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We address a broad class of optimization problems of finding quantum measurements, which includes the
problems of finding an optimal measurement in the Bayes criterion and a measurement maximizing the average
correct probability with a fixed rate of inconclusive results. Our approach can deal with any problem in which
each of the objective and constraint functions is formulated by the sum of the traces of the multiplication of a
Hermitian operator and a detection operator. We first derive dual problems and necessary and sufficient conditions
for an optimal measurement. We also consider the minimax version of these problems and provide necessary and
sufficient conditions for a minimax solution. Finally, for optimization problem having a certain symmetry, there
exists an optimal solution with the same symmetry. Examples are shown to illustrate how our results can be used.
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I. INTRODUCTION

Discrimination between quantum states is a fundamental
topic in quantum information theory. Research in quantum
state discrimination was pioneered by Helstrom, Holevo, and
Yuen et al. [1–3] in the 1970s and has attracted intensive
attention. It is well known in quantum mechanics that
nonorthogonal states cannot be discriminated with certainty.
Thus, optimal measurement strategies have been proposed
under various criteria. Among them, one of the most widely
investigated is the Bayes criterion, or the criterion of mini-
mum average error probability [1–3]. In the Bayes criterion,
necessary and sufficient conditions for obtaining an optimal
measurement have been formulated [1–4], and closed-form
analytical expressions for optimal measurements have also
been derived in some cases (see, e.g., [5–9]). This criterion is
based on the assumption that prior probabilities of the states are
known. In contrast, if these prior probabilities are unknown,
then minimax criteria are often used [10,11]. Necessary and
sufficient conditions for a measurement minimizing the worst
case of the average error probability in the minimax strategy
have been found [10]. This result has also been extended to
the average Bayes cost [12].

Other types of optimal measurements have been investi-
gated. In the case in which prior probabilities of the states are
known, an example concerns a measurement that achieves
low average error probability at the expense of allowing
for a certain fraction of inconclusive results [13–15]. In
particular, an unambiguous (or error-free) measurement that
maximizes the correct probability, which is called an optimal
unambiguous measurement, has been well studied [13–15]. A
measurement that maximizes the average correct probability
with a fixed average inconclusive (or failure) probability,
which is called an optimal inconclusive measurement, has
also been studied [16–18]. Moreover, a measurement that
maximizes the average correct probability where a certain fixed
average error probability is allowed, which we call an optimal
error margin measurement, has also been investigated [19–21].
On the other hand, in the case in which prior probabilities are

unknown, several types of measurements based on the mini-
max strategy have been proposed, such as a measurement that
minimizes the maximum probability of detection errors [22]
and a measurement with a certain fraction of inconclusive
results [23]. Properties of optimal measurements in the above
criteria, such as necessary and sufficient conditions for optimal
solutions, have been derived for each criterion.

In this paper, we investigate optimization problems of
finding optimal quantum measurements and their minimax
versions that are applicable to a wide range of quantum
state discrimination problems. Our approach can deal with
any problem in which each of the objective and constraint
functions is formulated by the sum of the traces of the
multiplication of a Hermitian operator and a detection operator,
which implies that any problems related to finding any of the
optimal measurements described above can be formulated as
our problems. Thus, we can say that our approach can provide
a unified treatment in a large class of problems. The results
obtained in this paper would be valuable from the practical
point of view; for example, they not only provide a broader
perspective than the results for a particular problem, but also
can apply to many problems that have not been reported
previously, some examples of which are presented in this
paper. To obtain knowledge about an optimal measurement
in a new criterion has the potential to create a new application
of quantum state discrimination.

In Sec. II, we provide a generalized optimization problem
in which each of the objective and constraint functions is
formulated by the sum of the traces of the multiplication of a
Hermitian operator and a detection operator. We derive its dual
problem and necessary and sufficient conditions for an optimal
measurement. In Sec. III, we discuss the minimax version of
our generalized problem and provide necessary and sufficient
conditions for a minimax solution. In Sec. IV, we demonstrate
that if a given problem has a certain symmetry, then there
exists an optimal solution with the same symmetry. Finally,
we present some examples to illustrate the applicability of our
results in Sec. V.
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II. GENERALIZED OPTIMAL MEASUREMENT

A. Formulation

We consider a quantum measurement on a Hilbert space H.
Such a quantum measurement can be modeled by a positive
operator-valued measure (POVM) � = {�̂m : m ∈ IM} on
H, where M is the number of the detection operators and
Ik = {0,1, . . . ,k − 1}. An example of a quantum measurement
is an optimal measurement for distinguishing R quantum states
represented by density operators ρ̂r (r ∈ IR). The density oper-
ator ρ̂r satisfies ρ̂r � 0 and has unit trace, i.e., Trρ̂r = 1, where
Â � 0 denotes that Â are positive semidefinite (similarly,
Â � B̂ denotes Â − B̂ � 0). A minimum error measurement
is such an optimal measurement, which can be expressed
by a POVM with M = R detection operators. A quantum
measurement that may return an inconclusive answer can be
expressed by a POVM with M = R + 1 detection operators;
in this case the detection operator �̂r (r ∈ IR) corresponds
to identification of the state ρ̂r , while �̂R corresponds to the
inconclusive answer.

Let M be the entire set of POVMs on H that consist of M

detection operators. � ∈ M satisfies

�̂m � 0, ∀ m ∈ IM,

M−1∑
m=0

�̂m = 1̂, (1)

where 1̂ is the identity operator on H. In addition, let S and S+
be the entire sets of Hermitian operators onH and semidefinite
positive operators on H, respectively. Let R and R+ be the
entire sets of real numbers and non-negative real numbers,
respectively, and RN

+ be the entire set of collections of N

nonnegative real numbers.
Here we consider a generalized optimization problem.

The conditional probability that the measurement outcome
is m when a quantum state ρ̂ is given is represented by
Tr(ρ̂�̂m), and thus there exist many optimization problems
of finding optimal quantum measurements such that each of
the objective and constraint functions is expressed by a linear
combination of forms Tr(ρ̂r �̂m). For this reason, we consider
an optimization problem,

maximize f (�) =
M−1∑
m=0

Tr(ĉm�̂m)

subject to � ∈ M◦, (2)

where ĉm ∈ S holds for any m ∈ IM . (Note that any linear
combination of positive semidefinite operators is a Hermitian
operator.) M◦ is expressed by

M◦ =
{

� ∈ M :
M−1∑
m=0

Tr(âj,m�̂m) � bj ,∀ j ∈ IJ

}
, (3)

where âj,m ∈ S and bj ∈ R hold for any m ∈ IM and j ∈ IJ .
J is a non-negative integer. We should mention that an equality
constraint [e.g., Tr(âj,0�̂0) = bj ] can be replaced by two in-
equality constraints [e.g., Tr(âj,0�̂0) � bj and Tr(−âj,0�̂0) �
−bj ]. We call an optimal solution to problem (2) a generalized
optimal measurement or simply an optimal measurement.

Problem (2) is said to be a primal problem. Since f (�) is linear
in � and M◦ is convex, problem (2) is a convex optimization
problem. Note that since the constraint of � ∈ M, i.e., Eq. (1),
can be rewritten as Tr(ρ̂�̂m) � 0 and

∑M−1
m=0 Tr(ρ̂�̂m) = 1 for

any density operator ρ̂, we can say that each of the objective
and constraint functions is formulated by the sum of the traces
of the multiplication of a Hermitian operator and a detection
operator.

B. Examples

We give some examples of optimization problems of finding
quantum measurements that can be formulated as problem (2).
Let us consider discrimination between R quantum states {ρ̂r :
r ∈ IR} with prior probabilities {ξr : r ∈ IR}.

1. Optimal measurement in the Bayes criterion

The optimization problem of finding an optimal measure-
ment in the Bayes criterion is formulated as [1–3]

minimize
R−1∑
m=0

Tr(Ŵm�̂m)

subject to � ∈ M. (4)

Ŵm ∈ S+ (m ∈ IR) can be expressed by

Ŵm =
R−1∑
r=0

ξrBm,r ρ̂r , (5)

where Bm,r ∈ R+ holds for any m,r ∈ IR . This problem can
be written as the form of problem (2) with

M = R, J = 0, ĉm = −Ŵm. (6)

2. Optimal error margin measurement

An optimal error margin measurement is a measurement
maximizing the average correct probability under the con-
straint that the average error probability is not greater than
a given value ε, with 0 � ε � 1 [19–21]. In particular, if
ε = 0, then an optimal error margin measurement is equivalent
to an optimal unambiguous measurement. The optimization
problem of finding an optimal error margin measurement is
formulated as

maximize
R−1∑
r=0

ξrTr(ρ̂r �̂r )

subject to � ∈ M,

R−1∑
r=0

ξrTr[ρ̂r (�̂r + �̂R)] � 1 − ε, (7)

where we consider that the statement that the average error
probability is not greater than ε is equivalent to the statement
that the sum of the average correct and inconclusive probabil-
ities is not less than 1 − ε. This problem can be written as the
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form of problem (2), with

M = R + 1,

J = 1,

ĉm =
{

ξmρ̂m, m < R,

0, m = R,
(8)

â0,m =
{−ξmρ̂m, m < R,

−Ĝ, m = R,

b0 = ε − 1,

where

Ĝ =
R−1∑
r=0

ξr ρ̂r . (9)

Note that an optimal error margin measurement has strong re-
lationship with an optimal inconclusive measurement [24,25].
However, if one wants to obtain an optimal error margin
measurement for a given ε, then one needs to solve problem (7)
instead of the problem of finding an optimal inconclusive
measurement. Also note that in the case of ε = 0 (i.e.,
an optimal unambiguous measurement), one can use the
fact that any optimal measurement {�̂�

m : m ∈ IR+1} satisfies
ρ̂r �̂

�
m = 0 for any r �= m ∈ IR , although we do not use it in

this paper. Several techniques based on this fact have been
developed, and in recent years important progress has been
made [26–30].

3. Optimal inconclusive measurement with a lower bound
on correct probabilities

Another example is an extension of the problem of
finding an optimal inconclusive measurement. An optimal
inconclusive measurement is a measurement maximizing the
average correct probability under the constraint that the
average inconclusive probability equals a given value p with
0 � p � 1 [16–18]. Here we add the constraint that for each
r ∈ IR the correct probability of the state ρ̂r , i.e., Tr(ρ̂r �̂r ),
is not less than a given value q with 0 � q � 1. When q = 0,
an optimal solution is an optimal inconclusive measurement.
This problem is formulated as

maximize
R−1∑
r=0

ξrTr(ρ̂r �̂r )

subject to � ∈ M,Tr(ρ̂r �̂r ) � q, ∀ r ∈ IR,

Tr(Ĝ�̂R) = p, (10)

where Ĝ is defined by Eq. (9). Since the optimal value of
problem (10) is monotonically decreasing with respect to p, we
obtain the same solution if the last constraint of problem (10) is
replaced with Tr(Ĝ�̂R) � p. Thus, this problem is equivalent
to problem (2) with

M = J = R + 1,

ĉm =
{

ξmρ̂m, m < R,

0, m = R,

âj,m =
{−δm,j ρ̂m, j < R,

−δm,RĜ, j = R,

bj =
{−q, j < R,

−p, j = R,
(11)

where δk,k′ is the Kronecker δ. Note that if q > q ′ holds, where
q ′ is the average correct probability of an optimal inconclusive
measurement with the average inconclusive probability of p,
then this problem is infeasible; i.e., M◦ is empty. We discuss
this problem in detail in Sec. V A.

C. Dual problem

In this section, we show the dual problem of problem (2).
We also show that the optimal values of primal problem (2)
and the dual problem are the same.

Theorem 1. Let us consider problem (2). We also consider
an optimization problem,

minimize s(X̂,λ) = TrX̂ +
J−1∑
j=0

λjbj

subject to X̂ � ẑm(λ), ∀ m ∈ IM, (12)

with variables X̂ ∈ S and λ = {λj ∈ R+ : j ∈ IJ } ∈ RJ
+,

where

ẑm(λ) = ĉm −
J−1∑
j=0

λj âj,m. (13)

If M◦ is not empty, then the optimal values of problems (2)
and (12) are the same.

Problem (12) is called the dual problem of problem (2).
Note that, in general, X̂ satisfying the constraints of prob-
lem (12) is not in S+; however, it is obvious that if m ∈ IM

exists such that ẑm ∈ S+, then X̂ ∈ S+ holds.
Proof. Let us define the function L as

L(�,σ,X̂,λ)

= f (�) +
M−1∑
m=0

Tr(σ̂m�̂m) + Tr

[
X̂

(
1̂ −

M−1∑
m=0

�̂m

)]

+
J−1∑
j=0

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂m)

]
, (14)

where σ = {σ̂m ∈ S+ : m ∈ IM}, X̂ ∈ S, and λ ∈ RJ
+. Note

that L is called the Lagrangian for problem (2). Substituting
Eqs. (2), (12), and (13) into Eq. (14) gives

L(�,σ,X̂,λ) = s(X̂,λ) +
M−1∑
m=0

Tr{[σ̂m + ẑm(λ) − X̂]�̂m}.

(15)
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Let us consider an optimization problem,

minimize sσ (σ,X̂,λ)

subject to σ̂m ∈ S+, ∀ m ∈ IM,

X̂ ∈ S,

λ ∈ RJ
+,

(16)

where

sσ (σ,X̂,λ) = max
�∈SM+

L(�,σ,X̂,λ) (17)

and SM
+ = {�̂m ∈ S+ : m ∈ IM}. Let X = {X̂ : X̂ � σ̂m +

ẑm(λ),∀ m ∈ IM}. The second term of the right-hand side of
Eq. (15) is nonpositive if X̂ ∈ X and can be infinite if X̂ �∈ X .
Therefore, from Eq. (17), sσ (σ,X̂,λ) can be expressed as

sσ (σ,X̂,λ) =
{

s(X̂,λ), X̂ ∈ X ,

∞, otherwise.
(18)

From Eq. (18), it follows that there exists an optimal
solution to problem (16) such that σ̂m = 0 holds for any m ∈
IM . Indeed, if (σ,X̂,λ) is an optimal solution to problem (16)
[in this case, X̂ ∈ X holds from Eq. (18)], then ({σ̂ ′

m = 0 : m ∈
IM},X̂,λ) is also an optimal solution. Hence, problem (16) can
be rewritten by problem (12).

Slater’s condition is known to a sufficient condition under
which, if the primal problem is convex, the optimal values of
the primal and dual problems are the same [31]. Since each
constraint of primal problem (2), including the constraint of
� ∈ M, is expressed as a form of uj (�) � 0, where uj is
an affine function of �, from Ref. [32], (the refined form of)
Slater’s condition is that the primal problem is feasible; i.e.,
M◦ is not empty. Thus, since Slater’s condition holds, the
optimal values of problems (2) and (12) are the same. �

It is worth noting that some attempts have been made to
obtain the maximum average correct probability without using
the fact that POVMs describe quantum measurements [33–35].
In Ref. [33], the dual problem to the problem of finding
a minimum error measurement was derived from general
probabilistic theories. In Refs. [34,35], the dual problem was
derived from “ensemble steering,” which determines what
states one party can prepare on the other party’s system by
sharing a bipartite state. In the same way, we can derive
dual problem (12) without using POVMs (see the Appendix ).
However, it might not be easy to prove that the optimal value
of problem (12) is attained by using these approaches.

D. Conditions for an optimal measurement

Necessary and sufficient conditions for an optimal mea-
surement in several problems (such as a minimum error
measurement and an optimal inconclusive measurement)
have been derived [1–4,17,18,26,36]. The following theorem
extends these results to our more general setting.

Theorem 2. Suppose that a POVM � is in M◦. The
following statements are all equivalent.

(1) � is an optimal measurement of problem (2).

(2) X̂ ∈ S and λ ∈ RJ
+ exist such that

X̂ − ẑm(λ) � 0, ∀ m ∈ IM, (19)

[X̂ − ẑm(λ)]�̂m = 0, ∀ m ∈ IM, (20)

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂m)

]
= 0, ∀ j ∈ IJ . (21)

(3) λ ∈ RJ
+ exists such that

M−1∑
n=0

ẑn(λ)�̂n − ẑm(λ) � 0, ∀ m ∈ IM, (22)

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂m)

]
= 0, ∀ j ∈ IJ . (23)

Proof. It is sufficient to show (1) ⇒ (2), (2) ⇒ (3), and
(3) ⇒ (1).

First, we show (1) ⇒ (2). Suppose that (X̂,λ) is an optimal
solution to dual problem (12). Let σ̂m = 0 for any m ∈ IM . It
is obvious from Eq. (12) that Eq. (19) holds. From Theorem 1,
f (�) = s(X̂,λ) holds. Moreover, from � ∈ M◦, the second
and third terms of the right-hand side of Eq. (14) are zero, and
the fourth term is non-negative, which yields

L(�,σ,X̂,λ) � f (�) = s(X̂,λ). (24)

In contrast, from Eq. (19) and the fact that the trace of
the multiplication of two positive semidefinite operators is
non-negative, Tr{[X̂ − ẑm(λ)]�̂m} � 0 holds for any m ∈ IM ,
which yields L(�,σ,X̂,λ) � s(X̂,λ) from Eq. (15). Thus, from
Eq. (24), we obtain L(�,σ,X̂,λ) = s(X̂,λ), i.e.,

Tr{[X̂ − ẑm(λ)]�̂m} = 0, ∀ m ∈ IM. (25)

Therefore, using the fact that ÂB̂ = 0 holds for any Â,B̂ ∈ S+
satisfying Tr(ÂB̂) = 0 yields Eq. (20). From L(�,σ,X̂,λ) =
f (�), the fourth term of the right-hand side of Eq. (14) must
be zero. Therefore, Eq. (21) holds.

Next, we show (2) ⇒ (3). From Eq. (20), X̂�̂m = ẑm(λ)�̂m

holds. Summing this equation over m = 0, . . . ,M − 1 yields
X̂ = ∑M−1

m=0 ẑm(λ)�̂m, which gives Eq. (22). Equation (23)
obviously holds from Eq. (21).

Finally, we show (3) ⇒ (1). Let X̂ = ∑M−1
m=0 ẑm(λ)�̂m. We

have that for any POVM �′ = {�̂′
m : m ∈ IM} ∈ M◦,

f (�) − f (�′) � f (�) +
J−1∑
j=0

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂m)

]

−f (�′) −
J−1∑
j=0

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂′
m)

]

= TrX̂ −
M−1∑
m=0

Tr[ẑm(λ)�̂′
m]

=
M−1∑
m=0

Tr{[X̂ − ẑm(λ)]�̂′
m} � 0, (26)
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where the first inequality follows from Eq. (23) and∑M−1
m=0 Tr(âj,m�̂′

m) � bj . The last inequality follows from
Eq. (22); i.e., X̂ � ẑm(λ). Since f (�) � f (�′) holds for
any POVM �′ ∈ M◦, � is an optimal measurement of
problem (2). �

Let �� = {�̂�
m : m ∈ IM} and (X̂�,λ�) be, respectively,

optimal solutions to primal problem (2) and dual problem (12).
From Eq. (20), the support of �̂�

m is included in the kernel of
X̂� − ẑm(λ�) for any m ∈ IM . In particular, if the supports
of the operators {ẑm(λ�) : m ∈ IM} span H (which holds in
many cases of interest), then rankX̂� = dimH holds, which
gives rank�̂�

m � rankẑm(λ�) from Eq. (20). Statement (3) can
be more readily used to verify whether a POVM � is optimal
than statement (2); we only need to check whether λ ∈ RJ

+
exists such that Eqs. (22) and (23) hold, which would be easy
if J is sufficiently small.

III. GENERALIZED MINIMAX SOLUTION

A. Formulation

In this section, we consider the quantum minimax strategy,
which provides a different type of problem from those dis-
cussed in the previous section. The quantum minimax strategy
has been investigated [10–12,22,23] under the assumption
that the collection of prior probabilities is not given. We
investigate the minimax strategy for a generalized quantum
state discrimination problem.

Let K be a positive integer. Also, let P be the entire set
of collections of K non-negative real numbers, μ = {μk � 0 :
k ∈ IK}, satisfying

∑K−1
k=0 μk = 1, which implies that μ ∈ P

can be interpreted as a probability distribution. We consider a
function F (μ,�),

F (μ,�) =
K−1∑
k=0

μkfk(�),

fk(�) =
M−1∑
m=0

Tr(ĉk,m�̂m) + dk, (27)

where ĉk,m ∈ S and dk ∈ R hold for any m ∈ IM and k ∈
IK . We want to find a POVM � ∈ M◦ that maximizes the
worst-case value of F (μ,�) over μ ∈ P , i.e., minμ∈P F (μ,�),
where M◦ is defined by Eq. (3). In the case of K = 1, this
problem is equivalent to problem (2) with ĉm = ĉ0,m and d0 =
0. Therefore, this problem can be regarded as an extension of
problem (2).

We can see that if M◦ is not empty, then the so-called
minimax theorem holds; that is, there exists (μ�,��) satisfying
the following equations:

max
�∈M◦

min
μ∈P

F (μ,�) = F (μ�,��) = min
μ∈P

max
�∈M◦

F (μ,�). (28)

Indeed, M◦ and P are closed convex sets, and F (μ,�)
is a continuous convex function of μ for fixed � and a
continuous concave function of � for fixed μ, which are
sufficient conditions for the minimax theorem to hold [37].
We call (μ�,��), μ�, and ��, respectively, a minimax solution,
minimax probabilities, and a minimax measurement. (μ�,��)
is a minimax solution if and only if (μ�,��) is a saddle point
of F (μ,�), i.e., the following inequalities hold for any μ ∈ P

and � ∈ M◦ [37]:

F (μ�,�) � F (μ�,��) � F (μ,��). (29)

Let

F�(μ) = max
�∈M◦

F (μ,�), (30)

with μ ∈ P . It follows from Eq. (29) that F�(μ�) = F (μ�,��)
holds. From Eq. (27), F (μ,�) can be expressed by

F (μ,�) =
K−1∑
k=0

μk

[
M−1∑
m=0

Tr(ĉk,m�̂m) + dk

]

=
M−1∑
m=0

Tr

[(
K−1∑
k=0

μkĉk,m

)
�̂m

]
+

K−1∑
k=0

μkdk. (31)

Thus, F�(μ) for a given μ ∈ P can be obtained by finding � ∈
M◦ that maximizes the first term of the second line of Eq. (31),
which is formulated as problem (2) with cm = ∑K−1

k=0 μkĉk,m.

B. Examples

We give some examples of minimax problems that can be
formulated as Eq. (27). Let us consider discrimination between
R quantum states {ρ̂r : r ∈ IR}.

1. Minimax solution in the Bayes strategy

The minimax strategy in which the average Bayes cost
is used as the objective function has been investigated in
Ref. [12]. We regard μ ∈ P with K = R as prior probabilities
of the states {ρ̂r : r ∈ IR}. The aim of this problem is to find
a POVM � that minimizes the worst-case average Bayes cost
B(μ,�) over μ ∈ P . B(μ,�) is expressed by

B(μ,�) =
R−1∑
m=0

Tr[Ŵm(μ)�̂m],

Ŵm(μ) =
R−1∑
k=0

μkBm,kρ̂k, (32)

where Bm,k ∈ R+ holds for any m,k ∈ IR . This problem can
be expressed by a form of Eq. (27) with F (μ,�) = −B(μ,�).
In this case, we have

fk(�) = −
R−1∑
m=0

Tr[(Bm,kρ̂k)�̂m], ∀ k ∈ IR,

M◦ = M; (33)

i.e.,

M = K = R, J = 0, ĉk,m = −Bm,kρ̂k, dk = 0. (34)

2. Inconclusive minimax solution

The application to the minimax strategy to state discrim-
ination that allows a nonzero inconclusive probability has
been investigated in Ref. [23]. The aim of this problem is
to find a POVM �, which we call an inconclusive minimax
measurement, which maximizes the worst-case value of the
sum of the average correct and inconclusive probabilities under
the constraint that Tr(ρ̂j �̂R) is not greater than a given value
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p, with 0 � p � 1 for any j ∈ IR . In particular, if p = 0, then
an inconclusive minimax measurement is a standard minimax
measurement without inconclusive results [10]. Let K = R

and μ ∈ P be prior probabilities of the states {ρ̂r : r ∈ IR};
then, this problem can be expressed by a form of Eq. (27) with

fk(�) = Tr[ρ̂k(�̂k + �̂R)], ∀ k ∈ IR,

M◦ = {� ∈ M : Tr(ρ̂j �̂R) � p, ∀ j ∈ IR}. (35)

That is, we have

M = R + 1,

K = J = R,

ĉk,m =
{

ρ̂k, m = k or m = R,

0, otherwise,
(36)

dk = 0,

âj,m = δm,Rρ̂j ,

bj = p.

3. Minimax solution for plural state sets

We consider a quantum measurement that maximizes the
worst-case average correct probabilities for plural quantum
state sets {
k : k ∈ IK} with K � 2 as another example,
where, for each k ∈ IK , 
k is a set of R quantum states,

k = {ρ̂k,r : r ∈ IR}, with prior probabilities {ξk,r : r ∈ IR}.
This problem can be expressed by a form of Eq. (27) with

fk(�) =
R−1∑
m=0

Tr(ρ̂ ′
k,m�̂m), ∀ k ∈ IK,

M◦ = M, (37)

where ρ̂ ′
k,r = ξk,r ρ̂k,r . That is, we have

M = R, J = 0, ĉk,m = ρ̂ ′
k,m, dk = 0. (38)

We discuss this problem in detail in Sec. V B.

C. Properties of a minimax solution

We show necessary and sufficient conditions for a minimax
solution in Theorem 3 and an optimization problem of
obtaining a minimax measurement in Theorem 4.

Theorem 3. Suppose that μ� ∈ P and �� ∈ M◦ hold. The
following statements are all equivalent.

(1) (μ�,��) is a minimax solution to Eq. (27).
(2) We have that for any k ∈ IK ,

fk(��) � F�(μ�). (39)

(3) We have that for any k,k′ ∈ IK such that μ�
k′ > 0,

fk(��) � fk′(��). (40)

Proof. It suffices to show (1) ⇔ (2) and (2) ⇔ (3).
First, we show (1) ⇒ (2). Let μ(k) = {μk′ = δk,k′ : k′ ∈

IK}. From Eq. (29) and F�(μ�) = F (μ�,��), we have that
for any k ∈ IK ,

fk(��) = F (μ(k),��) � F (μ�,��) = F�(μ�). (41)

Thus, Eq. (39) holds.

Next we show (2) ⇒ (1). From Eqs. (30) and (39), We
obtain, for any μ ∈ P and � ∈ M◦,

F (μ�,�) � F�(μ�) �
K−1∑
k=0

μkfk(��) = F (μ,��). (42)

Substituting μ = μ� and � = �� into this equation gives
F�(μ�) = F (μ�,��). Thus, from Eq. (42), Eq. (29) holds,
which means that (μ�,��) is a minimax solution to Eq. (27).

Then, we show (2) ⇒ (3). From Eq. (39) and the definition
of F�(μ), F (μ�,��) = F�(μ�) must hold. Thus, we have

fk(��) = F�(μ�), ∀ k ∈ IK such that μ�
k > 0,

fk(��) � F�(μ�), ∀ k ∈ IK such that μ�
k = 0, (43)

from which we can easily see that Eq. (40) holds.
Finally, we show (3) ⇒ (2). From Eq. (40), fk(��) =

fk′(��) holds for any k,k′ ∈ IK satisfying μ�
k > 0 and μ�

k′ > 0.
Thus, according to the definition of F�(μ), F�(μ�) = fk′(��)
holds for any k′ ∈ IK satisfying μ�

k′ > 0. Substituting this into
Eq. (40) gives Eq. (39). �

Theorem 4. Let us consider the following optimization
problem

maximize fmin(�) = min
k∈IK

fk(�)

subject to � ∈ M◦, (44)

with a POVM �. A POVM �+ is an optimal solution to
problem (44) if and only if �+ is a minimax measurement of
Eq. (27).

Proof. Suppose that �+ is an optimal solution to prob-
lem (44) and that (μ�,��) is a minimax solution to Eq. (27).
Equations (30) and (39) give

fmin(��) � F�(μ�) = max
�∈M◦

F (μ�,�) � max
�∈M◦

fmin(�),

(45)

which indicates that �� is an optimal solution to problem (44).
Since �+ is also an optimal solution to problem (44),
fmin(�+) = fmin(��) � F�(μ�) holds from Eq. (45), and thus
statement (2) of Theorem 3 holds. Therefore, �+ is a minimax
measurement of Eq. (27). �

IV. GROUP COVARIANT OPTIMIZATION PROBLEM

In this section, we show that if an optimization problem of
obtaining an optimal measurement or a minimax solution has
a certain symmetry, the optimal solution also has the same
symmetry. A quantum state set that is invariant under the
action of a group G in which each element corresponds to
a unitary or antiunitary operator is called a group-covariant
(or G-covariant) state set. Similarly, we call an optimal
measurement and a minimax solution that are invariant under
the same action a group-covariant (or G-covariant) optimal
measurement and a minimax solution, respectively. Optimal
measurements for group-covariant state sets have been well
investigated, and it has been derived that a G-covariant optimal
measurement exists for a G-covariant state set under several
optimality criteria [5–8,17,23,36,38,39]. These results not only
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help us to obtain analytical optimal solutions (e.g., [40–42]),
but also are useful for developing computationally efficient
algorithms for obtaining optimal solutions [43,44]. In this
section, we generalize these results to our generalized opti-
mization problems.

A. Group action

First, let us describe a group action. A group action ofG on a
set T is a set of mappings from T to T , {πg(x)(x ∈ T ) : g ∈ G}
[we also denote πg(x) as g ◦ x], such that

(1) for any g,h ∈ G and x ∈ T , (gh) ◦ x = g ◦ (h ◦ x)
holds.

(2) for any x ∈ T , e ◦ x = x holds, where e is the identity
element of G.

The action of G on T is called faithful if, for any distinct
g,h ∈ G, there exists x ∈ T such that g ◦ x �= h ◦ x. Here we
assume that the number of elements in G, which is denoted as
|G|, is greater than 1.

Let us consider an action ofG on the set IN with N � 1, that
is, {g ◦ n ∈ IN (n ∈ IN ) : g ∈ G}. This action is not faithful in
general. We also consider the action of G on S, expressed by

g ◦ Â = ÛgÂÛ †
g , (46)

with g ∈ G and Â ∈ S, where Ûg is a unitary or antiunitary
operator and Û

†
g is conjugate transpose of Ûg . (Note that

if Ûg is an antiunitary operator, then Û
†
g is an antiunitary

operator such that Û
†
gÛg = ÛgÛ

†
g = 1̂.) Ûe = 1̂ and Ûḡ = Û

†
g

obviously hold, where ḡ is the inverse element of g. We assume
that the action of G on S is faithful, which is equivalent to
Ûg �= Ûh for any distinct g,h ∈ G. From Eq. (46), we can
easily verify that for any g ∈ G, c ∈ R, and Â,B̂ ∈ S, we have

g ◦ (Â ± B̂) = g ◦ Â ± g ◦ B̂,

g ◦ (cÂ) = c(g ◦ Â),

g ◦ 1̂ = 1̂,

Tr(g ◦ Â) = TrÂ,

Tr[(g ◦ Â)(g ◦ B̂)] = Tr(ÂB̂),

g ◦ Â ∈ S+, ∀ Â ∈ S+,

g ◦ Â � g ◦ B̂, ∀ Â � B̂. (47)

In this section, we use these facts without mentioning them.

B. Group covariant optimal measurement

As a preparation, we first prove the following lemma.
Lemma 1. Suppose that M◦ is not empty. Also, suppose

that there exist actions of G on S, IM , and IJ such that

g ◦ âj,m = âg◦j,g◦m, ∀ g ∈ G, j ∈ IJ , m ∈ IM,

bj = bg◦j , ∀ g ∈ G, j ∈ IJ . (48)

Let κg() and κ() be mappings of  ∈ M◦ expressed by

κg() = {ḡ ◦ ̂g◦m : m ∈ IM},

κ() =
⎧⎨
⎩ 1

|G|
∑
g∈G

ḡ ◦ ̂g◦m : m ∈ IM

⎫⎬
⎭ . (49)

Then κg is a bijective mapping onto M◦ for any g ∈ G, and
κ is a mapping onto M◦. Moreover, for any  ∈ M◦, we have

g ◦ �̂m = �̂g◦m, ∀ g ∈ G, m ∈ IM, (50)

where � = κ().
Proof. First, we show that κg is bijective onto M◦. Let

 ∈ M◦ and (g) = κg(). Since 
(g)
m = ḡ ◦ ̂g◦m ∈ S+ and∑M−1

m=0 
(g)
m = ḡ ◦ 1̂ = 1̂ hold, (g) ∈ M holds. We also obtain

for any j ∈ IJ ,

M−1∑
m=0

Tr
(
âj,m̂(g)

m

)

=
M−1∑
m=0

Tr[âj,m(ḡ ◦ ̂g◦m)] =
M−1∑
m=0

Tr[(g ◦ âj,m)̂g◦m]

=
M−1∑
m=0

Tr(âg◦j,g◦m̂g◦m) � bg◦j = bj , (51)

where the inequality follows from the group action being
bijective and  ∈ M◦. Thus, (g) ∈ M◦ holds. Moreover,
since κḡ[κg()] = κg[κḡ()] = , κḡ is the inverse mapping
of κg . Therefore, κg is bijective onto M◦.

Next, we show that κ is a mapping onto M◦ and that
Eq. (50) holds. From Eq. (51), we have that for any j ∈ IJ ,

M−1∑
m=0

Tr(âj,m�̂m) = 1

|G|
∑
g∈G

M−1∑
m=0

Tr
(
âj,m̂(g)

m

)
� bj , (52)

which means that � ∈ M◦ holds for any  ∈ M◦; that is, κ

is a mapping onto M◦. We also have that for any g ∈ G and
m ∈ IM ,

g ◦ �̂m = 1

|G|
∑
h∈G

g ◦ ̂(h)
m = 1

|G|
∑
h′∈G

h̄′ ◦ ̂h′◦g◦m = �̂g◦m,

(53)

where h′ = h ◦ ḡ. Thus, Eq. (50) holds. �
We now show that a G-covariant optimal measurement

exists if optimization problem (2) has a certain symmetry with
respect to G.

Theorem 5. Let us consider optimization problem (2).
Suppose that M◦ is not empty. Also, suppose that there exist
actions of G on S, IM , and IJ satisfying Eq. (48) and

g ◦ ĉm = ĉg◦m, ∀ g ∈ G, m ∈ IM. (54)

Then, for any  ∈ M◦ there exists � ∈ M◦ such that f (�) =
f () and Eq. (50) hold, where f is the objective function of
problem (2). In particular, an optimal measurement � exists
satisfying Eq. (50). Moreover, there exists an optimal solution
(X̂,λ) to dual problem (12) such that

g ◦ X̂ = X̂, ∀ g ∈ G,

λj = λg◦j , ∀ g ∈ G, j ∈ IJ . (55)

As examples of Theorem 5, we can derive that there
exist a minimum error measurement, an optimal unambiguous
measurement, and an optimal inconclusive measurement that
are G covariant if a given state set is G covariant, which is
shown in Ref. [36].
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If we let M◦
G be the entire set of � ∈ M◦ satisfying

Eq. (50), then we can easily see that, since M◦
G is convex,

problem (2) remains in convex programming even if we restrict
the feasible set from M◦ to M◦

G .
Proof. First, we show that � ∈ M◦ exists such that f (�) =

f () and Eq. (50) hold for any  ∈ M◦. Let � = κ(), where
κ is defined by Eq. (49). From Lemma 1, � satisfies � ∈ M◦
and Eq. (50). Moreover, we obtain

f (�) =
M−1∑
m=0

Tr(ĉm�̂m) = 1

|G|
M−1∑
m=0

∑
g∈G

Tr[ĉm(ḡ ◦ ̂g◦m)]

= 1

|G|
M−1∑
m=0

∑
g∈G

Tr[(g ◦ ĉm)̂g◦m]

= 1

|G|
∑
g∈G

M−1∑
m=0

Tr(ĉg◦m̂g◦m)

= 1

|G|
∑
g∈G

f () = f (). (56)

In particular, if  is an optimal measurement, then so is �.
Next, we show that there exists an optimal solution (X̂,λ)

to dual problem (12) satisfying Eq. (55). Let ν = {νj : j ∈
IJ } ∈ RJ

+. Suppose that (Ŷ ,ν) is an optimal solution to

problem (12). Also, let Ŷ (g) = g ◦ Ŷ and ν(g) = {ν(g)
j = νḡ◦j :

j ∈ IJ }. Ŷ (g) ∈ S and ν(g) ∈ RJ
+ obviously hold. We obtain

for any g ∈ G and m ∈ IM

Ŷ (g) � g ◦ ẑm(ν) = ĉg◦m −
J−1∑
j=0

νj âg◦j,g◦m

= ĉg◦m −
J−1∑
j=0

ν
(g)
g◦j âg◦j,g◦m = ẑg◦m(ν(g)). (57)

We also obtain

s(Ŷ (g),ν(g)) = TrŶ (g) +
J−1∑
j=0

ν
(g)
j bj

= TrŶ +
J−1∑
j=0

νḡ◦j bḡ◦j = s(Ŷ ,ν). (58)

From Eqs. (57) and (58), (Ŷ (g),ν(g)) is also an optimal solution
to problem (12). Let X̂ ∈ S and λ = {λj : j ∈ IJ } ∈ RJ

+ be
expressed by

X̂ = 1

|G|
∑
g∈G

Ŷ (g), λj = 1

|G|
∑
g∈G

ν
(g)
j . (59)

We can easily see that Eq. (55) holds. For any m ∈ IM , we
have

ẑm(λ) = ĉm − 1

|G|
∑
g∈G

J−1∑
j=0

ν
(g)
j âj,m

= 1

|G|
∑
g∈G

⎛
⎝ĉm −

J−1∑
j=0

ν
(g)
j âj,m

⎞
⎠ = 1

|G|
∑
g∈G

ẑm(ν(g)).

(60)

From Eqs. (57), (59), and (60), we obtain for any m ∈ IM ,

X̂ − ẑm(λ) = 1

|G|
∑
g∈G

[Ŷ (g) − ẑm(ν(g))] � 0. (61)

Moreover, from Eqs. (58) and (59), we have

s(X̂,λ) = TrX̂ +
J−1∑
j=0

λjbj

= 1

|G|
∑
g∈G

(TrŶ (b) + ν
(g)
j bj ) = s(Ŷ ,ν). (62)

Therefore, (X̂,ν) is also an optimal solution to prob-
lem (12). �

C. Group covariant minimax solution

Similar to Theorem 5, we can show that if Eq. (27) has
a certain symmetry with respect to G, then there exists a G-
covariant minimax solution.

Theorem 6. Let us consider a minimax solution to Eq. (27).
Suppose that M◦ is not empty. Also, suppose that there exist
actions of G on S, IM , IJ , and IK satisfying Eq. (48) and

g ◦ ĉk,m = ĉg◦k,g◦m, ∀ g ∈ G, k ∈ IK, m ∈ IM,

dk = dg◦k, ∀ g ∈ G, k ∈ IK. (63)

Then, a minimax solution (μ,�) exists such that

μk = μg◦k, ∀ g ∈ G, k ∈ IK,

g ◦ �̂m = �̂g◦m, ∀ g ∈ G, m ∈ IM. (64)

Proof. Let (η�,��) be a minimax solution to Eq. (27). Also,
let μ = {μk = |G|−1 ∑

g∈G η�
g◦k : k ∈ IK} and � = κ(��),

where κ is defined by Eq. (49). Then it follows that μ ∈ P , � ∈
M◦, and Eq. (64) hold (also see Lemma 1 ). Here we show that
(μ,�) is a minimax solution to Eq. (27). From statement (2) of
Theorem 3, it suffices to show that fk(�) � F�(μ) holds for
any k ∈ IK . We show fk(�) � F�(η�) and F�(η�) � F�(μ).

First, we show fk(�) � F�(η�) for any k ∈ IK . Let �(g) =
κg(��); then for any k ∈ IK , we have

fk(�) = 1

|G|
M−1∑
m=0

∑
g∈G

Tr
(
ĉk,m�̂(g)

m

) + dk

= 1

|G|
∑
g∈G

[
M−1∑
m=0

Tr
(
ĉk,m�̂(g)

m

) + dk

]

= 1

|G|
∑
g∈G

{
M−1∑
m=0

Tr[(g ◦ ĉk,m)�̂�
g◦m] + dk

}

= 1

|G|
∑
g∈G

[
M−1∑
m′=0

Tr(ĉg◦k,m′�̂�
m′ ) + dk

]

= 1

|G|
∑
g∈G

fg◦k(��) � F�(η�), (65)

where m′ = g ◦ m. The inequality in the last line follows
from fk(��) � F�(η�) for any k ∈ IK , which is obtained from
Theorem 3.
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Next, we show F�(η�) � F�(μ). Let η(g) = {η�
g◦k : k ∈

IK}. We have that for any g ∈ G,

F�(η(g)) = max
∈M◦

K−1∑
k=0

η�
g◦k

[
M−1∑
m=0

Tr(ĉk,m̂m) + dk

]

= max
∈M◦

K−1∑
k′=0

η�
k′

{
M−1∑
m=0

Tr[ĉk′,m′ (g ◦ ̂m)] + dk′

}

= max
′∈M◦

K−1∑
k′=0

η�
k′

[
M−1∑
m′=0

Tr(ĉk′,m′̂′
m′) + dk′

]

= F�(η�), (66)

where k′ = g ◦ k, m′ = g ◦ m, and ′ = κḡ(). The third line
follows from the mapping κḡ being bijective onto M◦ (see
Lemma 1 ). From Eq. (66), we obtain

F�(μ) = max
∈M◦

1

|G|
∑
g∈G

K−1∑
k=0

η
(g)
k fk()

� 1

|G|
∑
g∈G

F�(η(g)) = F�(η�). (67)

Therefore, (μ,�) is a minimax solution. �

V. EXAMPLES OF OPTIMAL MEASUREMENT
AND MINIMAX SOLUTION

As an example of a generalized optimal measurement,
we discuss the problem of finding an optimal inconclusive
measurement with a lower bound on correct probabilities,
which is introduced in Sec. II B 3. Also, as an example of
a generalized minimax solution, we discuss the problem
of finding a minimax solution for plural state sets, which
is introduced in Sec. III B 3. Moreover, Tables I and II
summarize the problem formulations and their examples
shown in Secs. II B and III B, respectively.

A. Optimal inconclusive measurement with a lower
bound on correct probabilities

In this example, we can apply Theorems 1 and 2. Substi-
tuting Eq. (11) into Eq. (13) gives

ẑm(λ) =
{

(ξm + λm)ρ̂m, m < R,

λRĜ, m = R.
(68)

Thus, from Theorem 1, dual problem (12) can be rewritten as

minimize s(X̂,λ) = TrX̂ − q

R−1∑
r=0

λr − pλR

subject to X̂ � (ξr + λr )ρ̂r , ∀ r ∈ IR,

X̂ � λRĜ. (69)

λRĜ ∈ S+ yields X̂ ∈ S+. In particular, in the case of q = 0,
Eq. (69) is equivalent to the dual problem of finding an optimal
inconclusive measurement, which is shown in Theorem 1 of
Ref. [17].

We can also obtain necessary and sufficient conditions
for an optimal measurement from Theorem 2. For example,
from statement (3) of this theorem, � ∈ M◦ is an optimal
measurement of problem (10) if and only if λ ∈ RJ

+ exists
such that

X̂(λ) − (ξr + λr )ρ̂r � 0, ∀ r ∈ IR,

X̂(λ) − λRĜ � 0,

λr [Tr(ρ̂r �̂r ) − q] = 0, ∀ r ∈ IR,

λR[Tr(Ĝ�̂R) − p] = 0, (70)

where

X̂(λ) =
R−1∑
r=0

(ξr + λr )ρ̂r �̂r + λRĜ�̂R. (71)

In the case in which problem (10) has a certain symmetry,
we can apply Theorem 5 . Suppose that a given state set is G
covariant, that is, there exist actions ofG onS andIR satisfying
g ◦ (ξr ρ̂r ) = ξg◦r ρ̂g◦r , which is equivalent to g ◦ ρ̂r = ρ̂g◦r and
ξr = ξg◦r , for any g ∈ G and r ∈ IR . Let the action of G on
IM = IR+1, g ◦ m (m ∈ IM ), be g ◦ m = π (R)

g (m) for any m ∈
IR and g ◦ R = R, where {π (R)

g : g ∈ G} is the action of G on
IR . Also, let the action of G on IJ be the same as the action
of G on IM . Then, since Eqs. (48) and (54) hold, there exists
an optimal measurement satisfying Eq. (50).

B. Minimax solution for plural state sets

In this example, we can apply Theorem 3, that is, (μ�,��)
is a minimax solution if and only if Eq. (39), or Eq. (40), holds.
Substituting Eq. (37) into Eq. (40) gives

R−1∑
m=0

Tr(ρ̂ ′
k,m�̂�

m) �
R−1∑
m=0

Tr(ρ̂ ′
k′,m�̂�

m),

∀ k,k′ ∈ IK such that μ�
k′ > 0. (72)

From Eq. (38), F (μ,�) is expressed by

F (μ,�) =
K−1∑
k=0

μk

R−1∑
m=0

Tr(ρ̂ ′
k,m�̂m)

=
R−1∑
m=0

Tr

[(
K−1∑
k=0

μkρ̂
′
k,m

)
�̂m

]
. (73)

Thus, F�(μ) is equivalent to the optimal value of f (�) of
optimization problem (2) with

M = R, J = 0, ĉm =
K−1∑
k=0

μkρ̂
′
k,m. (74)

This indicates that F�(μ) is also equivalent to the average
correct probability of a minimum error measurement for the
state set {ĉm/Trĉm : m ∈ IR} with prior probabilities {Trĉm :
m ∈ IR} [note that ĉm ∈ S+ holds from Eq. (74)].

We can also apply Theorem 6 in the case in which given state
sets have a certain symmetry. Assume that there exist actions
of G on S, IR , and IK satisfying g ◦ ρ̂ ′

k,m = ρ̂ ′
g◦k,g◦m for any

g ∈ G, m ∈ IR , and k ∈ IK . For example, this assumption
holds if each state set 
k = {ρ̂k,m : m ∈ IR} is G covariant
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TABLE I. Basic formulation of generalized optimal measurements and its examples.

Primal problems Dual problems Necessary and sufficient conditions
[Statement (3) of Theorem 2]

Basic formulation

maximize
M−1∑
m=0

Tr(ĉm�̂m)

subject to � ∈ M,

M−1∑
m=0

Tr(âj,m�̂m) � bj ,∀ j ∈ IJ

minimize TrX̂ +
J−1∑
j=0

λjbj

subject to X̂ � ẑm(λ), ∀ m ∈ IM,

where ẑm(λ) = ĉm −
J−1∑
j=0

λj âj,m

λ ∈ RJ
+ exists such that

X̂(λ) � ẑm(λ), ∀ m ∈ IM,

λj

[
bj −

M−1∑
m=0

Tr(âj,m�̂m)

]
= 0,∀ j ∈ IJ ,

(2), (3) (12), (13) where X̂(λ) =
M−1∑
n=0

ẑn(λ)�̂n

(19), (20), (21)
Example 1: Optimal measurement in the Bayes criterion (Sec. II B 1) [1–3]

minimize
R−1∑
m=0

Tr(Ŵm�̂m)

subject to � ∈ M (4)

maximize TrX̂

subject to Ŵm � X̂, ∀ m ∈ IR

Ŵm �
R−1∑
r=0

Ŵr�̂r , ∀ m ∈ IR

Example 2: Optimal error margin measurement (Sec. II B 2) [19–21]

maximize
R−1∑
r=0

ξrTr(ρ̂r �̂r )

subject to � ∈ M,

R−1∑
r=0

ξrTr[ρ̂r (�̂r + �̂R)] � 1 − ε

minimize TrX̂ − λ(1 − ε)

subject to X̂ � (1 + λ)ξr ρ̂r , ∀ r ∈ IR,

X̂ � λĜ

λ ∈ R+exists such that

X̂(λ) � (1 + λ)ξr ρ̂r , ∀ r ∈ IR,

X̂(λ) � λĜ,

λ

[
R−1∑
r=0

ξrTr[ρ̂r (�̂r + �̂R)] − 1 + ε

]
= 0,

(7) where X̂(λ) = (1 + λ)
R−1∑
r=0

ξr ρ̂r �̂r + λĜ�̂R

Example 3: Optimal inconclusive measurement with a lower bound on correct probabilities (Sec. II B 3)

maximize
R−1∑
r=0

ξrTr(ρ̂r �̂r )

subject to � ∈ M,

Tr(ρ̂r �̂r ) � q, ∀ r ∈ IR,

minimize TrX̂ − q

R−1∑
r=0

λr − pλR

subject to X̂ � (ξr + λr )ρ̂r , ∀ r ∈ IR,

λ ∈ RR+1
+ exists such that

X̂ � (ξr + λr )ρ̂r , ∀ r ∈ IR,

X̂ � λRĜ,

Tr(Ĝ�̂R) � p (10) X̂ � λRĜ (69) λr [Tr(ρ̂r �̂r ) − q] = 0, ∀ r ∈ IR,

λR[Tr(Ĝ�̂R) − p] = 0,

whereX̂(λ) =
R−1∑
r=0

(ξr + λr )ρ̂r �̂r + λRĜ�̂R

(70), (71)

under the same actions ofG onS andIR , i.e., g ◦ ρ̂ ′
k,m = ρ̂ ′

k,g◦m
for any g ∈ G and m ∈ IR (in this case let g ◦ k = k for any
k ∈ IK ). Under this assumption, Eq. (63) holds, and thus a
G-covariant minimax solution exists.

VI. CONCLUSION

We investigated a generalized optimization problem of
finding quantum measurements. Each of the objective and
constraint functions in this problem is formulated by the sum
of the traces of the multiplication of a Hermitian operator
and a detection operator. We first derived corresponding
dual problems and necessary and sufficient conditions for an

optimal measurement. The minimax version of this problem
was also studied, and necessary and sufficient conditions for a
minimax solution were provided. We finally showed that for an
optimization problem having a certain symmetry with respect
to a group in which each element corresponds to a unitary or
antiunitary operator, there exists an optimal solution with the
same symmetry.
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TABLE II. Basic formulation of generalized minimax solutions and its examples.

Problems Necessary and sufficient conditions
[Statement (3) of Theorem 3]

Basic formulation
maximize min

u∈P
F (μ,�)

subject to � ∈ M◦

where F (μ,�) =
K−1∑
k=0

μkfk(�),

fk(�) =
M−1∑
m=0

Tr(ĉk,m�̂m) + dk,

M◦ =
{

� ∈ M :
M−1∑
m=0

Tr(âj,m�̂m) � bj , ∀ j ∈ IJ

}

(3), (27), (28)

fk(��) � fk′ (��), ∀ k,k′ ∈ IK such that μ�
k′ > 0 (40)

Example 1: Minimax solution in Bayes strategy [12]

minimize max
u∈P

R−1∑
k=0

μk

R−1∑
m=0

Bm,kTr(ρ̂k�̂m)

subject to � ∈ M (32)

R−1∑
m=0

Bm,kTr(ρ̂k�̂
�
m) �

R−1∑
m=0

Bm,k′ Tr(ρ̂k′�̂�
m),

∀k,k′ ∈ IR such that μ�
k′ > 0

Example 2: Inconclusive minimax solution [23]

maximize min
u∈P

R−1∑
k=0

μkTr[ρ̂k(�̂k + �̂R)]

subject to � ∈ M◦,

where M◦ = {� ∈ M : Tr(ρ̂j �̂R) � p,∀ j ∈ IR} (35)

Tr[ρ̂k(�̂�
k + �̂�

R)] � Tr[ρ̂k′ (�̂�
k′ + �̂�

R)],

∀ k,k′ ∈ IR such that μ�
k′ > 0

Example 3: Minimax solution for plural state sets

maximize min
u∈P

K−1∑
k=0

μk

R−1∑
m=0

Tr(ρ̂ ′
k,m�̂m)

subject to � ∈ M (37)

R−1∑
m=0

Tr(ρ̂ ′
k,m�̂�

m) �
R−1∑
m=0

Tr(ρ̂ ′
k′,m�̂�

m),

∀ k,k′ ∈ IK such that μ�
k′ > 0 (72)

APPENDIX: DERIVATION OF DUAL PROBLEM
WITHOUT BORN RULE

Here we show that the optimal value of problem (12) is an
upper bound of the objective function f (�) for a generalized
optimal measurement � without using the Born rule [i.e.,
the fact that the probability P (m|ρ̂) of the outcome m ∈ IM

for input state ρ̂ is Tr(ρ̂�̂m)]. We pose the following two
requirements.

(1) Any quantum state is given by a density operator, which
is positive semidefinite with unit trace.

(2) The probability P (m|ρ̂) is affine in ρ̂, that is, for any
two states ρ̂ and ρ̂ ′ and any t ∈ R with 0 � t � 1, we have

P [m|t ρ̂ + (1 − t)ρ̂ ′] = tP (m|ρ̂) + (1 − t)P (m|ρ̂ ′). (A1)

Since t ρ̂ + (1 − t)ρ̂ ′ can be interpreted as a statistical
mixture of the states ρ̂ and ρ̂ ′ with probabilities t and 1 − t , the
second requirement seems to be natural, which is also pointed
out in Ref. [33]. Since P (m|ρ̂) is a probability, it must satisfy
P (m|ρ̂) � 0 for any m ∈ IM and

∑M−1
m=0 P (m|ρ̂) = 1.

To simplify the notation, we extend P (m|ρ̂) to a linear map-
ping, which we denote as p(m|ρ̂), as follows. p(m|Â) (m ∈
IM,Â ∈ S) is defined such that p(m|ρ̂) = P (m|ρ̂) holds for
any density operator ρ̂ and it satisfies, for any t,t ′ ∈ R and

Â,Â′ ∈ S,

p(m|tÂ + t ′Â′) = tp(m|Â) + t ′p(m|Â′). (A2)

This equation means that p(m|Â) is linear in Â. This definition
uniquely determines p(m|·) for a given P (m|·). Since any Â ∈
S+ can be expressed by a form of Â = t ρ̂ with t = TrÂ � 0
and a density operator ρ̂ = Â/TrÂ, we obtain

p(m|Â) � 0, ∀ Â ∈ S+. (A3)

Moreover, for any Â ∈ S, let a Schmidt decomposition of Â

be Â = ∑
n λnP̂n (P̂n can be regarded as a density operator);

then, from the linearity of p(m|·) and
∑M−1

m=0 P (m|P̂n) = 1, we
obtain

M−1∑
m=0

p(m|Â) =
∑

n

λn

M−1∑
m=0

P (m|P̂n) = TrÂ. (A4)

It should be noted that we can derive from the above two
requirements [and Eq. (A2)] that, for any quantum measure-
ment, there exists a POVM � = {�̂m : m ∈ IM} satisfying
P (m|ρ̂) = Tr(ρ̂�̂m); i.e., the Born rule holds. However, we do
not use this fact in this section.

052304-11



NAKAHIRA, KATO, AND USUDA PHYSICAL REVIEW A 91, 052304 (2015)

To avoid using the Born rule, we consider the following
problem instead of problem (2):

maximize fp(�) =
M−1∑
m=0

p(m|ĉm)

subject to � ∈ M•, (A5)

where ĉm ∈ S holds for any m ∈ IM . � is a quantum
measurement, which is expressed as a collection of mappings
p(m|·), i.e., {p(m|·) : m ∈ IM}. M• is defined by

M• =
{

� :
M−1∑
m=0

p(m|âj,m) � bj , ∀ j ∈ IJ

}
, (A6)

where âj,m ∈ S and bj ∈ R hold for any m ∈ IM and j ∈ IJ .
J is a non-negative integer.

Let λ ∈ RJ
+. Also, choose X̂ such that X̂ � ẑm(λ) holds

for any m ∈ IM , where ẑm(λ) is defined by Eq. (13). From
Eq. (A3), for any m ∈ IM , we have

p(m|X̂) − p[m|ẑm(λ)] = p[m|X̂ − ẑm(λ)] � 0. (A7)

Thus, from Eq. (A4), we have

M−1∑
m=0

p[m|ẑm(λ)] �
M−1∑
m=0

p(m|X̂) = TrX̂. (A8)

Therefore, we obtain for any � ∈ M•,

fp(�) �
M−1∑
m=0

p(m|ĉm) +
J−1∑
j=0

λj

[
bj −

M−1∑
m=0

p(m|âj,m)

]

=
M−1∑
m=0

p[m|ẑm(λ)] +
J−1∑
j=0

λjbj � TrX̂ +
J−1∑
j=0

λjbj ,

(A9)

where the equality in the second line follows from Eq. (13).
Equation (A9) means that the optimal value of problem (12)
provides an upper bound of the optimal value of problem (A5).

It is worth mentioning that the discussion given above
has a strong relationship with the approach described in
Refs. [34,35], in which it is pointed out that the average
correct probability of a minimum error measurement is upper
bounded by ensemble steering and the no-signaling principle,
and its upper bound equals the average correct probability.
In preparation, we introduce ensemble steering. Assume that
two parties, Alice and Bob, share an entangled state and the
reduced state on Bob’s side is ρ̂ that can represent

ρ̂ =
N−1∑
n=0

qnρ̂n, (A10)

with N � 2, where ρ̂n is a density operator and qn � 0 satisfies∑N−1
n=0 qn = 1. Then, there exists an Alice measurement with

N outcomes that prepares Bob’s state ρ̂n with probability qn.
This is known as ensemble steering, which was first noted
by Schrödinger [45,46] and also formalized as the Gisin-
Hughston-Jozsa-Wootters theorem [47,48]. The probability
that Bob obtains the result m given that his state is ρ̂ can
be expressed as

P (m|ρ̂) =
N−1∑
n=0

qnP (m|ρ̂n), (A11)

where the right-hand side denotes the weighted average of the
conditional probabilities that Bob obtains the result m knowing
that his state is ρ̂0, . . . ,ρ̂N−1 with weights q0, . . . ,qN−1.
Equations (A10) and (A11) mean that P (m|ρ̂) is affine in
ρ̂. In other words, the property that P (m|ρ̂) is affine in
ρ̂ can be derived from ensemble steering; thus, one can
apply the discussion described in this section. Note that
the approach described in Refs. [34,35] also provides an
operational interpretation for the average correct probability
of a minimum error measurement.
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