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In measurement-based quantum computation (MBQC), elementary quantum operations can be more
parallelized than the quantum circuit model by employing a larger Hilbert space of graph states used as the
resource. Thus MBQC can be regarded as a method of quantum computation where the temporal resource
described by the depth of quantum operations can be reduced compared to the quantum circuit model by using
the extra spatial resource described by graph states. To analyze the trade-off relationship of the spatial and temporal
resources, we consider a method to obtain quantum circuit decompositions of general unitary transformations
represented by MBQC on graph states with a certain underlying geometry called generalized flow. We present
a method to translate any MBQC with generalized flow into quantum circuits without extra spatial resource.
We also show an explicit way to unravel acausal gates without postselection that appear in the quantum circuit
decomposition derived by a translation method [V. Danos and E. Kashefi, Phys. Rev. A 74, 052310 (2006)]
and that represents an effect of the reduction of the temporal resource in MBQC. Finally, by considering a way
to deterministically simulate these acausal gates, we investigate a general framework to analyze the trade-off
between the spatial and temporal resources for quantum computation.
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I. INTRODUCTION

Measurement-based quantum computation (MBQC) orig-
inally proposed in [1] is a framework for quantum com-
putation in which unitary transformations are implemented
by measuring qubits of multipartite entangled states. The
multipartite entangled states used as resources in MBQC are
characterized by graphs specifying to which pairs of qubits
entangling operations have been performed to prepare the
state and are called graph states [2,3]. The total number
of qubits in the graph state is larger than the number of
qubits to which unitary transformations are applied. The graph
state extends the “work space” for quantum computation,
although the action on the work space is limited to single-qubit
operations (measurements). Thus they can be regarded as a
spatial resource for quantum computation.

In MBQC, the choice of a graph state and measurements,
which is referred to as a measurement pattern, specifies the
implemented unitary transformation. The choice of measure-
ments depends on the outcomes of previous measurements in
order to counter nondeterministic state transformations caused
by these measurements. Such measurements are called feed-
forward measurements. The temporal order of measurements
should be carefully chosen to guarantee deterministic imple-
mentation of unitary transformations. The quantum depth of a
measurement pattern is determined as the minimum number of
steps required for preparing a graph state and for performing
the feed-forward measurements when any measurements that
are not temporally ordered can be performed in a single step.
Quantum depth of a quantum circuit which does not include
classically controlled operations depending on measurement
outcomes is defined as the number of elementary gates
included in the longest dependent sequence of gates in that
circuit. Thus the depth can be regarded as a temporal resource
for quantum computation.

For several algorithms, including the approximate quantum
Fourier transformation [4], it has been shown that MBQC
requires smaller quantum depth than a variation of the quan-
tum circuit model without classically controlled operations
depending on measurement outcomes [5,6]. This advantage
of MBQC originates from the constant-time implementability
of any sequence of Clifford gates [7,8] due to the extended
work space by using ancillary qubits of graph states and
the feed-forward measurements. In this case, we can see
that the spatial resource (ancillary qubits) is used for reducing
the temporal resource (the quantum depth).

Flow [9] and generalized flow (or gflow for short) [10]
are ordering relations on a graph that guarantee the existence
of a proper ordering of the measurements required for a
deterministic implementation of a unitary transformation
by a measurement pattern, irrespective of the choices of
measurement angles. If flow or gflow exists on a graph, it
determines the ordering of measurements, and thus gives an
upper bound for the quantum depth of measurement patterns
on the graph. These upper bounds are called the depth of flow
and gflow, respectively. The depth of gflow on a graph is lower
than the depth of flow on the same graph, since gflow is a
generalization of flow. There are graphs which have gflow but
do not have flow for the same reason.

Given a quantum circuit decomposition of a unitary
transformation, we can construct a measurement pattern with
depth of flow equal to or less than the quantum depth of the
original circuit [9]. This implies that the depth of flow, and so
the depth of gflow, already takes into account the constant-time
implementability of Clifford gates.

In order to study how the depth of flow and gflow are
related to the constant-time implementability of Clifford gates,
it would be helpful to construct a method to write a circuit
decomposition with no ancillary qubits representing the same
unitary transformation implemented by a measurement pattern

1050-2947/2015/91(5)/052302(18) 052302-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.74.052310
http://dx.doi.org/10.1103/PhysRevA.74.052310
http://dx.doi.org/10.1103/PhysRevA.74.052310
http://dx.doi.org/10.1103/PhysRevA.74.052310
http://dx.doi.org/10.1103/PhysRevA.91.052302
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with flow or gflow. Since this compact circuit decomposition
does not utilize extra work space, it includes sequences of
Clifford gates that contribute to the increase of quantum depth
of the circuit but not to the depth of flow and gflow. Thus
translations of a unitary represented by MBQC to that of a
quantum circuit provide a clue for understanding the trade-off
relation between the spatial and temporal resources.

To date, there are three methods to translate a measurement
pattern into a compact quantum circuit proposed by [9,11,12].
In [9], a translation method called the star-pattern transforma-
tion (SPT) applicable to measurement patterns on the graph
states with flow is presented. If we ignore the depth for
implementing Clifford gates, the depth of the resulting circuit
coincides with the depth of flow of the original measurement
pattern. If we use the SPT to convert a measurement pattern
on a graph with gflow but without flow into a quantum circuit,
the translation fails and we cannot avoid obtaining an acausal
circuit with ill-defined two-qubit gates simultaneously acting
in two different steps of time. In [11] and [12], the authors
investigated translation methods applicable also for graphs
with gflow but no flow. The method proposed in [11] based
on category theory translates any measurement pattern with
gflow into compact circuits and is applicable to a more general
class of measurement patterns with no gflow. The depth of
resulting circuits, however, is not analyzed and does not
necessarily coincide with the depth of gflow, even if the depth
for implementing sequences of Clifford gates is assumed to be
constant on the circuit.

If acausal gates are allowed to be used in the quantum
circuit model, its computational power can be greatly enhanced
[13,14]. The authors of [10] suggest that the acausal circuits
obtained by applying the SPT for measurement patterns of
MBQC may efficiently implement the unitary transformation
represented by the original measurement pattern. We further
expect that from a viewpoint of the trade-off between spatial
and temporal resources of computation, a measurement pattern
with gflow reduces the quantum depth by deterministically
simulating acausal gates by utilizing the extra work space.

In this paper, we propose a method to translate a mea-
surement pattern on a graph state with gflow into a compact
quantum circuit by generalizing the SPT. Based on this
translation method, we clarify the relation between the depth
of gflow and constant-time implementability of Clifford gates.
We investigate the properties of graphs with gflow and the
entanglement structure of the graph states defined by these
graphs, and construct the translation method. We show the
existence of path covers on graphs with gflow, which was
previously shown only for graphs with flow [15]. Local
unitary transformations on certain sets of qubits are used for
simplifying the entanglement structure of the graph state.

We also show a relation between the circuit decomposition
obtained by our method and the acausal circuits obtained
by directly applying the SPT for measurement patterns on
graph states with gflow but no flow. An operation represented
by an acausal two-qubit gate simultaneously acting on two
different time positions of the acausal circuit is defined to
be consistent with a unitary transformation implemented by
the measurement pattern. Finally, we discuss how MBQC
compresses the quantum depth in connection with the acausal
circuit representation.

This paper is organized as follows. In Sec. II, we review
MBQC and the properties of a graph corresponding to a graph
state used as a resource for deterministic MBQC. We also
reformulate the SPT on graphs with flow. In Sec. III, we show
several graph-theoretical properties of gflow. In Sec. IV, we
present the translation method from a measurement pattern to
a quantum circuit using a transformation of a graph with gflow
to a graph with flow. In Sec. V, the quantum circuit obtained
by the method in the previous section is further transformed
to parallelize non-Clifford gates. In Sec. VI, we introduce the
SPT for graphs with gflow and formally define an acausal
circuit. In Sec. VII, we present another translation method
from a measurement pattern with gflow to a quantum circuit
via an acausal circuit. In Sec. VIII, we discuss the relation
between the acausal circuit and the compression of quantum
depth.

II. PRELIMINARIES

A. Graph and graph states

For a given graph G = (V,E) with the vertex set V and
the edge set E ⊂ {{u,v}|u,v ∈ V,u �= v}, we choose a set of
input vertices I ⊂ V and a set of output vertices O ⊂ V ,
corresponding to the qubits used to encode the input state
and decode the output state, respectively. The triplet (G,I,O)
is called an open graph.

If U is a subset of V , UC represents the complement of
V ′. We say vertices u and v are connected if {u,v} ∈ E and
denote it by u ∼ v (u ∼G v, for specifying a graph G). A
neighborhood of vertex v on G is a set of vertices that are
connected to v on G, and is denoted by NG(v). OddG(V0)
[EvenG(V0)] represents the odd (even) neighborhood of
V0 ⊂ V on G, i.e., the set of vertices that are connected
to the odd (even) number of vertices in V0. For example,
OddG({u}) is just the neighborhood of vertex u. V0 ⊕ V1

represents the symmetric difference between vertex sets V0

and V1 defined by V0 ⊕ V1 = (V0 ∪ V1)\(V0 ∩ V1). Note that
Odd(V0 ⊕ V1) = Odd(V0) ⊕ Odd(V1) [16]. Vertex sets V0 and
V1 are said to be linearly independent in a vertex set V2, when
(V0 ⊕ V1) ∩ V2 �= ∅. Similarly, a set of vertex sets {Vn}n∈�

is said to be a basis of V ′ if |�| = |V ′| and for any subset
� ⊂ �,

⊕
n∈� Vn ∩ V ′ �= ∅. These relations are understood as

a linear independence in the vertex space, where the symmetric
difference corresponds to F2 addition [16].

The Pauli matrices are denoted by capital letters X,Y , and
Z in this paper. The eigenstates of Z (the computational basis)
corresponding to eigenvalues 1 and −1 are represented by
|0〉 and |1〉, respectively. The eigenstates of X corresponding
to eigenvalues 1 and −1 are represented by |+〉 and |−〉,
respectively. We define a general controlled-unitary (CU)
transformation on a set of qubits specified by a set of indices
S ′ where a qubit specified by index v ∈ S ′ is a controlled qubit
and a unitary transformation U is applied on the rest of qubits
specified by a set S := S ′\v only when the controlled qubit is
in |1〉, otherwise no transformation is applied, namely,

CUv;S := |0〉〈0|v ⊗ I + |1〉〈1|v ⊗ U. (1)

If S = {u}, CUv;S is also represented by CUv;u. In particular,
CZv;u and CXv;u represent the controlled-Z (CZ) gate and
controlled-NOT (CNOT) gate, respectively.
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A quantum state corresponding to an open graph is called
an open-graph state and is constructed in the following way.
First we prepare a qubit system on each vertex of the graph
G. Each qubit is labeled by the index of the corresponding
vertex. All qubits with indices in IC are prepared in the |+〉
state, whereas the qubits with the indices in I are prepared
in a joint input state |φ〉. Next, CZ gates are applied to all
pairs of qubits corresponding to adjacent vertices, namely, the
qubits with indices connected by edges E of G. We denote a
unitary transformation U acting on qubits of the graph states
by Ũ in order to distinguish it from a unitary transformation
acting on logical qubits of the corresponding circuit. Then an
open-graph state |G〉φ of an open graph G with an input state
|φ〉I is represented by

|G〉φ = ẼG|φ〉I |+〉IC ,

where

ẼG =
∏

{u,v}∈E

C̃Zu;v.

This state is stabilized by K̃v := X̃vZ̃N(v) (v ∈ IC), namely,
K̃v|G〉φ = |G〉φ .

B. Flow

After preparing the open-graph state, the unitary trans-
formation is implemented by performing projective measure-
ments on each qubit in OC . The measurement operators are
defined by {|±αv

〉〈±αv
|}, where

|±αv
〉 := (|0〉 ± eiαv |1〉)/

√
2,

and αv ∈ [0,2π ) represents the measurement angle depending
on the vertex v ∈ OC . If we obtain a measurement result
“−” on a qubit, we adjust the measurement angles of future
measurements so that the quantum computation proceeds as
if we had obtained the result “+”. Therefore, the unitary
transformation implemented by a deterministic MBQC on an
open graph (G,I,O) is proportional to⊗

u∈OC

〈+αu
|ẼG|+〉IC . (2)

The dependency relation of the measurement angles deter-
mines the ordering of measurements. Flow [9] is an ordering
relation guaranteeing deterministic computation, and is a pair
(f, ≺) of a function f : OC → IC and a partial order ≺
satisfying the following conditions:

(i) [f-1] u ≺ f (u)
(ii) [f-2] u ∈ N [f (u)]
(iii) [f-3] ∀v ∈ N [f (u)], u = v or u ≺ v.
The vertex f (u) is referred to as a “correcting vertex” [10],

since measurement angles of vertices in f (u) ∪ N [f (u)]\u are
corrected according to the result of a measurement on u in the
MBQC with flow. This is why there must be an ordering from
u to f (u) ∪ N [f (u)]\u.

Graph-theoretical properties of flow are analyzed in [15].
A path cover is an important property of a graph with flow for
understanding the correspondence with the circuit model. It is
defined by the following.

Definition 1. Path cover [15]: Let (G,I,O) be an open graph.
A collection Pf of (possibly trivial) directed paths in G is a
path cover of (G,I,O) if

(i) each v ∈ V (G) is contained in exactly one path (i.e., the
paths cover G and they are vertex disjoint);

(ii) each path in Pf is either disjoint from I or intersects I

only at its initial point;
(iii) each path in Pf intersects O only at its final point.
For any open graph with flow, a unique path cover Pf is

defined by

v0 → v1 → · · · → vn ∈ Pf ⇔ vn ∈ O ∧ f (vi) = vi+1(∀i).

(3)

Note that this definition of a path cover is more restrictive
compared to the notion commonly used in graph theory where
a path cover is a set of disjoint paths on a directed graph and
does not necessarily connect vertices in I and O [16].

C. Circuits and measurement patterns with flow

A measurement pattern consists of the open graph (G,I,O),
the ordering of measurements, and the measurement angles
αv(v ∈ OC), which may depend on the outcomes of previous
measurements. The measurement pattern determines how to
prepare the qubits, how to entangle them, and how to perform
measurements.

Star-pattern transformation (SPT) is a method [9] (see also
Ref. [17] in this context) to translate a unitary transformation
implemented by a measurement pattern with flow to a circuit
decomposition, in such a way that each measurement in the
measurement pattern corresponds to an elementary gate in the
circuit. In this section, we reformulate this method to be easily
extendible for measurement patterns with gflow.

The procedure of the SPT is divided into three parts:
(i) We regard each path in Pf as a wire that represents a

Hilbert space of a qubit C2 in the circuit.
The wire in the circuit corresponding to the path including

vertex v on the graph is also labeled by v. A wire labeled by a
flow image f (v) of a vertex v is identical to the wire labeled
by v.

(ii) We place a J gate, J (αv), defined by

J (αv) := 1√
2

(
1 e−iαv

1 −e−iαv

)
,

on wire v if qubit v is measured at an angle αv .
These J gates must be placed so that J (αu) acts before

J (αv) if u ≺ v on the graph. We sometimes have to specify
not only wires but also the position in the wire on which a
gate acts. This position indicates the timing when the gate acts
on the qubit represented by the wire. The position between
J (αf −1(v)) and J (αv) in the wire v is labeled by v!. If v is
a starting vertex of a path cover, the label v! represents the
position before the gate J (αv) in the wire v, (see Fig. 1).

(iii) If there is an edge between vertices u and v, we place
CZu!;v!. The ordering of multiple CZ gates corresponding to
nonpath edges incident from the same vertex is determined
by the partial ordering of the vertices on the other side of the
edges corresponding to the CZ gates.
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FIG. 1. (Color online) (a) An open graph with flow. Circles and
lines represent the vertices and edges, respectively. The boxed
vertices represent inputs and the white vertices are outputs by
following the notation of MBQC presented in [9]. The set of dashed
edges represents the path cover, and the vertex incident with the
edges pointed by arrows is labeled by v. (b) A quantum circuit
corresponding to the open graph given by (a) obtained by process
(ii) of SPT (Sec. II C). The three wires correspond to the path cover,
and boxes represents the J gates. The black box represents a particular
J gate, J (αv), assigned for the vertex labeled by v. The position v!
denotes a region on the wire between J (αv) and J (αf −1(v)). (c) A
quantum circuit representing the measurement pattern on the open
graph given by (a). The CZ gates pointed by arrows correspond to the
edges pointed by arrows on the graph.

We define a binary relation ≺p on the positions in the circuit
by u! ≺p v! if and only if

(a) ∃p ∈ Pf such that (u → v) ∈ p, or
(b) ∃p ∈ Pf ,∃w ∈ N (v)\{u} such that (u → w) ∈ p, or
(c) ∃w ∈ V such that u! ≺p w! and w! ≺p v!.
This binary relation can be defined on any circuit corre-

sponding to a measurement pattern on a graph with a path
cover. The relation ≺p must be a partial order to have a
consistent gate sequence. If the path cover Pf is defined by
flow according to Eq. (3), then u! ≺p v! ⇔ u ≺ v holds. This
is shown by Lemma 9 and Theorem 10 of Ref. [15] (note that
u! ≺p v! if and only if there is an “influencing walk” from u

to v defined in Definition 7 of Ref. [15]). There is a consistent
gate sequence on any circuit corresponding to a measurement
pattern on a graph with flow because ≺ is a partial order. Con-
versely, if an open graph with a path cover does not have flow,
the binary relation ≺p on the corresponding circuit is not a par-
tial order (again from Lemma 9 and Theorem 10 of Ref. [15]),
and the gate sequence is not well defined as a quantum circuit.

By reversing this method, we obtain a measurement-pattern
representation of a unitary transformation from a circuit
representation whose elementary gates are given by J gates
and CZ gates [17].

D. gflow

Gflow is defined as follows:
Definition 2. (See [10], Definition 3.) Let (G,I,O) be an

open graph. Let g : Oc → 2I c

be a function on nonoutput
vertices to the power set of noninput vertices, and let ≺ be a

FIG. 2. An open graph with gflow but no flow. The input and
output vertices are I = {i1,i2,i3} and O = {o1,o2,o3}, respectively.
The last layer V 0

≺ with regard to the maximally delayed gflow is O,
and the second-to-last layer V 1

≺ is I . The values of the maximally
delayed gflow function g are g(i1) = {o1,o3}, g(i2) = {o1,o2,o3},
g(o3) = {o1,o2}. The modified gflow (gV , ≺V ) that satisfies Eqs. (11)
and (12) is gV (i1) = g(i1) = {o1,o3}, gV (i2) = g(i1) ⊕ g(i2) = {o2},
gV (i3) = g(i2) ⊕ g(i3) = {o3}.

strict partial order on vertices. The pair (g, ≺) is a gflow of the
open graph if it satisfies the following three conditions:

(i) [g-1] ∀v ∈ g(u), u ≺ v.
(ii) [g-2] u ∈ Odd[g(u)].
(iii) [g-3] ∀v ∈ Odd[g(u)], u = v or u ≺ v.
Gflow is a generalization of flow in the sense that g can take

a set of vertices, whereas the flow function f can take only one
vertex. The set g(u) is referred to as a “correcting set” [10] for
u, since measurement angles of vertices in g(u) ∪ Odd[g(u)]\u
are corrected according to the result of a measurement on u in
the measurement pattern with gflow. There are graphs that have
gflow but do not have flow. In this case, the SPT does not lead
to a well-defined circuit. For example, an open graph presented
in Fig. 2 has a path cover, so we can define wires of the circuit
for this graph. However, we cannot assign all CZ gates in a way
obeying a well-defined ordering of gates [Fig. 15(a)].

The strict partial order of gflow induces a temporal ordering
that the sequence of measurements and corrections must
follow. Vertices that do not have ordering between each other
are said to be in the same layer.

Definition 3. Layers [18]: Let (G,I,O) be an open graph
with gflow (g, ≺). Layers V k

≺ of this gflow are defined as

V 0
≺ ≡ max≺V (G),

V k
≺ ≡ max≺V (G)\∪i<kV

i
≺ (k > 0),

where the maximization in terms of the relation ≺ is defined
by max≺X ≡ {u ∈ X|∀v ∈ X,¬(u ≺ v)}.

When there are d≺ + 1 layers V 0
≺, . . . ,V d≺≺ , d≺ is called

depth of the gflow. Measurements of qubits corresponding to
the vertices belonging to the same layer can be performed
simultaneously. The depth of the gflow represents the number
of rounds of simultaneous measurements required according
to the gflow.

Definition 4. Delay: A gflow (g, ≺) is more delayed than
(g′, ≺′) if and only if

∀k,
∣∣∪k

i=0V
i
≺
∣∣ �

∣∣∪k
i=0V

i
≺′

∣∣, (4)

and there is a number specified by k with which the inequality
(4) becomes strict.
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In general, gflow is not unique and neither is the depth
of gflow. The gflow with minimal depth on an open graph is
called maximally delayed gflow.

Maximally delayed gflow has the following properties:

V 0
≺ = O,

V 1
≺ = {v ∈ OC |∃Sv ⊂ O,Odd(Sv) ∩ OC = {v}}.

These properties are used extensively in our analysis.

III. PATH COVERS FOR GFLOW

In this section, we show the existence of a path cover on
graphs with gflow. Paths of the path cover will be regarded as
the wires in the circuit decomposition similarly to the cases of
graphs with flow presented in Sec. II C. We prove the existence
of the path cover by construction. The first step is to find a
matching between the output and the penultimate layer. The
following lemmas, which are similar to the lemmas presented
in Sec. 2.3.2 of Ref. [19], are used for the proof.

Lemma 1. Let (G,I,O) be an open graph with gflow, with
its layers {V i

≺}i=0,...,d (V 0
≺ = O) defined by maximally delayed

gflow (g, ≺). For all subsets V ⊂ V 1
≺, there is a subset RV ⊂ O

and a gflow (gV , ≺V ) satisfying the following four conditions:
(i) [R-a] |RV | = |V |.
(ii) [R-b] {RV ∩ g(v)}v∈V becomes a basis of RV .
(iii) [R-c] There is a perfect matching between RV and V ,

and the edges of the matching are chosen from real gflow
edges of (gV , ≺V ), where a real gflow edge refers to the edge
(x,y) ∈ E satisfying y ∈ g(x) (Fig. 3).

(iv) [R-d] Odd[gV (v)] ∩ (V 1
≺\V ) = ∅ (∀v ∈ V ).

Proof. The proof is by induction with respect to |V |.
The statement holds for the case of |V | = |{v}| = 1, if we
choose (gV , ≺V ) = (g, ≺) and RV to be any vertex {r1} in
g(v). We assume that there exists a subset RV that satisfies
conditions [R-a] to [R-d] for any V with |V | � m. Let Vn =
{v1,v2, . . . ,vn} (∀n � m + 1). From the assumption, there is
a subset RVm

⊂ O that satisfies conditions [R-a] to [R-d]. We
denote the gflow described in [R-c] and [R-d] by (gVm

,≺Vm
).

From [R-b], there exists a vertex set Um+1 ⊂ Vm such that

RVm
∩ g(vm+1) = RVm

∩
⊕

v∈Um+1

g(v). (5)

FIG. 3. (Color online) Perfect matching between V ⊂ V 1
≺ and

RV ⊂ O (Lemma 1).

Let us define a subset Om+1 of O by

Om+1 := g(vm+1) ⊕
⊕

v∈Um+1

g(v). (6)

By definition, Om+1 ∩ RVm
= ∅. We define a function gVm+1 :

OC → 2IC

by

gVm+1 (v) :=
{
Om+1 for v = vm+1

gVm
(v) otherwise. (7)

For any l � m + 1,

Odd[gVm+1 (vl)]\O = Odd(Ol)\O
= {Odd[g(vl)]\O} ⊕

⊕
v∈Ul

Odd[g(v)]\O

= {vl} ⊕
⊕
v∈Ul

{v}

= {vl} ∪ Ul

holds. For the case n = m + 1, vm+1 ∈ Odd[gVm+1 (vm+1)]
implies the existence of an odd number of edges between
vm+1 and gVm+1 (vm+1). We choose a vertex rm+1(∼ vm+1) from
gVm+1 (vm+1) for the matching with vm+1. This vertex is not
included in RVm

because Om+1 ∩ RVm
= ∅. For later use, we

define a function h on the vertices inductively by

h(vm+1) = rm+1. (8)

The domain of this function becomes OC after the induction
is finished.

Now we have to define a partial ordering ≺Vm+1 for func-
tion gVm+1 . Because Odd[gVm+1 (vm+1)]\O = vm+1 ∪ Um+1,
vm+1 ≺Vm+1 Um+1 must hold. This is allowed if vm+1 /∈
Odd[gVm

(v)] for any vertex v ∈ Um+1, which is guaranteed by
the assumption [R-d]. Thus, gVm+1 and the ordering inductively
defined by

v ≺Vm+1 u ⇔ (v = vm+1 ∧ u ∈ Um+1 ∪ O) ∨ (v ≺Vm
u) (9)

is a gflow on the open graph (G,I,O).
Now we define

RVm+1 := RVm
∪ {rm+1}. (10)

The gflow (gVm+1 , ≺Vm+1 ) and RVm+1 satisfy [R-c] because
vm+1 is connected to rm+1 ∈ Om+1\RVm

⊂ O\RVm
and rm+1 ∈

Om+1 = gVm+1 (vm+1). The condition [R-d] follows from the
definition of (gVm+1 , ≺Vm+1 ).

It remains to show [R-b] since [R-a] is trivial. By as-
sumption, {RVm

∩ g(v)}v∈Vm
is the basis of RVm

. This implies
that a union of {RVm+1 ∩ g(v)}i∈Vm

and {rm+1} = RVm+1 ∩
gVm+1 (vm+1) forms the basis of RVm+1 . Then from the definition
of gVm+1 (vm+1), {RVm+1 ∩ g(v)}v∈Vm+1

becomes the basis of
RVm+1 .

Thus the statement of the lemma holds for |V | = m + 1,
which concludes the proof.

We give a particular name to the gflow constructed by this
lemma for convenience.

Definition 5. Matching gflow: If V = V 1
≺ = {v1,v2, . . . ,vn}

(n = |V 1
≺|), we call the gflow (gVn

, ≺Vn
), which is constructed

inductively by Eqs. (5)–(7), (9), and (10), a matching gflow of
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FIG. 4. (Color online) Removing R from O (Lemma 2).

(G,I,O), and denote it by (gV , ≺V ). We call the function h :
V 1

≺ → O defined by Eq. (8) a successor function of (gV , ≺V ).
Lemma 1 guarantees the existence of a matching between

V 1
≺ and a suitable subset RV of O. The following lemma helps

to find the matching between other layers by reducing RV .
Lemma 2. Let (G,I,O) be an open graph with gflow,

with its layers {V i
≺}i=0,...,d (V 0

≺ = O) defined by maximally
delayed gflow (g, ≺). If the subset R ⊂ O satisfies [R-a]
and [R-b] of Lemma 1 with V = V 1

≺, then an open graph
(G\R,I\R,V 1

≺ ∪ [O\R]) has maximally delayed gflow with
the same ordering ≺.

Proof. We define an reduced open graph (G′,I ′,O ′) =
(G\R,I\R,V 1

≺ ∪ [O\R]) by reducing R from the original
open graph (G,I,O) as presented in Fig. 4, and construct a
gflow on this open graph. Because {R ∩ g(v)}v∈V 1≺ is a basis of
R, for all v ∈ V (G′)\O ′, there is a subset Vv ⊂ V 1

≺ such that

g(v) ∩ R =
⊕
u∈Vv

g(u) ∩ R.

We define another gflow function g′ : Oc → 2I c

by

g′(v) := g(v)\R ⊕
⊕
u∈Vv

g(u)\R.

It can be checked that v ≺ w [∀w ∈ g′(v)] holds for the origi-
nal partial order of gflow (g, ≺), due to ⊕u∈Vv

g(u) ⊂ O. The
following calculation shows that v ≺ w {∀w ∈ Odd[g′(v)]}
also holds:

OddG′[g′(v)]

= OddG

[
g(v)\R ⊕

⊕
u∈Vv

g(u)\R
]∖

R

= OddG

(
g(v)\R ⊕

⊕
u∈Vv

{[g(u) ∩ R] ⊕ g(u)}
)∖

R

= OddG

{
g(v)\R ⊕ [g(u) ∩ R] ⊕

⊕
u∈Vv

g(u)

}∖
R

= OddG

[
g(v) ⊕

⊕
u∈Vv

g(u)

]∖
R

=
{

OddG[g(v)] ⊕ OddG

[ ⊕
u∈Vv

g(u)
]}∖

R

= v ⊕ Vv ⊕ (subset of O)\R
= v ⊕ (subset of O ′).

It remains to show that (g′, ≺) is maximally delayed in G′.
Let (gm,≺m) be the maximally delayed gflow of (G′,I ′,O ′);
then

V 1
≺m

= {v ∈ G′\O ′|∃Sv ⊂ O ′,OddG′(Sv)\O ′ = {v}}
= {v ∈ G\(O ∪ V 1

≺)|∃Sv ⊂ (O ∪ V 1
≺)\R,OddG(Sv)\(O ∪ V 1

≺) = {v}}
⊂ {v ∈ G\(O ∪ V 1

≺)|∃Sv ⊂ (O ∪ V 1
≺),OddG(Sv)\(O ∪ V 1

≺) = {v}}
= V 2

≺.

Since V 2
≺ is the first layer in (G′,I ′,O ′) with respect to

(g′, ≺), |V 2
≺| � |V 1

≺m
| holds. Thus we have V 2

≺ = V 1
≺m

, and we
can show the equality of all layers (i.e., identity of ≺m and ≺)
by induction.

If we consecutively apply Lemma 2 with a subset to be
removed chosen according to Lemma 1 (by taking V = V 1

≺),
the resulting set of edges used for the matchings forms a path
cover.

Theorem 1. If an open graph (G,I,O) has gflow, then there
exists a path cover. Each edge of the paths can be chosen from
real gflow edges of some gflow on (G,I,O).

The path cover defined in this way is not necessarily unique.
There is an arbitrariness in choosing the subset R and the
matching between R and V 1

≺.
We note that Lemma 2 solely implies that |V k

≺| � |O| for
all k, since the number of output vertices is not changed by
the use of Lemma 2 (i.e., |O ′| = |V 1

≺ ∪ (O\R)| = |O|). This
result implies that the depth of gflow is upper bounded by
|V |/|O|.

IV. TRANSLATION FROM MBQC
INTO QUANTUM CIRCUIT

The path cover we have constructed in Sec. III is used as a
wire of the corresponding circuit decomposition. We divide
the unitary transformation represented by a measurement
pattern into a step-by-step unitary transformation implemented
between each of the layers V i

≺ → V i−1
≺ . For simplicity of

notation, we define the following two multiqubit gates:

CZv;S :=
∏
u∈S

CZv;u

and

CXv;S :=
∏
u∈S

CXv;u.

Lemma 3. Let (G,I,O) be an open graph with maximally
delayed gflow (g, ≺). Let us remove all the edges inside O

from G and denote the resulting open graph by (G′,I,O),
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FIG. 5. (Color online) Properties of the gflow (gV , ≺V ). There is
an edge between vi and h(vi). A gflow image gV (v3) is in the shaded
region [Eq. (11)]. OddG′ [gV (vi)] is in the circled region [Eq. (12)].

namely, ∏
{u,v}∈E,u,v∈O

C̃Zu;v|G′〉 = |G〉.

Then the state

C̃Xh(vn);gV (vn)⊕h(vn) · · · C̃Xh(v1);gV (v1)⊕h(v1)|G′〉
is also an open-graph state, where (gV , ≺V ) is a matching
gflow of (G,I,O), and h is the successor function of (gV , ≺V ).
This graph does not have any edges between RV and the outside
of V 1

≺. The subgraph of this graph consisting of V 1
≺ and RV

has flow if the input set is V 1
≺ and the output set is RV .

Proof. By construction, the gflow (gV ,≺V ) has the proper-
ties given by

gV (vi) ⊂ O\{h(v1), . . . ,h(vi−1)}, (11)

OddG′ [gV (vi)] ⊂ {v1, . . . ,vi}, (12)

where OddG′ represents the odd neighborhood on the graph
G′ (see Fig. 5). Let us denote the set [gV (vi) ⊕ h(vi)] ∪
OddG′ [gV (vi) ⊕ h(vi)] by W (vi). The open-graph state |G′〉
is a stabilizer state of the operator

K̃[gV (vi)] = X̃gV (vi )⊕h(vi )Z̃OddG′ [gV (vi )⊕h(vi )]

= X̃gV (vi )⊕h(vi )Z̃OddG′ [gV (vi )]⊕NG′ [h(vi )]

= X̃gV (vi )⊕h(vi )Z̃OddG′ [gV (vi )]Z̃NG′ [h(vi )]. (13)

The stabilizer K̃[gV (vi)] is a multiqubit local unitary trans-
formation acting on the vertices in W (vi). It follows that the
controlled version of the stabilizer C̃K[gV (vi)]h(vi );W (vi ) also
stabilizes |G′〉 (the proof is given in Appendix B), namely,

|G′〉 = C̃K[gV (vi)]h(vi );W (vi )|G′〉. (14)

We define a sequence of open graphs {Gi}i=0,...,n (n = |V 1
≺|)

inductively by

|Gi〉 := F̃i |Gi−1〉, (15)

where G0 := G′ and

F̃i := C̃Zh(vi );OddG′ [gV (vi )]C̃Zh(vi );NG′ [h(vi )]. (16)

We denote the sets of edges that correspond to C̃Zh(vi );NG′ [h(vi )]

and to C̃Zh(vi );OddG′ [gV (vi )] by Eerase
i and Ecreate

i , respectively.
Equation (15) indicates that Gi is obtained by creating edges
Ecreate

i after erasing edges Eerase
i from Gi−1. Note that the sets

of edges {Eerase
i ∪ Ecreate

i }i=1,...,n are disjoint to each other. An
equivalent definition of Gi is given by

|Gi〉 := F̃i F̃i−1 . . . F̃1|G0〉. (17)

We show that Gi can be alternatively defined by

|Gi−1〉 = C̃Xh(vi );gV (vi )⊕h(vi )|Gi〉. (18)

Since any two CZ gates commute,

C̃Xh(vi );gV (vi )⊕h(vi )|Gi〉
= C̃Xh(vi );gV (vi )⊕h(vi )F̃i . . . F̃1|G0〉
= C̃Xh(vi );gV (vi )⊕h(vi )F̃i−1 . . . F̃1F̃i |G0〉. (19)

The CNOT gates C̃Xh(vi );gV (vi )⊕h(vi ) act on vertices h(vi) (the
control side) and gV (vi) ⊕ h(vi) (the target side), which are all
included in O\{h(v1), . . . ,h(vi−1)}, and there is no CZ gate in
F̃i−1 . . . F̃1 that acts on vertices in this set. Thus, Eq. (18) is
obtained by

C̃Xh(vi );gV (vi )⊕h(vi )F̃i−1 . . . F̃1F̃i |G0〉
= F̃i−1 . . . F̃1C̃Xh(vi );gV (vi )⊕h(vi )F̃i |G0〉
= F̃i−1 . . . F̃1C̃K[gV (vi)]h(vi );W (vi )|G0〉
= F̃i−1 . . . F̃1|G0〉
= |Gi−1〉.

For example, if |Gi1〉 in the left hand side of Eq. (18) is given
by the open-graph state presented in Figs. 6(a) and 6(b), then
the another description given by the right hand side of Eq. (18)
is presented in Figs. 6(c) and 6(d).

FIG. 6. (a) An open-graph state. The left two vertices are input
qubits and the right two are the outputs. A product of the Pauli X̃

and two Pauli Z̃ operators described in the figure form a stabilizer of
the graph state. (b) The circuit description of the same graph state.
The four lines from the bottom left to the top right represent physical
qubits on the vertices. (They are not the wires corresponding to the
path cover.) (c) The equivalent circuit description including a CNOT

gate. (d) The graph state obtained by applying a CNOT gate. This state
is equivalent to the graph state represented by (a).
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The open-graph state |G′〉 is then represented as

|G′〉 = C̃Xh(v1);gV (v1)⊕h(v1)|G1〉
= C̃Xh(v1);gV (v1)⊕h(v1)C̃Xh(v2);gV (v2)⊕h(v2)|G2〉
= C̃Xh(v1);gV (v1)⊕h(v1) . . . C̃Xh(vn);gV (vn)⊕h(vn)|Gn〉, (20)

using Eq. (18). Note that the CNOT gates act inside the set of
the output vertices. The edges incident from RV to O, namely,
those edges in Ecreate

i for some i, are

h(vi) ∼ v,

such that v ∈ OddG′[gV (vi)]. Since

NGn
[h(vi)] = {v ∈ OddG′ [gV (vi)]} = OddG′ [gV (vi)] ,

h turns out to be a flow from V 1
≺ to RV with the same partial

order to ≺V on V 1
≺ ∪ RV .

Let (G,I,O) be an open graph with gflow, with its layers
{V i

≺}i=0,...,d (V 0
≺ = O) defined by maximally delayed gflow

(g, ≺). We inductively define a sequence of open graphs
{(Gi,I i,Oi)}i=0,...,d by

(G0,I 0,O0) := (G,I,O),

(Gi,I i,Oi) := (Gi−1\Ri−1,I i−1\Ri−1,V i
≺ ∪ [Oi−1\Ri−1]),

(21)

where set Ri−1 to be removed from Gi−1 is chosen ac-
cording to Lemma 2 by taking G = Gi−1 and V = V i

≺ =
{vi

1,v
i
2, . . . ,v

i
n(i)} (n(i) := |V i

≺|). Note that I d = Od .
We now have two sets of graphs: {Gi}i=1,...,d , where d

denotes the depth of maximally delayed gflow, and {Gi}i=1,...,n,
where n = |V 1

≺| is defined by Eq. (15). The sequence with
superscripts is constructed by reducing output vertices starting
from G, while the sequence with subscripts is constructed by
erasing and creating edges incident to output vertices on G.

Let us denote the matching gflow for (Gi,I i,Oi) and
its successor function by (gi, ≺i) and hi , respectively. The
following theorem shows how to translate a measurement
pattern with gflow into a circuit decomposition.

Theorem 2. A circuit decomposition of a unitary transfor-
mation implemented by a measurement pattern with gflow on
open graph (G,I,O) is given by

U 0U 1
sptU

1U 2
spt . . . U

d−1Ud
sptU

d, (22)

where

Ui =
∏

u∼Gi v,u,v∈Oi

CZu;vCXhi (vi+1
1 );gi (vi+1

1 )⊕hi (vi
1)

· · · CXhi (vi+1
n(i+1));g

i (vi+1
n(i+1))⊕hi (vi+1

n(i+1))
, (23)

and

Ui
spt = J

(
αvi

n(i)

)
CZvi

n(i);Odd
Gi ′ [gi (vi

n(i))]
J
(
αvi

n(i)−1

)
· · · CZvi

2;Odd
Gi ′ [gi (vi

2)]J
(
αvi

1

)
. (24)

Here the graph Gi ′ is given by erasing all edges inside Oi

from Gi .
Proof. We denote n(1) by n, v1

i by vi , h0 by h, and g0 by
gV , to inherit notations from Definition 5 and the proof of
Lemma 3. Other types of labels do not appear in this proof.

We show that the circuit decomposition of the unitary
transformation implemented by the last step V 1

≺ → O0 is given
by U 0U 1

spt . The map represented by Eq. (2) and implemented
by the measurement pattern on the graph (G,I,O) is⊗

v∈OC

〈+αv
|G〉

=
∏

u∼Gv,u,v∈O

C̃Zu;v

⊗
v∈OC

〈+αv
|G′〉 (25)

=
∏

u∼Gv,u,v∈O

C̃Zu;vC̃Xh(v1);gV (v1)⊕h(v1) (26)

· · · C̃Xh(vn);gV (vn)⊕h(vn)

⊗
v∈OC

〈+αv
|Gn〉

= Ũ 0
⊗
v∈OC

〈+αv
|Gn〉, (27)

where Ũ 0 acts only on the output vertices. The graph Gn

is defined by Eq. (15), and Eq. (26) holds from Eq. (27).
The typical shape of the graph Gn is presented in Fig. 7. By
performing the SPT for flow in the last step from V 1

≺ to R0 on
Gn (this is always possible since Lemma 3 states that this part
of Gn has flow), the map given by Eq. (27) becomes

U 0U 1
spt

⊗
v∈O1C

〈+αv
|G1〉. (28)

Note that U 0U 1
spt is a unitary transformation acting on the

qubits represented by the wires labeled by vertices in O1.
If we apply the SPT on the graph represented by Fig. 7,
for example, we obtain a circuit presented in Fig. 9(a) as
U 1

spt . Equation (28) shows that the unitary transformation
implemented by the measurement pattern on the open graph
(G,I,O) can be decomposed into the unitary transformation
implemented by the measurement pattern on the open graph
(G1,I 1,O1) followed by U 0U 1

spt .
Since the maximally delayed gflow is preserved by reducing

open graphs (Lemma 2), the above argument is valid even if
we replace (G,I,O) with (Gi,I i,Oi), that is,⊗

v∈OiC

〈+αv
|Gi〉 = UiUi+1

spt

⊗
v∈Oi+1C

〈+αv
|Gi+1〉 (29)

hold for i = 0, . . . ,d − 1. If i = d, the open graph (Gd,I d,Od )
has the only layer V d

≺ = I d = Od and there is no measurement

FIG. 7. A typical shape of the graph Gn. A vertex h(vi) is
connected to vertices vj where j � i.
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FIG. 8. Circuit identities used for the translation.

in the corresponding pattern. In this case, Ud consists only
of a set of CZ gates, which is equivalent to the unitary
transformation implemented by the measurement pattern on
(Gd,I d,Od ). A concatenated application of Eq. (29) on
⊗v∈OC 〈+αv

|G〉 leads to⊗
v∈OC

〈+αv
|G〉 = U 0U 1

spt

⊗
v∈O1C

〈+αv
|G1〉

= U 0U 1
sptU

1U 2
spt

⊗
v∈O2C

〈+αv
|G2〉

= · · ·
= U 0U 1

sptU
1U 2

spt ...U
d−1Ud

sptU
d. (30)

V. PARALLELIZING J GATES

Using the circuit identity presented in Fig. 8(a), Ui
spt is

transformed into

Ui
spt = CXvi

n(i);Odd
Gi ′ [gi (vi

n(i))]
· · · CXvi

2;Odd
Gi ′ [gi (vi

2)]

×
⊗

j=0,...,n(i)

J
(
αvi

j

)
,

which has the parallelized form for J gates. For example,
if we apply this transformation to the circuit presented in
Fig. 9(a) to parallelize J gates, we obtain the circuit presented
in Fig. 9(b). The total unitary transformation U implemented
by the measurement pattern is now written in the form

U = C0
liffordJ

1C1
liffordJ

2 · · · Cd−1
liffordJ

dCd
lifford, (31)

FIG. 9. (a) A circuit decomposition obtained by applying the
SPT on the graph represented by Fig. 7. (b) An equivalent circuit
decomposition obtained after applying the circuit identity shown in
Fig. 8(a).

where each Ck
lifford (k = 0, . . . ,d) consists of two-qubit

Clifford gates and each J k (k = 1, . . . ,d) consists of parallel
J gates.

The circuit representation of U given by Eq. (31) shows that
the quantum depth calculated by gflow is lower bounded by the
depth calculated by a quantum circuit model that implements
all Clifford gates in a constant number of steps [5]. Each of
the Ck

lifford (k = 0, . . . ,d) is implemented in constant time by
this version of the quantum circuit model. Each unitary trans-
formation J k (k = 1, . . . ,d) is also implemented in constant
time because all J gates act on different wires and thus they
are parallelized. Therefore, the total unitary transformation U

represented by Eq. (31) is implemented in c ∗ d steps by this
quantum circuit model, where c denotes a constant.

In [19], a quantum circuit representing a unitary transfor-
mation implemented by a measurement pattern on a graph with
flow is transformed so that the single-qubit elementary gates
are parallelized. Our method is a generalization of that method
for graphs with gflow.

VI. STAR-PATTERN TRANSFORMATION FOR GFLOW

We define a generalization of the SPT on the graph with
gflow but no flow in this section. A straightforward application
of the SPT on a graph with a path cover but without flow does
not lead to a well-defined circuit, as we have noted in Sec. II C.
The restriction that the target side and the control side of a CZ

gate must act on the same time slice in the circuit prohibits us
to write a well-defined circuit for gflow.

We formally define an acausal CZ gate as a two-qubit gate
acting on two time slices in a circuit. We denote such an acausal
CZ gate by aCZu!;v!, where the positions u! and v! on which
the gate acts may be in different time slices. We pose two
assumptions on the acausal CZ gate. First, if the positions u!
and v! are regarded to be in the same time slice on the circuit,
then aCZu!;v! implements the same map as CZu!;v!. Second,
if several acausal CZ gates are acting on the same position
v!, the map implemented by these gates does not depend on
the ordering of the acausal CZ gates. The latter assumption
originates from the commutativity of the CZ gates acting on
the same physical qubit v on the graph.

We refer to a quantum circuit decomposition composed of
J gates, CZ gates, and acausal CZ gates as an acausal circuit
decomposition [10] [see Fig. 10(c)]. The SPT on the graph
with gflow but no flow is defined to be a procedure to write an
acausal circuit representation for a measurement pattern on the
graph. The procedure starts from applying the same processes
(i) and (ii) presented for the SPT for flow in Sec. II C. These
processes are applicable because there is a path cover on any
graph with gflow. Positions are also defined similarly. The
position between J (αh−1(v)) and J (αv) in the wire v is labeled
by v!, where h is the successor function. If v is a starting vertex
of the path cover, the label v! represents the position before the
gate J (αv) in wire v. If v is one of the last vertices of the path
cover, the label v! represents the position just before the output
in wire v. The procedure ends with placing acausal CZ gates in
the circuit instead of the ordinary CZ gates in the process (iii)
presented in Sec. II C. It is always possible to place aCZu!;v!

for any pair of positions u! and v!.
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FIG. 10. (a) An open graph with gflow but no flow. The set of
dashed edges represents the path cover and a vertex is labeled by v. (b)
A quantum circuit given by process (ii) of the SPT (Sec. II C) applied
on the graph given by (a). The two wires correspond to the path cover,
and boxes represent the J gates. The gate J (αv) is represented by the
black box. The position v! is the region of the wire between J (αv) and
J (αh−1(v)). (c) A quantum circuit representing a measurement pattern
on the graph given by (a).

VII. TRANSFORMING ACAUSAL CIRCUITS

Although direct application of the SPT on a graph without
flow leads to an acausal circuit, our translation method
presented in Sec. IV and the SPT have two common aspects.
One is the correspondence between a path cover and a wire
of the circuit. Another is the correspondence between each
measurement and a J gate. Since our method translates
a graph with gflow into a well-defined circuit, we expect
that the acausal circuit obtained by the SPT should be
transformable into a well-defined one by taking a suitable
circuit transformation. In this section, we present this circuit
transformation.

We define an acausal CZ gate using ancilla qubits and
postselection to be consistent with the unitary transformation
implemented by a measurement pattern with gflow. In [20], an
acausal gate is identified with a circuit simulating the effect
of a closed timelike curve (CTC) (see Fig. 12). This circuit,
including ancilla qubits and postselection of the measurement
results, is proposed by Bennett and Schumacher [21] and by
Svetlichny [22] to simulate the disordered time effect of CTC
by quantum circuits and is called the BSS-type CTC. In a
similar manner, we define acausal gates by using ancilla qubits
and postselection.

Lemma 4. Consider an acausal circuit obtained by directly
applying the SPT on a graph with gflow. Define an acausal CZ

gate aCZu!;v! acting on positions u! and v! by

aCZu!;v! := 〈+|u′ 〈+|v′CZu!;u′CZu′;v′CZv′;v!|+〉u′ |+〉v′ , (32)

where |+〉u′ and |+〉v′ represent the initial states of the
ancilla qubits, and 〈+|u′ and 〈+|v′ represent a postselected
measurement branch for a projective measurement described
by {|±〉i ′ 〈±|}, for i = u,v, respectively. We postselect the

FIG. 11. The definition of an acausal CZ gate. Two ancilla qubits
are initially prepared in |+〉 states, and are postselected to be in the
|+〉 state at the final measurements.

measurement result “+”. (See Fig. 11.) Then the acausal
circuit represents a unitary transformation equivalent to the
one implemented by the measurement pattern on the graph.

Proof. Rewriting the acausal CZ gates according to Eq. (32)
is always possible. This is because all of the CZ gates appearing
in Eq. (32) commute with each other, and there are no other
gates which define an ordering of gates on the ancilla qubits
u′ and v′.

Using the definition of an acausal CZ gate given by Eq. (32),
the acausal circuit can be transformed into a well-defined one.
The circuit is composed of three parts: preparation of initial
ancilla states, a circuit consisting of J gates and CZ gates,
and final measurements. The circuit in the second part can
be transformed to a measurement pattern by performing the
inverse transformation of the SPT [17]. Thus we obtain the
corresponding open graph (G′,I ′,O ′) with flow given by

V (G′) = V (G) ∪{u,v}/∈Ph
{u′,v′},

E(G′) = E(G) ∪{u,v}/∈Ph
{Euu′Eu′v′Ev′v}\ ∪{u,v}/∈Ph

Euv,

I ′ = I ∪{u,v}/∈Ph
{u′,v′},

O ′ = O ∪{u,v}/∈Ph
{u′,v′},

where Ph is defined by substituting the successor function
h instead of the flow function used in Eq. (3). There are
trivial I/O (input/output) paths from the newly added vertices
to themselves since they are included both in the input set and
in the output. The original path cover on the open graph G and
these trivial paths construct a path cover on the open graph
G′. Let us denote the unitary transformation implemented by
(G′,I ′,O ′) by UG′ . Then, from UG′ ∝ ⊗

v∈OC 〈+αv
|G′〉, we

have ⊗
{u,v}/∈Ph

〈+|u′ 〈+|v′UG′ |+〉u′ |+〉v′

∝
⊗

{u,v}/∈Ph

〈+|u′ 〈+|v′
⊗
v∈OC

〈+αv
|G′〉|+〉u′ |+〉v′ . (33)

Since all the projectors commute, we can perform the projector
|+〉〈+| on the ancilla qubits first. Using the relation

C̃Zu;v ∝ 〈+|u′ 〈+|v′ C̃Zu;u′C̃Zu′;v′

× C̃Zv′;v|+〉u′ |+〉v′ (∀{u,v} /∈ Ph),
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FIG. 12. The equivalent circuit representations for the acausal CZ

gates given by Fig. 11. The proof of the equivalence of the circuits
presented in the right-hand side and in the right-hand side circuit of
Fig. 11 is given in Appendix A.

we have ⊗
{u,v}/∈Ph

〈+|u′ 〈+|v′
⊗
v∈OC

〈+αv
|G′〉|+〉u′ |+〉v′

∝
⊗

{u,v}/∈Ph

〈+|u′ 〈+|v′
⊗
v∈OC

〈+αv
|C̃Zu;u′C̃Zu′;v′

× C̃Zv′;v|G′ ∩ Ph〉|+〉u′ |+〉v′

∝
⊗
v∈OC

〈+αv
|G〉,

namely, the graph G′ now returns to the original graph G. Thus
if the ancilla qubits of UG′ are prepared in |+〉 and the final
measurements postselect the final states to be |+〉, then the uni-
tary transformation implemented by the measurement pattern
on (G,I,O) is also implemented in this postselected way.

The definition of an acausal gate by Eq. (32) is equivalent
to the BSS-type CTC [21,22] (Fig. 12). The CZ gate appearing
on the left-side circuit of Fig. 12 acts on two qubits, where one
of the qubits has returned from a future to its past. Acausal CZ

gates defined by the circuit presented on the left-side picture
of Fig. 12 also appear in Ref. [20].

Although the acausal circuit can always be transformed into
an ordinary circuit without acausal gates in this way, it cannot
be implemented deterministically in general since the circuit
includes postselection of measurement results. However, we
will show that it is possible to transform the circuit to a
deterministically implementable ordinary circuit by taking
further transformations.

Let us denote an acausal circuit obtained by applying the
SPT on an open graph G by CG

spt . Since the CNOT gates in
the right-hand side of Eq. (18) are acting on output qubits, the
circuit identity

CXh(vi );gV (vi )⊕h(vi )C
Gi−1
spt = C

Gi

spt , (34)

where the CNOT gates are placed just before the output of
the circuit, holds for the sequence of open graphs {Gi} up
to a normalization factor. Further, there exists a sequence of
circuit transformations obtainable from one circuit to another,
as shown in the following lemma.

Lemma 5. An acausal circuit C
Gi

spt is obtained from a

circuit represented by CXh(vi );gV (vi )⊕h(vi )C
Gi−1
spt by performing

circuit transformations appropriately chosen from the circuit
identities for acausal gates presented in Fig. 13.

Proof. We first replace the CNOT gates appearing on the
left-hand side of Eq. (34) with acausal CNOT gates. We shift

FIG. 13. The circuit identity satisfied by the acausal gates. The
acausal gates are labeled “ac.” The acausal CNOT gate is defined as the
acausal CZ gate sandwiched by Hadamard gates. The proof of these
identities is given in Appendix A.

the position of the target of these acausal CNOT gates backwards
in time, until all the acausal CNOT gates are changed to acausal
CZ gates by the circuit identity presented in Fig. 13(b). In this
proof, if S is a set of vertices, S! denotes the set of positions
{v!|v ∈ S}.

The target of an acausal CNOT gate acting on v [v ∈
gV (vi) ⊕ h(vi)] first hits the acausal CZ gates corresponding
to nonpath edges incident from the vertex v. These acausal CZ

gates are represented by

aCZv!;N(v)\h−1(v)!.

We consider two processes for circuit transformations.
Process 1. By commuting the acausal CNOT gate and these

acausal CZ gates, new acausal CZ gates are created between
h(vi)! and N (v)\h−1(v)!, using the circuit identity presented
in Fig. 13(c). These newly created acausal CZ gates are

aCZh(vi )!;N(v)\h−1(v)!.

Process 2. Further commuting the acausal CNOT gate with
J (αv), it changes to an acausal CZ gate using the circuit identity
presented in Fig. 13(b). The resulting acausal CZ gate is

aCZh(vi )!;h−1(v)!.

By Process 1 and Process 2, the acausal CNOT gate is
transformed to

aCZh(vi )!;N(v)\h−1(v)!aCZh(vi )!;h−1(v)! = aCZh(vi )!;N(v)!.

If we perform these transformations for all of the CNOT

gates appearing on the left-hand side of Eq. (34), the CNOT

gates transform,∏
v∈gV (vi )⊕h(vi )

aCZh(vi )!;N(v)!

=
∏

v∈gV (vi )

aCZh(vi )!;N(v)!aCZh(vi )!;N[h(vi )]!

∝ aCZh(vi )!;Odd[gV (vi )]!aCZh(vi )!;N[h(vi )]! (35)

∝ aCZh(vi )!;Odd[gV (vi )]\vi !aCZh(vi )!;N[h(vi )]\vi !. (36)
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FIG. 14. (a) An open graph transformed according to Eq. (18)
from the graph given by Fig. 2. The extra CNOT gate must act on
the qubits o1 and o2. (b) The circuit decomposition obtained by our
method in Sec. IV.

Equation (35) holds since an even number of acausal CZ gates
acting on the same pairs of positions are canceled by the circuit
identity presented in Fig. 13(d), and since ⊕v∈gV (vi )N (v) =
Odd[gV (vi)]. Equation (36) holds since vi is in Odd[gV (vi)]
and also in N [h(vi)]. The last term aCZh(vi )!;N[h(vi )]\vi ! cancels
all (acausal) CZ gates incident from h(vi)!. New acausal CZ

gates are created by the first term aCZh(vi )!;Odd[gV (vi )]\vi !. These
transformations directly correspond to the transformation from
Gi−1 to Gi given by Eq. (15).

Now we present how to transform acausal circuits into
ordinary circuits by using Lemma 5. An example is shown
in Fig. 15 where an acausal circuit obtained from the open
graph presented in Fig. 2 is transformed to an ordinary circuit
presented in Fig. 14(b).

Lemma 6. Any acausal circuit obtained by directly applying
the SPT on any graph with gflow is transformed to the
circuit presented in Theorem 2, by performing suitable circuit

FIG. 15. (a) The acausal circuit representation for a unitary
transformation implemented by the measurement pattern on the open
graph presented in Fig. 2. We choose the edges (i2,o1) and (i3,o1)
as the acausal CZ gates. (b) Applying I = CNOT · CNOT on the
control qubit, h(i1) = o1, and the target qubit, gV (i1)\h(i1) = {o3}.
(c) Shifting the position of the acausal CNOT gate before the J gate
through the CZ gate. (d) Shifting the position of the acausal CNOT gate
through the J gate. It is changed to an acausal CZ gate. By canceling
the pairs of acausal CZ gates according to the circuit identity given in
Fig. 13(d), this acausal circuit is transformed to the circuit presented
in Fig. 14(b).

transformations chosen from the circuit identities presented in
Fig. 13 and a circuit identity

CXu;vCXu;v = I (∀u,v). (37)

Proof. All acausal CZ gates on CG
spt which originate from

CZ gates on pairs of output qubits on the graph state can
be changed into ordinary CZ gates by the circuit identity
presented in Fig. 13(a). These changes can be expressed by
a transformation,

CG
spt →

∏
u∼Gv,u,v∈O

CZu;vC
G′
spt , (38)

where graph G′ is defined in Lemma 3.
Next we start from CG′

spt = C
G0
spt and inductively transform

C
Gi−1
spt to CXh(vi );gV (vi )⊕h(vi )C

Gi

spt . Using the circuit identity by
Eq. (37), the circuit is transformed to

C
Gi−1
spt → (

CXh(vi );gV (vi )⊕h(vi )
)2

C
Gi−1
spt . (39)

Using Lemma 5, the circuit is further transformed to(
CXh(vi );gV (vi )⊕h(vi )

)2
C

Gi−1
spt → CXh(vi );gV (vi )⊕h(vi )C

Gi

spt . (40)

By combining transformations given in Eqs. (39) and (40), the
circuit is transformed to

C
Gi−1
spt → CXh(vi );gV (vi )⊕h(vi )C

Gi

spt . (41)

Starting from CG′
spt , inductive application of transformations

from C
Gi−1
spt to CXh(vi );gV (vi )⊕h(vi )C

Gi

spt results in a transformation,

CG′
spt → CXgV (v1)⊕h(v1) · · · CXh(vn);gV (vn)⊕h(vn)C

Gn

spt . (42)

Since there exists flow between the last two layers of Gn, all
acausal CZ gates inside this region of C

Gn

spt can be changed into
ordinary CZ gates [Fig. 13(a)] by the circuit identity presented
in Fig. 13(a). This is expressed by the transformation

C
Gn

spt → U 0
sptC

G1

spt , (43)

where graphs {Gi}i=0,...,d are defined by Eq. (22).
In total, the circuit is transformed to

CG
spt → U 0U 1

sptC
G1

spt . (44)

If we start transformations from CGi

spt , the circuit is transformed
to

CGi

spt → UiUi+1
spt CGi+1

spt , (45)

for i = 0, . . . ,d − 1. Thus, analogously to Eq. (30), any CG
spt

can be transformed to

CG
spt → U 0U 1

sptC
G1

spt

→ U 0U 1
sptU

1U 2
sptC

G2

spt

→ · · ·
→ U 0U 1

sptU
1U 2

spt · · · Ud−1Ud
sptU

d.

The next theorem follows immediately from Lemma 6.
Theorem 3. All acausal gates appearing on an acausal circuit

obtained by directly applying the SPT on any graph with
gflow can be canceled to give a circuit that is deterministically
implementable.
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Despite the fact that we have originally defined the acausal
circuit including ancillas and postselection, Theorem 3 shows
that all acausal gates cancel in this case and deterministic
implementation of a unitary transformation is possible.

VIII. DEPTH COMPRESSION AND ACAUSAL CIRCUITS

In Sec. V, we have shown that the unitary transformation
implemented by the measurements on qubits in a single layer
of gflow is written as parallelized J gates followed by a
sequence of Clifford gates. Any unitary transformation that
is written in this form is implemented in a constant quantum
depth by the measurement pattern. This is in contrast to
a variation of the quantum circuit model where classically
controlled operations depending on measurement outcomes
are not included. Generally, in such a model, the quantum
depth depends on the system size.

In this section, we show how the acausal circuit obtained
by directly applying the SPT expresses the depth compression
by extending the definition of the temporal ordering of gates.
In this section, the acausal gates are regarded as shorthands for
circuits implementing gate teleportation [23]. With the aid of
ancilla qubits and postselection, this circuit can be interpreted
to have a power equivalent to sending quantum states back
into the past, from where the computation continues again.
The condition of postselection is circumvented by applying
suitable correction operators depending on the outcomes of
the Bell measurement in gate teleportation.

A. Gate teleportation

Let us describe how to parallelize unitary transformations
and probabilistically compress the quantum depth by using a
postselection version of the gate-teleportation protocol [23].
We first review the gate-teleportation protocol for this purpose.
Consider a one-qubit circuit representing two unitary transfor-
mations U and U ′ applied on a single Hilbert space labeled A

in a sequence [see Fig. 16(a)]. The unitary transformation U ′
A

must be applied after the gate UA for implementing a unitary
transformation U ′U on a state on A.

With the aid of spatial resources, namely, ancilla qubits, we
construct another circuit where U and U ′ are applied on differ-
ent qubits in parallel, but the ordered sequence of unitary trans-
formations U ′U is still implemented. Consider a circuit that
has three qubits labeled by A, B, and C, depicted in Fig. 16(b).
The initial state of qubits B and C is prepared in a maximally
entangled state, |�〉BC := CZBC |+〉B |+〉C . After performing
unitary transformation U on qubit A, qubits A and B are mea-
sured in a basis {CZ|sA〉A|sB〉B}sA,sB∈{+,−}. This measurement
is called the Bell measurement. A Pauli correction operator
PC(sA,sB) depending on the measurement outcome is applied
on qubit C, where PC(+,+) = IC (do nothing), PC(+,−) =
XC , PC(−,−) = YC , and PC(−,+) = ZC . Finally, the unitary
transformation U ′ is performed on qubit C. In short, after UA,
we perform a quantum teleportation from A to C, followed by
U ′

C . An initial state |φ〉A|�〉BC is transformed to

U ′
CPC(sA,sB)〈sA|〈sB |UA|�〉BC |φ〉A = 1

2U ′
CUC |φ〉C, (46)

namely, apart from the difference on the Hilbert space where
the output state is obtained, the circuit presented in Fig. 16(b)

FIG. 16. (a) A circuit to implement a unitary transformation U ′U .
The unitary transformations U and U may consist of sequences of
gates. (b) A circuit obtained by inserting a teleportation between U

and U ′ presented in (a). The half ellipsoids at the left and right ends of
the wires represent a preparation of a maximally entangled state and a
Bell measurement, respectively. The white box labeled “P” represents
the Pauli correction operator. This is a circuit representation of
the sequence of operations presented in Eq. (46). (c) The circuit
representation of the sequence of operations presented in Eq. (47). (d)
A circuit obtained by assuming postselection in the Bell measurement
in the circuit presented in (c). The curved wire is an abbreviation of
the postselected teleportation, similar to the curved wire presented in
Fig. 12. This abbreviation is motivated by the fact that quantum states
can be sent “back in time” by postselected teleportation.

implements the same unitary transformation as the circuit
presented in Fig. 16(a).

In this form, we still have to perform U ′
C after UA, since

P ′
C(sA,sB) must be performed after the outcome (sA,sB) is

obtained by the measurement on qubits A and B. However, we
can rewrite the left-hand side of (46) as

U ′
CPC(sA,sB)U ′−1

C 〈sA|〈sB |CZABU ′
CUA|�〉BC |φ〉A. (47)

On the right-hand side of Eq. (47), UA and U ′
C is applied in

parallel, before the correction operator U ′
CPC(sA,sB)U ′−1

C [see
Fig. 16(c)]. In general, the quantum depth for implementing
U ′

CPC(sA,sB)U ′−1
C may be greater than that for implementing

U ′
C . Thus the quantum depth is not necessarily reduced in spite

of the unitary transformations U and U ′ being parallelized.
If the measurement result is postselected to give (sA,sB) =

(+,+), there is no need for the correction, and the quantum
depth for implementing U ′U is reduced by parallelizing U and
U ′. In this postselected branch, the teleportation represents a
map that can be interpreted to send a quantum state “back in
time,” in the same way as in the interpretation of the BSS-type
CTC [21,22]. The argument of this interpretation is given as
follows. Consider a case where U = U ′ = I and we perform
a measurement in an arbitrary basis {〈ϕ|m}m∈M on the output
state obtained in C before the input state |φ〉A is prepared. The
probability to obtain measurement result m′ is

4||〈+|A〈+|BCZAB |φ〉A〈ϕ|m′ |�〉BC ||2
= 4||〈ϕ|m′ 〈+|A〈+|BCZAB |φ〉A|�〉BC ||2
= ||〈ϕ|m′ |φ〉A||,2 (48)

in the postselected branch. This equality implies that the
probability distribution of the measurement performed on C

before the preparation of state |φ〉A is equal to the probability
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distribution of the measurement performed on state |φ〉A. This
is equivalent to saying that the state |φ〉A is sent back in time,
since the basis of the measurement is arbitrary. From this per-
spective, the teleportation protocol can be interpreted to reduce
the quantum depth by sending the quantum state into the past
and allowing the computation to continue again from there.

Using the notation introduced for representing the BSS-type
CTC, a circuit for sending a quantum state back in time should
be depicted by a curved wire, as represented in Fig. 16(d). Note
that this expression indicates that the Hilbert spaces described
by qubits A and C are considered to be the Hilbert spaces of an
identical qubit at two different temporal positions, instead of
the Hilbert spaces of the two spatially different qubits existing
at the same time.

The definition of the partial ordering of gates included in
a circuit with such curved wires must be extended from that
defined on an ordinary circuit. In a circuit without curved
wires, the partial ordering g1 � g2 between gates g1 and g2

applied on the same qubit is defined when g2 is performed
after g1. The quantum depth of a circuit without curved wires
is then defined as the maximum number of gates included in
any sequence of gates g1,g2, . . . ,gn such that gi � gi+1. To
define the partial ordering on gates included in circuits with
curved wires, we have to reconsider how to define a situation
to describe when a gate g2 is performed after g1. Consider
a circuit depicted in Fig. 17. Three gates g1, g2, and g3 are
performed sequentially, and the state is sent back from the
time represented by a dotted line to the time represented by
a dashed line, and then gates g′

2, g′
3, and g4 are applied in a

sequence. Partial orderings g1 � g2 � g3 and g′
2 � g′

3 � g4

should be defined as usual. Let us assume the time represented
by the dotted line is just after g3 and just before g4, and the time
represented by the dashed line is just after g1 and just before
g′

2. Thus partial orderings g1 � g′
2 and g3 � g4 are defined by

using the time represented by the dashed and the dotted lines
as intermediaries, respectively. However, there should be no
partial ordering between g3 and g′

2. Extending the definition of
partial ordering in this way, the quantum depth of a circuit with
curved wires is defined in the same way as that for a circuit
without curved wires.

Parallelization of unitary transformations is to remove the
partial ordering between the unitary transformations by using
curved wires. From this perspective, the teleportation protocol
reduces the quantum depth by extending the definition of
temporal ordering of gates.

Of course, postselection is probabilistic. The teleportation
protocol for sending the quantum state back in time or,
equivalently, the operation represented by the circuit with
curved wires cannot be deterministically implemented in
quantum mechanics in general. However, in some cases,
we can deterministically simulate it by applying appropriate
correction operators. If the correction U ′

CP ′
C(s)U ′−1

C is more
efficiently implementable than applying U ′ or U , it is possible
to reduce the quantum depth without assuming postselection.
For example, if U ′ consists of a sequence of Clifford gates,
U ′

CP ′
C(s)U ′−1

C is equivalent to a Pauli operator whose quantum
depth is one. Thus the quantum depth for implementing the
circuit obtained by parallelizing J gates as in Sec. V can be
reduced to c ∗ d, where c and d denote a constant and the depth
of gflow, respectively. As we will see in the next section, there

FIG. 17. (Color online) A circuit which has extended temporal
ordering of gates. The white boxes labeled by gi represent quantum
gates. At the time represented by a dotted line, the state is sent back
in to the time represented by a dashed line. The partial ordering of
gates in this circuit is defined by g1 � g2 � g3 � g4 and g1 � g′

2 �
g′

3 � g4.

are non-Clifford unitary transformations that change certain
Pauli correction operators into other Pauli operators, and these
transformations are relevant to the quantum depth of patterns
with gflow. Note that the gate-teleportation protocol reduces
the quantum depth by using additional ancillary systems and
classically controlled operations.

B. Depth compression described by acausal gates

In this section, we apply the mechanism of depth com-
pression presented in the previous section to the acausal
circuits obtained by directly applying the SPT on measurement
patterns with gflow. It is possible to reduce the quantum
depth of certain types of gate sequences including J gates,
which are not Clifford in general. The Pauli Z operator
changes to the Pauli X operator by the conjugate action of
a J gate. This allows us to reduce the quantum depth of a
circuit decomposition obtained by applying the SPT on the
measurement pattern implemented in the last two layers of Gn

defined in Eq. (18) [e.g., the circuit presented in Fig. 9(a)].
Note that the open graph constituting the vertices of the last
two layers of Gn has a gflow with its depth of one.

The acausal CZ gates describe the depth compression of
circuits of this type through its equivalent description by
the curved wires. Consider again the circuit depicted in
Fig. 9(a). The acausal circuit description of this circuit
presented in Fig. 18(a) is equivalent to the circuit with curved
wires presented in Fig. 18(b), which can be deterministically
simulated by performing suitable Pauli corrections as pre-
sented in Fig. 18(c). The circuits presented in Figs. 18(a)–18(c)
show that J gates are applied in parallel by considering the
extended temporal ordering of the gates. Thus, circuits with
acausal CZ gates not only represent the unitary transformation
implemented by the original pattern, but also capture the
extended temporal ordering of gates after parallelizing gates
by the gate-teleportation protocol.

This example shows that a class of unitary transformations
implemented by acausal circuits and circuits with curved
wires in constant quantum depth can be deterministically
implemented by measurement patterns and circuits simulating
the curved wires by the gate-teleportation protocol, also in
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FIG. 18. (a) An acausal circuit description of the circuit decom-
position presented in Fig. 9(a). (b) An equivalent circuit with curved
wires obtained after representing the acausal CZ gates by using a
circuit to represent the BSS-type CTC. (c) A circuit to implement
the unitary transformation described by the circuit presented in (a)
and (b) deterministically, by employing Pauli corrections depending
on the measurement outcomes of the Bell measurements. The white
boxes labeled by “P” represent Pauli operators. (The sequence of CZ

gates should be parallelized by other gate teleportations not depicted
here.)

constant quantum depth. Of course, this does not necessarily
hold for all unitary transformations, since it may take a large
quantum depth for applying correction operators in gate-
teleportation protocols in general. The examples presented
in Figs. 18 and 19 indicate several unitary transformations
and their acausal circuit representations are given by simply
applying the direct SPT on measurement patterns with gflow.

FIG. 19. (a) An acausal circuit equivalent to the one presented in
Fig. 10(c) obtained after representing the acausal CZ gates by using
a circuit to represent the BSS-type CTC. (b) A circuit to implement
the unitary transformation described by the circuit presented in (a)
deterministically, by employing Pauli corrections depending on the
outcomes of the Bell measurements. The white boxes labeled “P”
represent Pauli correction operators.

IX. CONCLUDING REMARKS

In this work, we have constructed two methods to translate a
unitary transformation implemented by a measurement pattern
on a graph with gflow to its circuit representation to analyze
the trade-off relationship of the spatial and temporal resources
in MBQC. The first method is a generalization of the method
presented in Ref. [19] and is also an extended version of the
method proposed in Ref. [12]. We have divided an open graph
with gflow into layers, and transformed each layer into an open
graph with flow followed by a sequence of CNOT gates. The
unitary transformation implemented by the measurements on
each layer is thus written by the part obtained by the SPT
and the sequence of CNOT gates. We also transformed the SPT
part into a circuit consisting of a sequence of Clifford gates
and parallelized J gates. The resulting circuit exhibits that the
depth of gflow corresponds to the depth calculated by a special
version of quantum circuit model where any sequence of
Clifford gates is regarded to be implemented in constant depth.

In the second translation method, a measurement pattern
is translated via an acausal circuit including acausal gates
obtained by directly applying the SPT on a graph with gflow
but no flow. We defined these acausal gates in terms of
postselection. Based on this definition, all acausal gates can be
canceled by taking appropriate transformations of the circuit.
This leads to a well-defined ordinary circuit representation
for the measurement pattern, which is equivalent to the one
obtained by the first translation method.

Finally, we have shown how the acausal circuits obtained
by directly applying the SPT on measurement patterns with
gflow express the depth compression by introducing an
extended definition of the temporal ordering of gates in
their equivalent circuit representation with curved wires.
For deterministically simulating the circuit with curved
wires by using a gate-teleportation protocol, appropriate
correction operators depending on the outcomes of the Bell
measurements are required.

We conjecture that in order to lift the condition of postselec-
tion entirely from the acausal circuits, it is sufficient to perform
a single layer of Pauli corrections per layer of J gates according
to the measurement outcomes for implementing the acausal CZ

gates acting astride the J gates, as depicted in Figs. 18(c) and
19. This is because any part of an acausal circuit corresponding
to a single layer of gflow can be rewritten into a circuit
constituting of a single layer of J gates and a sequence of
Clifford gates, and it suffices to perform a single layer of Pauli
corrections for parallelizing all the Clifford gates included in
the sequence. If this conjecture is true, the quantum depth of
the gate-teleportation protocol to implement a gate sequence
corresponding to the measurements on qubits in a single
layer of gflow becomes constant. This implies that all acausal
circuits obtained by directly applying the SPT on measurement
patterns with gflow can be simulated by the gate-teleportation
protocol with the depth equal to the depth of gflow.

Our formulation presents a way to understand the trade-off
relationship between the temporal and spatial resources in
quantum computation in terms of the extended temporal order-
ing of the acausal circuits. The temporal resource, or quantum
depth, of quantum computation represented by MBQC is
reduced from the ordinary quantum circuit model by extending
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the definition of the temporal ordering of gates. The spatial
resource, or an ancilla system, is required for simulating the
extended temporal ordering by the gate-teleportation protocol.
If our conjecture is true, this mechanism of the trade-off
relationship explains the depth compression of MBQC. We
leave the rigorous study of this conjecture for future works.
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APPENDIX A: PROOF OF THE CIRCUIT IDENTITIES
IN FIG. 13 AND THE EQUIVALENCE

OF THE CIRCUITS IN FIGS. 11 AND 12

Once the acausal gates shown in Fig. 13 are replaced
by ordinary CZ gates and CNOT gates, the circuit identities
presented in Fig. 13 are easily seen to hold. We prove that
these identities also hold for acausal gates. The transformation
method of circuits is depicted in Figs. 20–24. There are two
identities commonly used in the translation method.

FIG. 20. (Color online) A proof of the circuit identity presented
in Fig. 13(a). The first equality is by Eq. (A1) and the last equality
is by Eq. (A2). The second and the third equalities are by Eq. (A3).
The shifts of the position of the CNOT gates in the second and third
equalities are allowed because the acausal gate acts at a single time.
The probability to obtain the correct measurement result is always
one-quarter.

FIG. 21. (Color online) A proof of the circuit identity presented
in Fig. 13(b). The J gate, Jα , is decomposed into a phase gate Zα and
Hadamard gate H .

FIG. 22. (Color online) A proof of the circuit identity presented
in Fig. 13(d). The first equality is by Eq. (A1) and the last equality
is by Eq. (A2). The second and the third equalities are by Eq. (A3).
These circuit translations can be carried out even if the acausal CZ

gates act on a single wire.

FIG. 23. (Color online) Preparation for a proof of the circuit
identity presented in Fig. 13(c). The first and the fourth equalities are
by Eq. (A3). The third equality is by Eq. (A1) and the last equality is
by Eq. (A2). An ordinary CZ gate is changed into an acausal CZ gate
at the second equality.
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FIG. 24. (Color online) A proof of the circuit identity presented
in Fig. 13(c). The first and the fourth equalities are by the circuit
identity proved in Fig. 23. The second equality is by Eq. (A1) and the
dashed acausal CNOT gate is erased by Eq. (A2) in the last equality.
An ordinary CNOT gate is changed into an acausal CNOT gate at the
third equality. Two acausal CZ gates appearing on the top right of the
second to last circuit are canceled by the circuit identity presented in
Fig. 13(d) in the last equality.

First, we can add and remove CNOT gates when the target
qubit is prepared in |+〉 or postselected to the state |+〉, namely,

|+〉B |rest〉A = CXA;B |+〉B |rest〉A, (A1)

〈+|B〈rest|A = 〈+|B〈rest|ACXA;B, (A2)

where |rest〉 represents the state outside system B but including
system A.

Second, we use the following identity relation when shifting
positions of CNOT gates through CZ gates:

CZA;BCXC;B = CXC;BCZA;CCZA;B. (A3)

This identity relation appears when the acausal CNOT gate
presented in Fig. 13(c) is replaced by an ordinary CNOT gate.

The circuit presented in Fig. 12 is transformed into our
definition of an acausal CZ gate given in Fig. 11. We again use
Eqs. (A1) and (A2) and describe the transformation shown in
Fig. 25.

APPENDIX B: CONTROLLED STABILIZER

We present a proof of Eq. (14): the controlled operator
C̃K[gV (vi)]h(vi );W (vi ) of K̃[gV (vi)] defined by Eq. (14) also
stabilizes the open-graph state |G′〉φ .

First we prove that the operator K̃[gV (vi)] (vi ∈ V 1
≺) defined

by

K̃[gV (vi)] = X̃gV (vi )⊕h(vi )Z̃OddG′ [gV (vi )⊕h(vi )] (B1)

is a stabilizer of |G′〉φ . From the anticommutation relation
XZ + ZX = 0,

(−1)NK̃[gV (vi)] =
∏

u∈gV (vi )⊕h(vi )

X̃uZ̃N(u),

where

N = |{(v1,v2) ∈ E|v1,v2 ∈ g(u)}|
holds and the right-hand side is a stabilizer of |G′〉φ . Since there
are no edges between any pair of vertices in gV (vi) ⊕ h(vi) on
G′, N = 0 in this case. It follows that K̃[gV (vi)] is a stabilizer
of |G′〉φ .

Let us exchange the order of C̃X included in
C̃K[gV (vi)]h(vi );W (vi ) and C̃Z constructing the open-graph state,

FIG. 25. (Color online) A proof of the equivalence of the circuits presented in Figs. 11 and 12. (a) The ordering of wires is changed.
(b) The swap gate is decomposed into a sequence of three CNOT gates. (c) The last CNOT gate is erased by Eq. (A2). (d) Shifting the position of
the short CZ gate (represented by a dashed line) forward in time. The longest CZ gate is canceled, when the short one passes through the target
part of the CNOT gate. The last CNOT gate (represented by a dashed line) is decomposed into a CZ gate and two Hadamard gates. (e) Inserting
a CNOT gate by Eq. (A1) at the positions pointed by the vectors. (f) Shifting the inserted CNOT gate backwards until its target part touches the
state |+〉 and is erased by Eq. (A1). The last CZ gate is canceled when the CNOT gate passes through the short CZ gate. Two Hadamard gates
also cancel each other after the CZ gate is canceled. (g) Shifting the position of the CNOT gate until it collides with the postselected state |+〉
and is erased by Eq. (A2).
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by adding extra CZ gates in a way presented in Fig. 8(c). For
any C̃Xh(vi );u [u ∈ gV (vi) ⊕ h(vi)],

C̃Xh(vi );uẼG′ = ẼG′C̃Zh(vi );NG′ (u)C̃Xh(vi );u

= C̃Zh(vi );NG′ (u)ẼG′C̃Xh(vi );u

holds. Summing up for all u ∈ gV (vi) ⊕ h(vi), we have

C̃Xh(vi );gV (vi )⊕h(vi )ẼG′

=
∏

u∈gV (vi )⊕h(vi )

C̃Zh(vi );NG′ (u)ẼG′C̃Xh(vi );gV (vi )⊕h(vi )

= C̃Zh(vi );OddG′ [gV (vi )⊕h(vi )]ẼG′C̃Xh(vi );gV (vi )⊕h(vi ).

The newly created CZ gates are identical to those appearing in
C̃K[gV (vi)]h(vi );W (vi ). Thus if we apply C̃K[gV (vi)]h(vi );W (vi ) on
|G′〉φ = ẼG′ |+〉IC |φ〉I , it yields

C̃K[gV (vi)]h(vi );W (vi )ẼG′ |+〉IC |φ〉I
= ẼG′C̃Xh(vi );gV (vi )⊕h(vi )|+〉IC |φ〉I , (B2)

where CZ gates are canceled. Since gV (vi) ⊕ h(vi) ∩ I = ∅,
the target side of the CNOT gates in Eq. (B2) all act on |+〉
states. From Eq. (A1), these CNOT gates are eliminated to
derive

C̃K[gV (vi)]h(vi );W (vi )|G′〉φ = |G′〉φ.
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