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Precision control of quantum systems is the driving force for both quantum technology and the probing of
physics at the quantum and nanoscale levels. We propose an implementation-independent method for in situ
quantum control that leverages recent advances in the direct estimation of quantum gate fidelity. Our algorithm
takes account of the stochasticity of the problem, is suitable for closed-loop control, and requires only a constant
number of fidelity-estimating experiments per iteration independent of the dimension of the control space. It is
efficient and robust to both statistical and technical noise.
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I. INTRODUCTION

Precision quantum control enables practical goals such as
quantum computation [1] and quantum metrology [2], which in
turn can provide probes of fundamental physics such as gravity
wave detection [3]. To process the information in a quantum
device requires enacting quantum logic gates with high fidelity.
State of the art methods calculate the solution to Schrodinger’s
equation in iterative gradient-climbing algorithms [4] to arrive
at a control pulse that has high fidelity to some target
evolution with respect to some physical model. Contrary to this
approach, which we call ex situ control, it would be convenient
if the quantum device guided itself to a desired state—in situ
quantum control.

Control of the in situ type can be divided into two
categories: those that use a fresh copy of the system with each
measurement and those that use a single copy in a continuous
measurement scenario. The former was pioneered by Rabitz
et al. in the context of state transfer using genetic algorithms
[5] and is the type of in situ control we consider. The latter
is often called quantum feedback control and the interested
reader is referred to Ref. [6]. Both are also referred to as either
feedback or closed-loop control [7].

Until recently, however, it was not known whether the
fidelity to some target gate could be estimated efficiently
from experiments. Here we leverage recent advances in
fidelity estimation [8–12] to design an in situ quantum control
algorithm which can in principle efficiently and robustly find
the optimal control sequence. In particular, we show via
numerical experiments that our in situ algorithm converges
in fidelity to the target unitary gate at rate given by O(1/Ntot),
where Ntot is the total number of experiments performed.

In very broad strokes, the current paradigm for quantum
control proceeds in four steps: (i) modeling, (ii) estimation,
(iii) optimization, and (iv) implementation and verification. At
each of these steps, many things can go wrong. We briefly
overview each step, recall what could go wrong, and describe
how in situ control remedies the problem.
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The first task is to model the system, that is, to create a
physical model of the dynamics experienced by the system.
Much can be learned from our current understanding of
the physics involved. However, as physics is the art of
approximation, the model will never be precisely correct.
It can be very good, but the precision in control will be
limited by the precision in the model [13]. Alternatively, if
the system itself is used, then the “model” used to design
controls is perfect—it is an exact replica of the physics
because it is the physics! Thus, there are no limitations due
to modeling errors for in situ control. This is illustrated in
Fig. 1.

Given a model, the next task is to estimate the parameters
of the model. There are many ingenious ways to do this (from
full process tomography [14] to Hamiltonian learning using
quantum resources [15]). Although estimation of physical
parameters is limited in precision due to statistical and
technical errors, control algorithms can be made “robust” to
these imperfections. But there are disadvantages here too:
A control strategy that is robust to a range of parameters is
typically more taxing to find and will not be strictly optimal
for the “true” parameters [16]. For in situ control, we have
noted already that a model is not required. Therefore, the task
of estimating the parameters of the model is not required and
any problems incurred by this step are nonexistent.

Given a model and set of parameters, the task now is to
find the optimal set of controls. This is usually done through
some iterative optimization algorithm performed on a classical
computer [4]. For each candidate set of controls, a classical
simulation is required. It is thus inefficient in general to
solve such an optimization problem. Moreover, it is doubly
inefficient since a classical simulation is used to propagate
the state vector only to compute a single number. While in
situ control trivially sidestepped the previous problems, here
is where it provides a technical advantage. Since the system
itself will perform its own simulation, it may seem efficient.
However, the key difference between classical simulation (as
used in control design) and quantum simulation is that a
quantum simulator can only produce sample outcomes. Thus,
it may be the case that an inefficient number of experiments
need to be run at each step in the optimization protocol. The
main result of this paper is to show this is not the case. That
is, our in situ control strategy is efficient.
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FIG. 1. (Color online) The median infidelity (1-fidelity) of our in
situ algorithm and an ex situ algorithm as a function of the number of
iterations. The problem is that of designing a random single-qubit gate
and is described in more detail in Sec. III. The in situ algorithm was
afforded only 103 experiments per fidelity estimate while the ex situ
algorithm was given the ability to compute the fidelity to machine
precision but saturates since the assumed Hamiltonian was incorrect
by ||�H || = 10−2||H ||.

Finally, given the optimized set of controls, the final task is
to implement those controls in an experiment and verify that
the intended gate was produced. High-precision experiments
are an impressive feat of physics and engineering—there are
many imperfections in machined or fabricated components,
stray fields and vibrations, noisy electronics, and so on that
need to be overcome. Thus, it is not often the case that the
optimal controls will reach the same value of the objective
function in reality that they did in simulation. For in situ
control, once the optimal control has been found, we are
done. That is, the last experiment performed in our iterative
optimization algorithm is the one sought after and verifies its
own performance.

The imperfections due to the classical control devices are
of systematic or stochastic origins. The systematic deviations
(resulting from, e.g., nonlinear or nonuniform response of am-
plifiers or resonators) can in principle be reversed or accounted
for with predistortions of the optimized sequences, or by using
classical feedback, or even by inclusion in the modeling or opti-
mization steps. The random distortions, or the technical noise,
plagues the implementation and verification step for ex situ
schemes, and countering this requires more data and averaging,
which scales quadratically with the desired precision. The
technical noise challenges in situ control in a different way—if
the decision making of the optimization method is rigid and
based solely on a deterministic view of the fidelity landscape, it
is not hard to imagine how it would be limited by randomness
in the fidelity evaluations. Thus, it is important for our scheme
to allow for the stochastisity of the fidelity estimation.

Although in the standard paradigm the challenges in
modeling, estimation, and implementation are in principle
avoidable in a perfect world, those in actual control finding
are not. That is, in general, classical optimization of the
controls is inefficient. For our scheme to provide a solution
to this problem, we need to show that it is efficient. It is
illustrative to compare to two recent similar protocols, which
use both classical and in situ control: Ad-HOC [17] and ORBIT
[18]. Both protocols rely on the Nelder-Mead (NM) opti-
mization algorithm. We call our algorithm Adaptive Control
via Randomized Optimization Nearly Yielding Maximization
(ACRONYM).

ACRONYM can be divided into two distinct pieces: fidelity
estimation and stochastic optimization. Fidelity estimation
can be achieved by various means. For certain classes of
gates, efficient algorithms exist [9–12] and have already
been experimentally implemented [11,19–22]. However, any
fidelity estimation scheme requires many repeated experiments
to reduce the noise due to statistical fluctuations.

In Ad-HOC, the noise is modeled by a depolarizing channel,
and in ORBIT, the noise is some combination of technical
experimental noise and statistical noise due to finite sampling.
The latter provides an ultimate lower bound on the achievable
accuracy in Ad-HOC and ORBIT, whereas ACRONYM is
not limited by statistical noise. The reason, as observed in
Ref. [17], is due to the sensitivity of the NM algorithm
to fluctuations in fidelity. After describing ACRONYM, we
demonstrate that it is efficient in this sense of requiring only
a fixed number of experiments per iteration of the algorithm.
Broadly speaking, ACRONYM is implementation indepen-
dent, requiring only that changes in the control space produce
changes in the fidelity which can be estimated via experiment.

The outline of the paper is as follows. In Sec. II we
introduce the problem and our control algorithm ACRONYM.
Section III reports on numerical experiments benchmarking
the performance of the algorithm. Section IV contains some
further discussion and concludes the paper.

II. ACRONYM: ADAPTIVE CONTROL VIA RANDOMIZED
OPTIMIZATION NEARLY YIELDING MAXIMIZATION

A. Problem statement

Generally, the task is to select a set of controls c ∈ Rp,
where p is the dimension of the control space, such that the
implemented channel �c is a close as possible to some target
UT, assumed to be a unitary. The “closeness” is measured by
the channel fidelity f (c) := F (�c,UT), where we have defined
the object function f to maximize. When the implemented gate
is also unitary—the case we consider—we have

F (Uc,UT) = 1

d2
|Tr(U †

TUc)|2, (1)

where d is the dimension of the quantum system.
A classical simulation can provide an exact numerical

calculation of f , whereas a quantum simulation only provides
a single datum—many from which we can estimate f . Happily,
there exists efficient protocols to estimate f —for example,
randomized benchmarking [12], direct fidelity estimation via
Monte Carlo [9,10], or certification via twirling [11]. Let us
suppose that we are in some regime where we can consider a
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good estimate of the fidelity to be

f̂ (c) = E[f (c)], (2)

where the expectation value is taken with respect to the
distribution of data. Naturally, due to finite sample statistics,
this function is stochastic and thus the optimization term
“function call” takes on new meaning—the same set of controls
c might result in different function evaluations f̂ . Thus, the
problem of maximizing the fidelity becomes one of stochastic
optimization [23].

B. The in situ control algorithm

A particularly useful set of techniques for multidimensional
analysis goes by the name simultaneous perturbation stochas-
tic approximation (SPSA) [24]. In short, SPSA is an iterative
optimization technique which uses only two (noisy) function
calls per iteration to estimate the gradient. Our algorithm,
ACRONYM, is direct quantum analog of SPSA. The steps
of each iteration are outlined as follows: First, fix a tolerance
ε > 0. For each k, so long as ‖ck+1 − ck‖ > ε, repeat the steps
as follows:

(1) Generate a random direction to search in defined by
the vector �k . A recommended vector which we choose is
where each element is selected according to a fair coin toss:
�kj = ±1.

(2) Calculate the estimated gradient

gk = f̂ (ck + βk�k) − f̂ (ck − βk�k)

2βk

�k. (3)

(3) Calculate the next iteration via

ck+1 = ck + αk gk. (4)

The functions αk and βk control the convergence and are
user defined, although they are usually specified in the forms

αk = a

(k + 1)s
, βk = b

(k + 1)t
, (5)

where a,b,s, and t are chosen first roughly based on extensive
numerical studies for many problems and then tweaked based
on numerical simulations for the problem at hand. For refer-
ence, generally good choices are [25] a = b = 1, s = 0.602,
and t = 0.101, but we have found that the asymptotically
optimal values [24] s = 1 and t = 1/6 give good results across
all parameter regimes considered here.

C. Convergence discussion

There are a number of convergence results on stochastic
optimization and the variant we use [24,25]. All conclude that
the error in the design space decreases at rate O(kβc ) where
typically βc ∈ [−1/2,0]. Note that the lower bound comes
from standard statistical arguments. The actual performance
achieved depends on a number of often competing factors;
thus we allow the data to decide and compare to what might
be expected from asymptotic arguments.

Here, we are interested in the convergence in the objective
function—the fidelity—rather than the controls. First, we
argue that f will decrease as O(kβf ) for βf = 2βc. Assuming
f is differentiable and obtains its minimum at copt, the gradient

∇f (copt) = 0 and we obtain the bound

|f (ck) − f (copt)| � K

2
‖H [f ](copt)‖‖ck − copt‖2

2, (6)

K

2
‖H [f ](copt)‖k2βc , (7)

for some constant K and where H [f ](copt) is the Hessian
of second derivatives, evaluated at copt, and ‖H [f ](copt)‖ is
the spectral norm, the largest eigenvalue, of H [f ](copt). Thus,
we should still expect O(kβf ) convergence in fidelity, with
optimality given by βf ≈ −1. In the examples we consider,
we extract the exponents from fits to the simulation data. Since
we do not generally consider βc, we drop the subscript f on
βf from now on.

In discussing the performance of the algorithms considered
here, we refer to three numbers: N , the number of experiments
used for each fidelity estimate; M , the number of fidelity
estimates required for each iteration of the algorithm; and
k, the number of iterations. Thus, the total number of physical
experiments required after k iterations is Ntot = NMk. For
ACRONYM, M = 2 regardless of the dimension of the
control space or quantum system. Moreover, we show that
the performance is roughly independent of N . Thus we can
limit our attention to the performance as a function of k. For
NM, the situation is more complicated since the performance
depends crucially on N , and M randomly fluctuates. In all
cases considered below, however, ACRONYM outperforms
NM by any metric.

D. A tale of two fidelities

We acknowledge the apparent contradiction in claiming that
the fidelity converges when it is only known up to statistical
fluctuations of order 1/

√
N . However, our claim is that the

underlying fidelity (1) achieved by ACRONYM converges and
not the estimated fidelity (2)—the estimated fidelity from noisy
observation does not converge. The latter situation is simply a
consequence of finite statistics per iteration.

Though both fidelities are important in their own right,
the problem of control is to maximize the underlying fidelity,
rather than to verify it. As a consequence, the fidelity of the
currently selected control may be much closer to the optimal
fidelity than can be verified by experiments with the same
noise sources. In an experiment, the experimenter must trust
that the algorithm converges or verify the controls found at the
final iteration with more resources than used in their finding. In
settings where quantum control is expected to be an automated
subroutine, verifying the solution would not be expected in
production.

III. NUMERICAL EXPERIMENTS

A. Random single-qubit gates

The simplest demonstration is that of a qubit subjected to a
Hamiltonian, in some frame,

H (t) = ω0Z + ωc(t)X, (8)

where Z and X are the single-qubit Pauli operators, ω0Z is the
fixed drift Hamiltonian, and ωc(t)X is the control. The task is
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FIG. 2. (Color online) For the single-qubit random gate design problem, plotted is the infidelity (1-fidelity) of the ACRONYM and NM
algorithms as a function of the number of iterations for three different numbers of experiments per iteration: (Left to right) 102, 103, and 104.
The thick lines are the median of the data and the shaded region around each is the interquartile range (the middle 50% of the data). The thin
black lines are fits to the theoretical O(kβ ) scaling. We see that NM is limited by the noise in the function call while ACRONYM is not.

to choose ωc such that

Uc = exp ( − iH (t)) = UT. (9)

Even for this simple problem, there is no closed-form
solution, which is why we consider problem of fidelity
optimization. For this example, we average over targets
randomly generated from the Haar measure. We work in
dimensionless units where ω0 = 1 and the control is piecewise
constant [26] on the time intervals between {0,1,2, . . . ,p}
so that c = (ωc(1),ωc(2), . . . ,ωc(p)) ∈ Rp. We assume the
fidelity is estimated via finite sample statistics such that
the objective function in Eq. (2) is distributed according to
Nf̂ (c) ∼ Bin(N,f (c)), a binomial distribution, where N is
the number of experiments used to estimate the fidelity and the
binomial parameter is the true fidelity of the controls c. This
model for fidelity estimation was chosen as it conveniently
and intuitively demonstrates the key important limitation
of using nonstochastic optimization techniques: that fidelity
must be estimated from experimental samples. The actual
model will vary depending on the details of the experimental
implementation, but what remains is that fidelity estimation
is limited by statistical fluctuations—and here we explore the
ultimate shot-noise limits.

First, we demonstrate the utility of in situ control in general
before comparing different in situ strategies. Suppose in an
ex situ algorithm (such as Ref. [4]), the model above is not
quite correct. For example, suppose that the drift Hamiltonian
is incorrectly modeled such that Hdrift = Z + �H , for some
random perturbation �H . In particular, suppose ‖�H‖ =
0.01. Then the offline optimization will rapidly design a control
scheme for this model to hit the target UT. However, these
controls will implement a different unitary under the dynamics
of the true model. On the other hand, ACRONYM uses the true
model by fiat, but, as any in situ protocol, suffers a penalty for
not being able to exactly compute the objective function—it
must do so through experimental trials. In Fig. 1, we show
the performance of an offline algorithm with a bad model and
ACRONYM. As expected, the offline algorithm does quite

well until the errors in the model dominate. On the other hand,
ACRONYM continues to learn the optimal controls. Next,
we determine the asymptotic rate of learning and compare
ACRONYM to the NM algorithm.

In the following, then, we report on numerical experiments
which demonstrate that ACRONYM converges in fidelity to
the target at rate O(kβ) given by β ≈ −1. Since we show
the asymptotic performance is independent of the the number
of experiments per iteration, the overall performance appears
to scale as O(1/Ntot). The simulations and our optimization
algorithm, as well as comparisons [27] to the NM algorithm,
were implemented in PYTHON using SciPy [28]. The results
for the single-qubit problem are summarized in Fig. 2. As
expected, as more experimental samples are taken per iteration,
the statistical noise lessens and the fidelity given a fixed
number of iterations increases for NM. We also see that
NM optimization ceases to improve when the statistical noise
dominates its ability to guess the correct search direction.

For all qubit simulations the control space dimension is
p = 10 which would naively suggest that M = 20 fidelity
evaluations are required to estimate the gradient. We discuss
the NM algorithm further in the discussion of Sec. IV, but here
we note that for the simulations presented in Fig. 2 the average
number of function calls per iteration used by NM was M =
3.13, 50% more than ACRONYM which, requires exactly two
fidelity estimates, M = 2. Moreover, ACRONYM’s perfor-
mance is roughly independent of the number of experiments
per iteration, as shown in Fig. 3. We see that after N ≈ 104

experiments per fidelity estimate, there is no additional gain
in performance. This is important as it implies that very few
overall experiments indeed are needed to converge to the target
unitary. This is another way of seeing that additional experi-
ments are not needed at each iteration in order to converge—a
constant number of experiments suffices to converge.

B. C-NOT gate

In the first example, we considered single-qubit gates,
which are not sufficient for quantum computation. To enable
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FIG. 3. (Color online) For the single-qubit random gate design
problem, plotted is the infidelity (1-fidelity) of the ACRONYM as
a function of N , the number of experiments per fidelity estimate at
k = 104 iterations. The dimension of the control space is p = 10.
The thick line is the median of the data and the shaded region is the
interquartile range (the middle 50% of the data). This demonstrates,
with the results of Fig. 2, that more experiments per iteration of the
algorithm are not necessary to converge. At some point (here ≈104),
a constant number of experiments suffices.

universal quantum computing we require a two-qubit entan-
gling gate, the most commonly considered of which is the
controlled-NOT (C-NOT) [1]. Let the target UT then be the

C-NOT gate and the Hamiltonian be

H (t) = Hdrift + Hc(t), (10)

where the drift Hamiltonian consists of local Zeeman terms
and a Heisenberg exchange interaction:

Hdrift = δ1Z1 + δ2Z2 + J

2
(X1X2 + Y1Y2 + Z2Z2), (11)

and the control contains the transverse terms

Hc = cx,1(t)X1 + cx,2(t)X2 + cy,1(t)Y1 + cy,2(t)Y2, (12)

where the subscripts denote which qubit the operator acts
on. For the simulation, we take δ1 = −1δ2 = 10J = 1 and
have the controls be piecewise constant on the intervals
{0,1,2, . . . ,q} so that

c = (cx,1(1),cx,1(2), . . . ,cx,1(q),

cx,2(1), . . . ,cy,1(1), . . . ,cy,2(1), . . . ,cy,2(q)), (13)

which is now a vector in Rp with p = 4q.
Again, we consider the case of estimating the fidelity from

finitely many experiments. In Fig. 4, the infidelity is plotted
versus the number of iterations for both N = 103 and N = 104

number of experiments per fidelity for both ACRONYM and
NM. In this case we used q = 10, which means the dimension
of the search space was p = 40. A standard finite differ-
ence gradient approximation would require M = 80 fidelity
estimations per iteration while ACRONYM requires exactly
M = 2 (for this problem NM used an average of M = 3.23
function calls per iteration—62% more than ACRONYM).
From Fig. 4, we see that ACRONYM continues to convergence
after NM has saturated, which occurs quite rapidly for even
N = 104 experiments per fidelity estimate. The convergence
of ACRONYM is again O(kβ) with fits giving β ≈ −1.
These numerical examples suggest ACRONYM has superior
performance for in situ control.

ACRONYM

ACRONYM

Nelder-Mead
Nelder-Mead
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FIG. 4. (Color online) For the control problem of designing a controlled-NOT (C-NOT) gate, plotted is the infidelity (1-fidelity) of ACRONYM
and NM as a function of the number of iterations for N = 103 and N = 104 experiments per iteration. The thick lines are the median of the
data and the shaded region is the interquartile range (the middle 50% of the data). As shown for the single-qubit problem in the figures above,
ACRONYM converges while NM does not.

052306-5



CHRISTOPHER FERRIE AND OSAMA MOUSSA PHYSICAL REVIEW A 91, 052306 (2015)

ACRONYM

Nelder-Mead

Iterations

In
fid
el
ity

FIG. 5. (Color online) Back to the single-qubit problem, now
with added with control noise. Plotted is the infidelity (1-fidelity)
of the ACRONYM and NM algorithms as a function of the number
of iterations. ACRONYM used N = 103 experiments per function
evaluation, but NM was given exact fidelity values. Both methods
were subjected to independent zero-mean Gaussian noise on each
control component with standard deviation 10−2. Even with exactly
fidelity values, NM is limited by the control noise. ACRONYM is
robust to both statistical and control noise.

C. Robustness to control noise

Finally, we show that ACRONYM is robust by con-
sidering an additional source of noise, namely imperfect
implementation of the controls. To model this, we add to
every experimental iteration independent zero-mean Gaussian
noise on each component cj of the control vector. To be
precise, each fidelity estimate is expected to be performed
using the control parameters c, but what actually happens is
c + ε, where ε is drawn according to a zero-mean multivariate
normal distribution with diagonal covariances of 10−2. The
results are shown in Fig. 5. As in Fig. 2 (right), ACRONYM
used N = 104 experiments for each fidelity evaluation (2
per iteration, recall). However, we gave NM exact fidelity
values—essentially infinitely many experiments for free. Both
methods were then subjected to control noise of strength
(standard deviation) 10−2. We see that even when NM has
perfect fidelity evaluation, the added noise renders the method
useless (additional noise on fidelity estimation leave the NM
approach learning nothing at all), whereas ACRONYM is
robust to the added noise, maintaining convergence at a rate
given by β ≈ −1. This shows that ACRONYM is robust
to many simultaneous sources of noise, both statistical and
technical.

IV. CONCLUSION AND DISCUSSION

Before we conclude, we distinguish some further discussion
points, speculation, and directions for future research.

A. More on noise

So far, we have assumed that the noise on the fidelity
estimation instances is completely independent and identically
distributed, and we have shown that ACRONYM, by virtue of
accounting for the stochasticity of the fidelity evaluations, is
not limited by this type of noise. However, in real experiments,
noise comes in more flavors. So, what other kinds of noise
is ACRONYM robust to? The original convergence proof of
Spall [24] only required that the expected difference of the
noise at each function evaluation be zero. In other words, the
noise need not be assumed independent. Thus, for example,
low-frequency drifts should not be a problem, but higher
frequency drifts may result in a bias in the gradient estimate at
each evaluation. Conveniently, in most scenarios, it is the low-
frequency noise that is more difficult to detect and correct while
the problem high-frequency noise is more routinely dealt with.

Another common example of noise in the quantum device
characterization literature is state preparation and measure-
ment (SPAM) error. As demonstrated in randomized bench-
marking and self-consistent approaches [29,30], however,
SPAM errors can be cleverly mitigated. In any case, the story
remains the same as above: If the noise biases the gradient
estimates, the algorithm will not necessarily converge.

We note that while ACRONYM solves the optimization
problem even in the presence of additional control noise, the
final implementation itself will not be robust to the same
noise. That is, ACRONYM finds the controls which would
have the highest fidelity without noise but does not find a set
of controls have the same robustness properties as typically
sought after, such as optimal average or worst-case fidelity
when varying over the distribution of noise (see, for example,
Refs. [31,32]). In a sense, ACRONYM solves the problem—in
the presence of noise—as if the noise were not present. One
can imagine, for example, using such a technique to “tune up”
gates first in the presence of noise before spending resources to
fine-tune the control mechanism. On the other hand, it would
also be interesting to combine this approach to the robustness
techniques in, for example, Refs. [31,32].

B. More on Nelder-Mead

While ACRONYM requires only M = 2 function calls per
iteration, NM is still doing impressively well at only M ≈ 3.5,
on average. Unfortunately, there is little more we can say
since, although NM is widely popular and successful, it still
lacks (after 50 years) a satisfactory convergence proof [33].
Moreover, in many applications, it is found to underperform
in high dimensions [33].

As countless others have empirically observed, NM does
work very well in some cases. In fact, we have seen that there
are some regimes where NM outperforms ACRONYM. These
are typically earlier in the search where the noise in the function
call is dominated by the distance in the objective function to the
optimal point. Perhaps, then, a more efficient adaptive protocol
exists which begins with NM and switches to ACRONYM?

Although we have harped on NM for not performing well
in the presence of noise, we do note that some variants of NM
have been proposed to deal with stochasticity in the objective
function [34]. It is unclear how well such methods would
perform on quantum control problems.
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C. Learning-type control

Recall the update rule for the controls:

ck+1 = ck + αk gk. (14)

Generically, one could have a law of the form

ck+1 = A(ck), (15)

with the obvious demand that the optimal solution be the
unique fixed point ofA. Specific algorithms in classical control
theory of this type, dubbed learning-type control, typically
use linear models for the output (see, for example, Ref. [35])
and are hence not immediately applicable to the quantum
control problem. It would be interesting, however, to look
to this more general formalism for potential improvements
over ACRONYM. Ideally, we would like to replace the two
function calls demanded by SPSA by one—perhaps allowing
that the updated controls are a specification of experiment to be
performed. This would further minimize the role of additional
classical computation and may give new insights into quantum
automation and learning problems.

D. Parametrization freedom

The ex situ paradigm of pulse design, due to the enduring
inefficiency of simulating arbitrary time-dependent Hamilto-
nians on a classical computer, imposes a preference on the
parametrization of the controls. In most cases, the preferred
parametrization is one that leads to the Hamiltonian being
piecewise time independent in some frame, simplifying the
computation of the overall quantum propagator on a classical
computer (as a time-ordered product of exponentials instead
of the more costly time-ordered exponentiation of an integral.)
This parametrization is further encouraged by the ability to
approximate the gradient of the fidelity given the already
computed stepwise propagators [4].

Switching to an in situ setting allows for more freedom in
the choice of parametrization, for one is no longer required to
simulate the quantum dynamics on a classical computer. That
is to say, the choice of the parametrization can be driven by
other requirements or preferences. For example, one could
potentially choose a parametrization with few parameters,
greatly reducing the parameter space over which the optimiza-
tion is performed. Another could look for a parametrization
that has a better fidelity landscape; making the identification

or optimization problem easier. Yet another parametrization
could more readily and naturally specify other constraints
on the pulse form like frequency bandwidth or frequency
selectivity. In general, we posit that any parametrization that
deterministically maps the parameter space onto realizable
wave forms can be used with in situ algorithms.

It is understood of course that time ordering is important in
quantum mechanics. Yet, one wonders if thinking about global
approaches as opposed to temporally local parametrizations
would be beneficial, since, after all, the goal is to design an
overall propagator as opposed to an instantaneous Hamilto-
nian. That is to say, what matters in quantum gate design is the
destination not the route.

At any rate, we expect that this freedom of parametrization
will allow researchers to choose parametrizations that are more
natural or better suited to their specific problems and will
encourage the diversification of approaches, from which an
evolved approach better suited to the general problem of pulse
design will arise.

E. Conclusion

In this work, we have introduced ACRONYM, a stochastic
optimization algorithm to design in situ control sequences for
quantum information processing tasks. The fact that fidelity
estimation can be done efficiently (via randomized benchmark-
ing, for example) and our algorithm requires a constant number
of experiments per iteration—regardless of the dimension of
the control space—implies that ACRONYM is efficient. We
have also demonstrated that it is robust not only to the statistical
noise inherent in in situ fidelity estimation but also to noise
on the control fields. Moreover, ACRONYM is implementa-
tion independent—it requires only that the controls produce
changes in the fidelity which can be estimated via experiment.
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