U (0) = IN , (10)

where N is the dimension of U and IN denotes the N × N
identity matrix in the operator dimension of U .

IV. GATE ERROR AND OPTIMAL CONTROL
ALGORITHM

We describe below briefly the error function of the gates and
the optimal control algorithm based on the Krotov method that
we adopt for our calculations. The noise qubits are regarded
as an effective small environment interacting with the system
qubits that serve as a register for quantum information process-
ing. The implementation of quantum gates in the presence of
only a few noise qubits using the Hamiltonian unitary approach
for QOC calculations has been investigated [82,83]. Here
besides a few noise qubits, the leakage state and the spin bath
are also considered. We thus define the error function K as the
distance measure between the associated propagator PU (T )
at the final time T of the composite system and the target gate
G in the column vector representation as follows [82,83]:

K = λN min
�

{‖PU − G ⊗ � ‖2
F |�†� = InB

}
. (11)

Here P denotes a projection operator to project the propagator
U onto the composite subspace spanned by the tensor product
of the system qubit computational basis states and the noise
qubit basis states [66,88], nB is the dimension of the Hilbert
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space for the noise qubit subsystem, and � is an arbitrary
unitary acting only on the noise qubit Hilbert space. The
symbol ‖ · ‖F stands for the Frobenius matrix norm: ‖A‖F =
(TrA†A)1/2, and λN = 1

2N
is a normalization factor to keep the

value of K in the range [0,1] with N the dimension of PU .
The squared norm of ‖PU − G ⊗ �‖2

F is minimized over the
set of all possible unitary � because we do not care what the
evolution of the noise qubits is as long as the target gate G

to be implemented can be achieved. The fidelity defined as
F = 1 − K with K given in Eq. (11) is introduced to measure
how well PU (T ) approaches the target gate G at the final gate
time T . The error function similar to K of Eq. (11) for a closed
composite system consisting of the system qubits and a few
noise qubits was defined and simplified to a computable form
in Ref. [88]. Here, we generalize the expression of the error
function K for an open system with leakage states and/or a
spin bath in a computable form as (cf. [88])

K = 1

2
+ 1

2N
Tr[(PU )†PU ] − 1

N
ReTr

√
Q†Q. (12)

Here in Eq. (12)

Q =
nS∑

i,j=1

G∗
ij (PU )(ij ), (13)

where PU(ij ) are nB × nB matrix partitions of PU in the
computational state basis of the system qubits, and Gij are
the scalar matrix elements of the target operation G [88].
Note that because the projected propagator PU is no longer
unitary when the effect of the leakage states or/and the open
system environment is considered, the second term in the error
function (12) takes the form of Tr[(PU )†PU ]/(2N ). This term
approaches (1/2) for an ideal, closed composite system when
PU → U is unitary, and in this case the error function K (12)
reduces to that of Ref. [88].

In realistic control problems, it is desirable that the optimal
control sequence can provide the highest quality (fidelity)
with minimum energy consumption. Therefore, we define the
objective function to be maximized for our optimal control
problem as

J = F −
∫ T

0

λ(t)

2
[ε(t) − ε̃(t)]2dt, (14)

with a weighting function λ(t) > 0 adjusted and chosen
empirically. Here the reference field ε̃(t) is chosen to be the
control field of the previous iteration [55,56]. In this case, when
the iterative procedure approaches the optimal solution, the
change in the control field is minimal or vanishing. Therefore,
this choice of the reference field ε̃(t) ensures that the iterative
method is found to increase the total objective J of Eq. (14)
by increasing the gate fidelity F = 1 − K rather than reducing
the total control pulse energy.

The iterative algorithm of the Krotov method used
in our optimal control study of implementing quantum
gates is described briefly as follows [55–57,62,64,69,70,76].
(1) An initial guess for the values of the control parameters
ε0
i (t) is randomly chosen [here the control parameters εi(t)

can be the externally applied ac magnetic fields Bi(t) with
i = x,y components]. (2) The evolution propagator U [ε0

i (t)]
is evolved forward in time until t = T using Eq. (10).

(3) An auxiliary function B[εj

i (t)], j = 0 for the first iteration,
is evolved backward in time until t = 0 using the equation
of motion Ḃ(t) = −B(t)�(t) and the boundary condition
B(T ) = − dK

d(PU ) . The explicit form of dK
d(PU ) can be found

in the Appendix. (4) The updated propagator U [εj+1
i (t)]

is propagated again forward in time, while the control
parameter εi(t) is updated iteratively with the rule ε

j+1
i (t) =

ε
j

i (t) + 1
λ(t) Re{Tr[Bj (t) ∂�(t)

∂εi (t)
Uj+1(t)]}. (5) Steps (3) and (4)

are repeated until either the error Kj is smaller than a preset
value or the ratio of the improved error at the next iteration,
Kj −Kj+1

Kj , is rather small. After a sufficient number of iterations,
the algorithm converges and the fidelity F in the objective
function of Eq. (14) reaches asymptotically a maximum value
of Fmax.

V. RESULTS AND DISCUSSION

A. Optimal control for single-qubit gates

The target quantum single-qubit gates considered in our
investigation are Z gate, X gate, Hadamard gate (H gate),
phase gate, and π/8 gate on the NV center electron spin.
We restrict our investigation to have a control magnetic field
only in the x direction, i.e., Bx(t), for the implementation of
these single-qubit gates. A static magnetic field Bz = 500 G
is applied to split the ms = ±1 states of an NV center electron
spin; the ms = 0 state and ms = −1 state are chosen as the
system qubit states, and the ms = 1 state is treated as a leakage
state. We will investigate the case where there are two nearby
noise qubits, the 13C nuclear spin and 15N nuclear spin, and the
strength of the hyperfine interaction between the NV center
electron spin and the nearest-neighbor 13C nuclear spin is
comparable to the Zeeman splitting of system qubit states.

A quantum Z gate in the absence of the noise qubits can
be realized by free evolution of the system qubit with high
fidelity (or error smaller than 10−8). However, the Z-gate errors
K obtained by free evolution taking the energy shift by the
13C and 15N noise qubits into account at operation times of
0.34 ns, 7.45 ns, and 15.2 ns are all greater than 6.0 × 10−3.
On the other hand, using optimal control method with an extra
control field Bx(t) gives, for example, a Z-gate error K for an
operation time of 10 ns (or 0.01 μs) to be 6.0 × 10−4, at least
one order of magnitude better than that by the free evolution.

For the implementation of an X gate, traditionally a π

pulse with frequency ω in resonance to the energy splitting
between the two computational states of the system qubit
(in our case ω = 1.343 × 2π GHz at Bz = 500 G) is used to
induce the qubit transition. As fast quantum gates are favorable
for the purpose of quantum information processing, we set
the operation times of the single-qubit gates to be in the
order of 0.01 μs. To be operated in such a short time, an
X gate implemented by a π pulse would require a certain
pulse strength Bx0 of Bx(t) = Bx0 cos ωt . This in turn limits
the fidelity of the gate as a relatively strong pulse strength Bx0

would cause possible transitions to the ms = +1 leakage state.
One can see this from Fig. 2(a) that the gate errors of X gates
implemented by π pulses for different operation times in the
absence of any noise qubit and decoherence represented by the
green circles (guided by the green dotted line) are all larger
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FIG. 2. (Color online) (a) X gate errors vs operation times at a
static magnetic field Bz = 500 G for different noise-qubit scenarios
and operation schemes. The colors of purple, blue, and red represent
the cases where the system qubit (electron spin) interacts with only
the 15N, only the 13C, and both the 15N and the 13C noise qubits,
respectively. The open circles with dashed lines represent X gates
implemented by conventional π pulse, while the solid squares with
solid lines denote implementation by optimal control pulse sequence.
The open green circles with a dashed line stand for the X gate error
of an ideal NV electron spin without any noise qubit nearby. (b) A
typical optimal control pulse sequence of Bx field for a gate operation
time of 0.01 μs at a static magnetic field of Bz = 500 G.

than 4 × 10−3. In the presence of the nearby noise qubits,
nonsecular parts of the hyperfine couplings AeC

⊥ to the system
qubit will cause an additional error to the X gate implemented
by a π pulse. The purple, blue, and red circles (dashed lines)
in Fig. 2(a) represent the errors of the X gates implemented
by π pulses at different operation times for the cases where
the system qubit interacts with only the 15N, only the 13C,
and both the 15N and the 13C noise qubits, respectively. One
can see that the gate errors of the blue and red dashed lines
overlapping with each other are considerably larger than those
of the purple and green dashed lines also overlapping with each
other in the short gating time regime but deviating a little bit
at large gating times. This is because the hyperfine interaction
of the 15N nuclear spin with the system qubit is about one to
two orders of magnitude smaller than the control field strength
or interaction for the X gates with operation times shown in
Fig. 2(a), and thus the presence of the 15N nuclear spin does

TABLE I. Summary of the QOC gate errors. The bath correlation
time for the CNOT gates is τc = 25 μs, and the average system-bath
coupling strengths (or field inhomogeneities) are b = 38.46 μs−1 for
the gate time T = 0.125 μs and b = 80 μs−1 for the gate time T =
0.05 μs, respectively.

Gate type Noise qubit(s) Gate time T Gate error K

Z gate 15N 0.01 μs 8.0 × 10−5

15N,13C 0.01 μs 6.0 × 10−4

X gate 15N 0.01 μs 5.5 × 10−6

15N,13C 0.01 μs 3.9 × 10−5

H gate 15N 0.01 μs 2.4 × 10−5

15N,13C 0.01 μs 1.0 × 10−4

PHASE gate 15N 0.01 μs 2.5 × 10−5

15N,13C 0.01 μs 4.3 × 10−5

π/8 gate 15N 0.01 μs 2.3 × 10−5

15N,13C 0.01 μs 1.4 × 10−4

CNOT gate 15N 0.125 μs 1.7 × 10−4

15N, bath 0.125 μs 6.5 × 10−4

CNOT gate 15N 0.05 μs 4.3 × 10−4

15N, bath 0.05 μs 4.3 × 10−4

not introduce substantial error in the X gate. On the other
hand, the hyperfine interaction of the 13C nuclear spin with
the system qubit is comparable to the control field interaction
and thus considerably larger gate error is introduced by 13C
nuclear spin than that by the leakage state in the ideal case or
than that by the 15N nuclear spin.

In contrast, the QOC based on the Krotov optimization
method enables us to achieve a high-fidelity X gate with
significant improvement in gate error. As shown in Fig. 2(a),
the X gate errors obtained by the optimal control method
in the presence of both the 15N and the 13C noise qubits
represented by the red squares (solid lines) are two orders
of magnitude smaller than the gate error obtained by directly
applying π pulses even in the ideal case (green dotted line).
Figure 2(b) shows a typical optimal control field sequence for
a X gate with an operation time of 0.01 μs. We have also
performed optimal control calculations for the single-qubit
gates of the Hadamard gate (H gate), the phase gate, and
the π/8 gate in the universal quantum gate set for FTQC.
The errors of the single-qubit gates with operation times all
set to 0.01 μs are summarized in Table I. Because the gate
times of the single-qubit gates are all set to a relatively short
time of 0.01 μs, we find that the calculated optimal control
pulse sequences are robust (i.e., the gate errors do not increase
appreciably) in the presence of a spin bath with a wide range
of realistic experimental parameters for the bath correlation
function defined in (6) [40,51,85]. The effect of a spin bath
will be explicitly discussed for two-qubit CNOT gates that have
longer gate times.

B. Optimal control for CNOT gates

We next describe the implementation of the two-qubit CNOT

gate in the discrete set of universal gates. We choose the
electron spin of the NV center as the control qubit and the
13C nuclear spin as the target qubit. The 15N nuclear spin
associated with the NV center acts as a noise qubit influencing
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the electron qubit. Besides, the bath of other distant spin
impurities causing the decoherence to the electron qubit is
taken into account. A schematic illustration of the whole
system we consider is shown in Fig. 1(b). The experiments
carried out on a single electron and a single 13C nuclear
spin of a NV center for the implementation of a two-qubit
conditional rotation (CROT) gate realized by a conditional
radio-frequency π pulse have been reported [8,42]. This CROT
gate combined with single-qubit z rotations can perform a
CNOT gate up to a global phase factor. Decomposing a CNOT

gate or a general gate operation into several single-qubit and
entangled two-qubit operations in series makes its operation
time normally longer and its overall gate error larger as the gate
errors of the decomposed gates will accumulate. In contrast,
the optimal control method has the great advantage of enabling
the implementation of a CNOT gate or other general quantum
gates in a single run of pulse or in a single pulse sequence
by simply setting the target operation to be the CNOT gate or
the general quantum gate one wishes to implement [61,71].
Simulating this π -pulse approach of implementing the CROT
gate using Bx(t) = Bx0 cos ωt and By(t) = Byo sin ωt with the
field strengths Bx0 and By0, we evaluate the CROT gate error
K and compare it with our result of CNOT gate by the optimal
control method.

We discuss the implementation of a CNOT or CROT gate for
three different cases. The first case is the ideal case without any
noise, the second case includes the effect of the 15N noise qubit,
and the third case considers both the 15N noise qubit and a spin
bath. Here applying a static magnetic field of Bz = 1000 G
results in a relatively large energy splitting between ms = 1
(leakage) state and m = 0,−1 (computational basis) states as
compared to the energy splitting between the computational
basis states of the ms = 0 and ms = −1 states for the NV
electron spin. At first, the NV electron spin is regarded as an
ideal two-level qubit system for the gate implementation, and
then we will treat the NV electron spin as a spin-1 three-level
system. This enables us to exam how well the optimal control
field sequence obtained for the two-level case performs in the
more realistic three-level case (i.e., to see the leakage effect).
We then employ the QOC theory to find new control sequence
for the three-level NV center electron spin taking the leakage
state of ms = 1 into account in order to reduce the gate error
or infidelity.

Ideal case. Next we show that the optimal control theory can
achieve a CNOT gate with a better fidelity than simply applying
a conditional π pulse (CROT). The CNOT or CROT gate errors
as a function of the gate operation time for different cases
are illustrated in Fig. 3. The solid lines and dot-dashed lines
represent the gate errors obtained for the ideal case and the case
including noise qubit 15N, respectively. The red lines represent
the CROT gate errors obtained by applying a conditional π

pulse taking ms = 0,−1 states of the NV center as the system
qubit states. The blue lines and purple lines represent the CNOT

gate errors obtained by using the optimal control theory taking
the NV center electron spin as a two-level system and three-
level system, respectively. Note that different from the gate
error of the CROT implemented by a conditional π pulse,
the QOC gate errors are calculated by substituting the pulse
sequence obtained in respective methods into the Hamiltonian
of the three-level NV center system including the 15N noise
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FIG. 3. (Color online) CNOT or CROT gate errors vs operation
times at a static magnetic field Bz = 1000 G for different operation
schemes: conditional π pulse scheme (in red) and optimal control
scheme taking the NV center electron spin as a two-level system
(in blue) and three-level system (in purple). The solid lines and dot-
dashed lines represent the gate errors obtained for the ideal case and
the case including noise qubit 15N, respectively.

qubit (but not including the bath spins) for the propagator
U in Eq. (12). For the idea case (solid lines), when the gate
operation time becomes shorter, the gate error using a π pulse
becomes larger. The reason is that the requirement for a shorter
duration of a π pulse means a stronger field strength, which in
turn induces a larger transition probability to the leakage state.
In contrast, the QOC theory can do a much better job when
the operation time is short as illustrated in Fig. 3. However, as
the operation time increases, the error for the optimal control
case of treating the electron spin as an effective two-level
system becomes larger, even larger than that of using a π pulse
(see Fig. 3). Therefore, employing QOC for the three-level
electron spin system is necessary. It is quite obvious from
Fig. 3 that employing the QOC theory by treating the electron
spin as a three-level system (purple solid lines) gives gate
errors one order to two orders of magnitude lower than those
of the two-level case (blue solid line).

Effect of a noise qubit. In the case of including the 15N
noise qubit, driving the system by a π pulse does not work
well anymore (see the red dot-dashed line). However, taking
the noise qubit into the QOC optimization consideration lowers
the error or infidelity a little bit as compared to the case without
doing so. One can see this from Fig. 3 that the blue and purple
dot-dashed lines are slightly lower than their corresponding
blue and purple solid lines, respectively. The reason is that
the 15N noise qubit here also serves as an ancilla qubit that
allows some probability to get out of the computational space
temporarily but return to the computational space with higher
fidelity at the end of the operation for the optimal control
CNOT gate. Again, treating the electron spin as a three-level
system is a more effective strategy to perform CNOT gate and it
gives an error K ≈ 1.7 × 10−4 in the presence of the 15N noise
qubit for a gate time of 0.125 μs. Figure 4(a) investigates the
optimal control CNOT gate error as a function of the strength
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FIG. 4. (Color online) (a) Optimal control CNOT gate errors for
different values of the static magnetic field Bz taking the NV center
electron spin as a two-level system (blue solid line) and three-
level system (red dot-dashed line). The operation time is 0.05 μs.
(b) Optimal control pulse sequences of Bx(t) and By(t) for Bz =
500 G (blue solid lines) and Bz = 1000 G (red dot-dashed lines).

of the external static magnetic field Bz for a gate operation
time of 0.05 μs. The blue solid line and red dot-dashed line
represent the cases of treating the electron spin as a two-
level system and a three-level system, respectively. When the
static magnetic field Bz decreases, the gate error represented
by the blue solid line becomes large. This is because at a
lower magnetic field Bz the energy separation between the
qubit state ms = −1 and the leakage state ms = 1 become
smaller, and thus the approximation of treating the NV electron
spin as a two-level system of ms = 0,−1 is not very good.
However, the optimal control of the three-level case still works
with error K ≈ 6 × 10−4 even when the magnetic field is as
low as Bz = 500 G. The optimal control field sequences by
treating the NV electron spin as a three-level system for Bz =
100 G (red dot-dashed lines) and Bz = 500 G (blue solid lines)
with the operation time of 0.05 μs are shown in Fig. 4(b). At
Bz = 500 G (Bz = 1000 G), the energy separation between
the electron qubit states of ms = −1 and ms = 0 is much
larger than (comparable to) the energy splitting between the
states |1,↓〉 and |1,↑〉 (due to the hyperfine interaction), where
|↓〉 and |↑〉 represent the 13C nuclear spin states, and |1〉 and
|0〉 represent the electron qubit states. As a result, there are
apparently two different oscillating components for the case
of Bz = 500 G (blue solid lines) as compared to the case of
Bz = 1000 G (red dot-dashed lines) in Fig. 4(b). The major
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FIG. 5. (Color online) CNOT gate error vs the average system-
bath coupling strength (field inhomogeneity) b for gating time
of 0.05 μs (blue solid line) and 0.125 μs (red solid line). The
corresponding dashed lines represent the gate errors calculated by
taking the OCT pulse sequences obtained for the case without the
spin bath (i.e., setting b = 0) as our initial guess for optimal control
in the open system.

frequency of the fast oscillating component comes from the
high frequency (energy separation) of the electron qubit, while
that of the slow one matches the energy splitting between states
|1,↓〉 and |1,↑〉.

Effect of a spin bath. Next, we take into account not only
the noise qubit but also the bath of the distant spin impurities,
which is modeled as an effective classical random field acting
on the NV electron spin with correlation function given by
Eq. (6). The solid lines in Fig. 5 show the dependence of the
CNOT gate error on the bath parameter b for the correlation time
τc = 25 μs. The parameter b defined in the bath correlation
function, Eq. (6), is related to the average system-bath coupling
strength or field inhomogeneity in the random field model.
The dashed lines in Fig. 5 represent the gate error obtained by
applying the optimal control sequences obtained for the case
without the spin bath to the master equation or the effective
evolution equation (10) in the presence of the bath. This allows
us to study how the gate errors due to the spin bath are improved
in the open system by QOC. One can see from Fig. 5 that for
τc = 25 μs unless the parameter b is more than one order
of magnitude larger than the typical value of b = 3.846 μs−1

extracted from the experiments [40,51,85], the influence of the
bath on the gate with a short operation time of 0.05 μs (blue
dashed line) is not significant. For the longer gate operation
time of 0.125 μs (red dashed line), the influence of a bath
becomes appreciable when b � 5 μs−1, and as the coupling
strength b become stronger, the error increases. However,
the optimal control CNOT gate with operation time 0.05 μs
(blue solid line) can sustain much larger values of the field
inhomogeneity up to b = 80 μs−1 and the gate error can be
maintained almost the same as if the spin bath were not present.

The relation between the gate error and the bath correlation
time τc for the average coupling strengths of b = 38.46 μs−1

and the operation time of 0.125 μs (b = 80 μs−1 and operation
time 0.125 μs) is shown in red solid line (blue solid line) in
Fig. 6. To investigate how much QOC theory improves the gate
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FIG. 6. (Color online) CNOT gate error vs the correlation time τc

for the case of b = 38.46 μs−1 and the gating time T = 0.125 μs
and the case of b = 80 μs−1 and the gating time T = 0.125 μs. The
dashed line represents gate error calculated by taking the OCT pulse
sequences obtained for the case without the spin bath (i.e., setting
b = 0) as our initial guess for optimal control in the open system.

fidelity in the NV center system with a spin bath, we take the
optimal pulse sequences in the absent of the spin bath as our
initial guess for the control fields, and the gate errors before
the optimal control iterations are shown in dot-dashed lines
in Fig. 6. The gate errors (solid lines) after the iterations are
terminated are larger for small values of τc, and decrease as
τc increases. The gate errors (solid lines) stay nearly constant
as τc � 5 μs. When the bath correlation time τc is small, the
memory effect of the bath is weak and the bath is close to
a Markovian bath. In this case, it is hard to revise the bath
contribution since the decay rate approaches a steady value
in a very short time. In contrast, when τc is large, due to the
relatively long memory effect of the bath, the optimal control
fields are able to counteract the influence from the bath.

VI. CONCLUSION

We have found the control sequences of fast and high-
fidelity single-qubit and two-qubit quantum gates for electron
and nuclear spins of a NV center in diamond using the QOC
theory. A CNOT gate or other general quantum gates operation
can be implemented in a single run of pulse sequence using the
optimal control approach rather than being decomposed into
some entangled two-qubit and several single-qubit operations
in series by composite pulse sequences. The (non-Markovian)
external environment effects on system qubits are partitioned
into two kinds, one from a few nearby noise qubits and the
other from a bath of distant spins. Table I summarizes the gate
time and gate errors calculated with realistic experimental
parameters for the cases considering the effect of the noise
qubits, the leakage state, and the effect of a spin bath. These
gate errors are below the recent model of error threshold
10−3 [72] (10−2 if surface code error correction is used
[73–75]) required for FTQC. One can estimate the logical
error rate that our gate error K corresponds to for a given type

of error correction of FTQC. Suppose that one implements
a logical qubit of the surface code error correction on a
two-dimensional array of physical qubits with array size
(distance) d [corresponding to the number of physical qubits
being nq = (2d − 1)2] as in Ref. [75]. The number of physical
qubits or the array size d needed to define a logical qubit to
meet a required logical error rate is dependent strongly on the
error rate in the physical qubits. By taking the error probability
per step to be the worse gate error K of 6.0 × 10−4 in Table I,
which is smaller than the error threshold rate of pth = 0.57% of
the surface code, the estimated logical error rates using Fig. 4
or more precisely Eq. (11) of Ref. [75] are about 3.5 × 10−5

for array size d = 5 and about 3.7 × 10−6 for array size d = 7.
When the per-step error rate is smaller than the error threshold
rate pth, the logical error rate falls exponentially with the array
size d. Thus one obtains the logical error rate for array size
d = 25 to be about 5.8 × 10−15, sufficient to perform Shor’s
algorithm for factoring a 2000-bit number into its primes with
a reasonable chance of success [75].

There seems to be challenges for the experimental im-
plementations and applications of the QOC theory, such as
imprecise knowledge of the quantum system’s parameters and
how to generate the complex optimal control pulses in reality.
Fortunately, commercial devices for generating arbitrary wave
forms or complex signals in a time scale of subnanosec-
onds to nanoseconds are available now and may solve the
challenge of generating complex pulse sequences. Besides, a
hybrid open-loop–closed-loop optimal control method called
adaptation by hybrid optimal control (Ad-HOC) method [89]
designed to overcome not only the problem of inaccurate
knowledge of the system parameters but also shortcomings
of the assumed physical model and errors on the control fields
has been recently proposed. The closed-loop pulse calibration
of Ad-HOC, similar to adaptive model-free feedback control
(also referred to as closed-loop laboratory control or learning
control) [90,91] uses the physical system itself as a feedback to
calibrate control pulses and optimize their performance. Two
similar closed-loop methods for optimizing quantum control in
experimental systems have also been put forward recently: the
method of optimized randomized benchmarking for immediate
tune-up (ORBIT) [92] and the method of adaptive control
via randomized optimization nearly yielding maximization
(ACRONYM) [93]. In principle, the system response and
control pulses can be calibrated and improved using closed-
loop optimization where measurement data are efficiently
obtained with Nelder-Mead algorithm [89,92,94] or stochastic
optimization algorithm [93,95,96] and subsequently fed back
to the system optimizer to improve the pulses without precise
knowledge of the system. These developments make the
QOC theory practical and useful to construct the initial pulse
sequences for experimentally closed-loop optimization [89].
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APPENDIX: EXPLICIT FORM OF d K/dU

Employing the algorithm of the Krotov optimization
method, we evolve backward in time the auxiliary function
B(t) with the boundary condition B(T ) = − dK

dPU
. Therefore,

we need to find the explicit form of dK
dPU

. The procedure and
calculation presented below follows those in Ref. [82].

In our case, the error function K is defined through Eqs. (12)
and (13). The matrix elements of dK

dPU
can be written as(

dK

dPU

)
ab

= dK

dPUab

, (A1)

where the matrix indices a and b range from 1 to N and
PUab is the matrix element (a complex scalar variable) of
PU . Let x = PUab, and Z(x) =

√
Q†Q be a matrix function

of the variable x, and y(Z(x)) = Tr
√

Q†Q = TrZ(x) be a
scalar function. Thus the error function (12) in terms of the
new variables is K = 1

2 + 1
2N

Tr[(PU )†PU ] − 1
N

y. Note that√
Q†Q is not an analytic function of PUab but can be expressed

as an analytic function of PUab and PU ∗
ab. Consequently,

when one differentiates
√

Q†Q with respect to PUab, PU ∗
ab

and subsequently Q† are treated as constants. Thus

dK

dx
= 1

2N
PU ∗

ba − 1

N

dy

dx

= 1

2N
PU ∗

ba − 1

N

∑
k,k′

dy

dZk,k′

dZk,k′

dx

= 1

2N
PU ∗

ba − 1

N

∑
k,k′

dy

dZk,k′

dZT
k′,k

dx

= 1

2N
PU ∗

ba − 1

N
Tr

(
dy

dZ

dZT

dx

)

= 1

2N
PU ∗

ba − 1

N
Tr

(
dZT

dx

)
. (A2)

Here the second line in Eq. (A2) follows from the use of
the chain rule, and the last line follows from the property of
dy

dZ
= d TrZ(x)

dZ
= I . Then from the definition of Z and x, we

find that

dZ

dx
= d

√
Q†Q

dPUab

= 1

2
(Q†Q)−1/2Q† dQ

dPUab

. (A3)

Since Tr dZT

dx
= Tr dZ

dx
, inserting the trace of Eq. (A3) into

Eq. (A2), we finally obtain the explicit form of(
dK

dPU

)
ab

= 1

2N

{
PU ∗

ba − Tr
[

(Q†Q)−1/2Q† dQ

dPUab

]}
,

(A4)

where

dQ

dPUab

= G∗
iajb

|a modnB〉 〈b modnB | (A5)

can be simply obtained by the definition of Q in Eq. (13). Here
ia and jb denote the smallest integers greater than or equal to
a/nB and b/nB , respectively, and Giajb

are the matrix elements
of the target gate. In Eq. (A5), the states |a modnB〉 〈b modnB |
are the elements of the orthonormal basis matrix of the noise
qubit(s).
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