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Floquet control of quantum dissipation in spin chains
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Controlling the decoherence induced by the interaction of quantum system with its environment is a
fundamental challenge in quantum technology. Utilizing Floquet theory, we explore the constructive role of
temporal periodic driving in suppressing decoherence of a spin-1/2 particle coupled to a spin bath. It is revealed
that, accompanying the formation of a Floquet bound state in the quasienergy spectrum of the whole system
including the system and its environment, the dissipation of the spin system can be inhibited and the system tends
to coherently synchronize with the driving. It can be seen as an analog to the decoherence suppression induced
by the structured environment in spatially periodic photonic crystal setting. Comparing with other decoherence
control schemes, our protocol is robust against the fluctuation of control parameters and easy to realize in practice.
It suggests a promising perspective of periodic driving in decoherence control.
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I. INTRODUCTION

As a ubiquitous phenomenon in microscopic world, de-
coherence is a main obstacle to the realization of any
applications of quantum coherence, e.g., quantum information
processing [1], quantum metrology [2], and quantum simu-
lation [3]. Many methods, such as feedback control [4,5],
decoherence-free subspace encoding [6,7], and dynamical
decoupling [8–11], have been proposed to beat this unwanted
effect. The dynamical decoupling scheme can be generally
described by the so-called spectral filtering theory in the
first-order Magnus expansion [12–16], which is valid when
the control pulses are sufficiently rapid. Based on the spin
echo technique, this scheme is widely exploited to suppress
dephasing [8,10,11,13], where the system has no energy
exchange with the environment, and classical noises [14–16].
It requires a high controllability to the system due to its
sensitivity to the time instants at which the inverse pulses
are applied [17]. Furthermore, when dissipation and quantum
noises are involved, it generally cannot perform well. Although
the dissipation control was partially touched in the original
form of the spectral filtering theory [12], whether the first-
Markovian approximation used there can capture well the
physics for such time-dependent systems is still an open
question. This is because that new time scales would be
introduced to the systems by the time-dependent control
field, which might invalidate the application of the Markovian
approximation.

As a main inspiration, we notice that the decoherence of
dissipative systems connects tightly with the energy-spectrum
characters of the total system consisting of the system and
its environment [18–20]. If a bound state residing in the
energy band gap of the whole system is formed by changing
the environmental spectral density, the decoherence of the
system can be suppressed. Thus one can artificially engineer
the bound state to suppress decoherence of quantum emitters
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by introducing spatial periodic confinement in a photonic
crystal setting [21–24]. Here the spatial periodic confinement
dramatically alters the dispersion relation of the radiation
field of the quantum emitter such that a certain band gap
structure is present in the spectral density. If the frequency
of the quantum emitter resides in the band gap region, then
a bound state is formed and thus the decoherence of the
emitter can be suppressed. However, in practical solid-state
systems, one generally faces that it is hard to manipulate the
spectral density via changing the spatial confinement once the
material of system is fabricated. Thus a more efficient way in
engineering the bound state than changing the spectral density
is desired.

Recently, temporal periodic driving has become a highly
controllable and versatile tool in quantum control. Many
efforts have been devoted to explore nontrivial effects induced
by periodic driving on physical systems. It has been proven to
play profound role not only in controlling single-quantum-
state of microscopic systems [25–32] and implementing
geometric phase gates in quantum computation [33,34], but
also in generating novel states of matter absent in the
original static system [35–42]. Different from static systems,
periodically driven systems have no stationary states because
the energy is not conserved. Due to Floquet theory, they
have well-defined quasistationary-state properties described
by the Floquet eigenvalues, which are called quasienergies.
The distinguished role of periodic driving in these diverse
systems is that the versatility of driving schemes can induce
more colorful quasistationary-state behaviors than the static
case by controlling the quasienergy spectrum.

In this paper, we explore the possibility of periodic driving
on engineering the bound state of a spin-1/2 system interacting
with a XX-type coupled spin bath. Via manipulating the
quasienergy spectrum by periodic driving, we find that a
Floquet eigenstate with discrete quasienergy, which we name
a Floquet bound state (FBS), can be formed within the band
gap of the quasienergy spectrum. We further reveal that the
presence of the FBS would dynamically cause the dissipation
of the system spin inhibited. The result suggests that we
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can manipulate the periodicity in a temporal domain instead
of the one in a spatial domain to suppress decoherence,
which relaxes greatly the experimental difficulty in fabricating
periodic confinement in a photonic crystal.

Our paper is organized as follows. In Sec. II, we present our
model of a periodically driven spin-1/2 particle coupled to a
spin chain bath and its exact decoherence dynamics. In Sec. III,
the Floquet theory is used to obtain the quasienergy spectrum
of the whole system. In Sec. IV, the mechanism of decoherence
inhabitation induced by the periodic driving is revealed. The
comparisons of this mechanism with the previous methods
are also shown in this section. Finally, a summary is given in
Sec. V.

II. MODEL AND DYNAMICS

We consider a periodically driven spin-1/2 particle inter-
acting with a one-dimensional spin chain, which is composed
of L spin-1/2 particles coupled via XX-type interactions. The
Hamiltonian of the total system is Ĥ (t) = ĤS(t) + ĤI + ĤE

with

ĤS(t) = 1

2
[λ + A(t)]σ̂ z

0 , ĤI = g

2

(
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y
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, (1)
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y

j σ̂
y
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)
, (2)

where σ̂ α
j (α = x,y,z) are the Pauli matrices with j = 0 and

1, . . . ,L, respectively, labeling the system spin and the spins
in the chain; λ denotes the longitudinal magnetic field exerted
homogeneously on all the spins; A(t) is the always-on periodic
driving [43,44] only on the system; J and g are, respectively,
the coupling strengths between the nearest-neighbor spins of
the chain and between the system and the first-site spin of the
chain. ĤE yields a phase transition at the critical point |λ| =
2J [45]. This type of system has been widely used to realize
quantum state transfer, where the XX-coupling chain is used as
a bridge [46,47] and to analyze decoherence caused by a spin
bath [48]. Diagonalizing ĤE in the single-excitation subspace,
we can obtain its eigenstate |ϕk〉 = ∑L

j=1
eikjx0√

L
σ̂+

j |{↓j }〉, which
is a spin wave with wave vector k, and the eigenenergy
Ek = λ + 2J cos kx0 with x0 being the spatial separation of
the two neighbor sites. Here |{↓j }〉 is the ferromagnetic state
of the chain with all its spins pointing to the −êz direction
and σ̂+

j = (σ̂ x
j + iσ̂

y

j )/2. Obviously, the spin chain defines an
environment with finite bandwidth 4J .

We are interested in how the spin chain results in decoher-
ence to the system spin and how it can be suppressed by peri-
odic driving. Since the excitation number N̂ ≡ ∑L

j=0 σ̂+
j σ̂−

j is
conserved, the Hilbert space is divided into independent sub-
spaces with definite N . Consider that the spin chain is initially
polarized in a ferromagnetic state and the system is in an up
state |�(0)〉 = |φ〉 ⊗ |{↓j }〉 with |φ〉 = |↑0〉, and its evolution
can be expanded as |�(t)〉 = ei Lλt

2
∑L

j=0 cj (t)σ̂+
j |{↓j }〉, where

c0(t) satisfies

ċ′
0(t) + i[λ + A(t)]c′

0(t) +
∫ t

0
f (t − τ )c′

0(τ ) dτ = 0, (3)

with c′
0(t) = c0(t)e− i

2

∫ t

0 [λ+A(τ )]dτ and f (x) ≡ (g2/L)
∑

k

e−iEkx and c0(0) = 1. Denoting the excited-state probability
of the system, |c0(t)|2 characterizes the environmental
decoherence effect on the system. Equation (3) provides us
with the exact description to the decoherence of the system.

III. FLOQUET QUASI-ENERGY SPECTRUM

For a static system governed by Ĥ , any time-evolved state
can be expanded as

|�(t)〉 =
∑

n

Cne
iEnt |ϕn〉, (4)

where Cn = 〈ϕn|�(0)〉, En and |ϕn〉 determined by Ĥ |ϕn〉 =
En|ϕn〉 are called eigenenergies and stationary states, respec-
tively.

A temporal periodic system governed by Ĥ (t) = Ĥ (t + T )
can be treated by Floquet theory [49], which, as a powerful
approach to map a nonequilibrium system under driving to a
static one, can be seen as the application of Bloch theorem in
the time domain. According to this theory, the periodic system
has a complete set of basis |uα(t)〉 determined by

[Ĥ (t) − i∂t ]|uα(t)〉 = εα|uα(t)〉 (5)

such that any state can be expanded as

|�(t)〉 =
∑

α

Cαe−iεα t |uα(t)〉 (6)

with Cα = 〈uα(0)|�(0)〉. The similar time independence of
Cα as Cn in Eq. (4) implies that εα and |uα(t)〉 play
the same roles in a periodic system as eigenenergies and
stationary states do in static system. Such similarity leads
us to call them quasienergies and quasistationary states,
respectively. Carrying all the quasistationary-state characters,
the quasienergy spectrum formed by all εα is a key to study
periodic system. Note that εα is periodic with period 2π/T

because eilωt |uα(t)〉 with ω = 2π/T is also the eigenstate of
Eq. (5) with eigenvalue εα + lω.

The Floquet operator acts on an extended Hilbert space
named Sambe space, which is made up of the usual Hilbert
space and an extra temporal space [50,51]. To calculate the
quasienergies, one first expands |uα(t)〉 in a complete set of
basis of the temporal space, which is generally chosen as
{eikωt |k ∈ Z}. We have |uα(t)〉 = ∑

k |ũα(k)〉eikωt , with which
Eq. (5) is recast into∑

k∈Z

[ ˆ̃Hl−k + kωδl,k]|ũα(k)〉 = εα|ũα(l)〉, (7)

with ˆ̃Hl−k ≡ ∫ T

0 Ĥ (t) e−i(l−k)ωt

T
dt . Then expanding each ˆ̃Hl in

the complete basis of Hilbert subspace with N = 1, we get
an infinite matrix equation. The quasienergies are obtained by
truncating the basis of the temporal space to the rank such that
the obtained magnitudes converge.

IV. DECOHERENCE INHIBITION BY PERIODIC DRIVING

A. The mechanism of the decoherence inhibition

To reveal the mechanism of decoherence inhibition by
the periodic driving, we consider explicitly that the energy

052122-2



FLOQUET CONTROL OF QUANTUM DISSIPATION IN . . . PHYSICAL REVIEW A 91, 052122 (2015)

FIG. 1. (Color online) (a) Evolution of the excited-state prob-
ability Pt of the system spin in different driving amplitude a2.
(b) Floquet quasienergy spectrum of the whole system with the change
of the driving amplitude a2 in step δa2 = 0.5J . The parameters
T = 0.25πJ −1, a1 = 0, τ = 0.1πJ −1, g = 1.0J , λ = 20.0J , and
L = 800 are used.

splitting of the system is modulated as [48]

A(t) =
{
a1, nT < t � nT + τ

a2, nT + τ < t � (n + 1)T
. (8)

It is realizable by adding a time-dependent longitudinal
magnetic field. Note that although only the driving periodic
in this step function is considered, the mechanism revealed in
the following is also applicable to other forms. To Eq. (8), we
have

ˆ̃Hl = (ĤE + ĤI)δl,0 + (ωl/2)σ̂ z
0 , (9)

ωl = a1(1 − e−ilωτ ) − a2(e−i2πl − e−ilωτ )

2iπl
. (10)

We first study the asymmetric driving situation by choosing
a1 = 0. Figure 1(a) shows the time evolution of the excited-
state probability Pt = |c0(t)|2 with the change of the driving
amplitude a2 via numerically solving Eq. (3). When the driving
is switched off, i.e., a2 = 0, Pt decays monotonically to zero,
which means a complete decoherence exerted by the spin chain
to the system spin. When the driving is switched on, it is
interesting to see that, dramatically different from the switch-
off case, Pt is stabilized repeatedly with the increase of a2.
To explain this, we plot in Fig. 1(b) the quasienergy spectrum
obtained by solving Eq. (7). We can find that an FBS is possible
to be formed within the band gap with the increase of a2. It is
remarkable to see that the regimes where the decoherence is
inhibited match well with the ones where the FBS is present.
To understand the decoherence inhibition induced by the FBS,
we, according to Eq. (6), rewrite

|�(t)〉 = ei Lλt
2 [xe−iεFBSt |uFBS(t)〉

+
∑

α∈Band

yαe−iεα t |uα(t)〉], (11)

where x = 〈uFBS(0)|�(0)〉 and yα = 〈uα(0)|�(0)〉.
Then one can get that Pt evolves asymptotically to

FIG. 2. (Color online) Evolution of Pt for |φ〉 = |↑0〉 in (a) and
Ft for |φ〉 = (|↑0〉 + |↓0〉)/

√
2 in (b) when a2 = 36.0J with the FBS

(cyan solid line) and a2 = 1.5J without the FBS (red dashed line)
via numerically solving Eq. (3). The blue dot-dashed lines show the
results obtained via analytically evaluating the contribution of the
FBS to the asymptotic state, which match the numerical ones. The
parameters are the same as Fig. 1 except for T = 0.05πJ −1 and
τ = 0.02πJ −1.

P∞ ≡ x2|〈�(0)|uFBS(t)〉|2 with all the components in
the quasienergy band vanishing due to the out-of-phase
interference contributed by the continuous phases (see
Appendix A), as confirmed in Fig. 2(a). In the absence of the
FBS, although it is dramatically interrupted by the driving, Pt

decays to zero finally. Whenever the FBS is formed, Pt would
be stabilized to P∞, which is periodic with period T [see
the inset of Fig. 2(a)]. It means that the presence of the FBS
would cause Pt to survive in the only component of the FBS
and thus synchronize with the driving field [52]. Figure 2(b)
plots the performance of the formed FBS in an arbitrary initial
state |φ〉 = (|↑0〉 + |↓0〉)/

√
2. We can see that the decay

of the initial-state-fidelity Ft ≡ 〈φ|TrE[|�(t)〉〈�(t)|]|φ〉, to
50% can be stabilized even as high as the ideal lossless
case (i.e., between 0 and 1) with the formation of the FBS.
Characterizing the quantum coherence between the two spin
states, such a stabilized oscillation means that the quantum
coherence is preserved. We can check that Ft tends to
F∞ = 〈φ|ρ|φ〉, where

ρ =
(

1 − |x|2
2

)
|↓0〉〈↓0| + |x|2

2
ρFBS(t)

+
{

x∗

2
μ(t)TrE[|{↓j }〉〈uFBS(t)|] + H.c.

}
(12)

with ρFBS(t) = TrE[|uFBS(t)〉〈uFBS(t)|] and μ(t) =
ei

∫ t

0
λ+A(t ′)+2εFBS

2 dt ′ (see Appendix B). We plot this F∞ with the
blue dot-dashed line in Fig. 2(b), which matches with the
asymptotical result from numerically solving Eq. (3).

The result reveals that we can manipulate the quasienergy
spectrum forming the FBS to suppress decoherence. A prereq-
uisite for forming the FBS is the existence of finite quasienergy
gap in the spectrum. We plot in Fig. 3 the Floquet quasienergy
spectrum and Pt with the change of τ as well as T . We can see
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FIG. 3. (Color online) Floquet quasienergy spectrum of the
whole system in (a) and evolution of Pt in (b) with the change of
τ when T = 0.25πJ −1. The increase step δτ = 0.03J −1 is used in
(a). Floquet quasienergy spectrum in (c) and time evolution of Pt in
(d) with the change of of T when τ = 0.1πJ −1. The increase step
δT = 0.09J −1 is used in (c). Other parameters are the same as Fig. 1.

that, irrespective of which driving parameter is changed, the
firm correspondence between the formation of the FBS and
the decoherence inhibition can be established. The common
character between Fig. 1(b) and Fig. 3(a) is that the width of the
formed band gap is kept constant during the change of driving
parameters, which is not true for Fig. 3(c). This can be under-
stood in the following way. Periodic in 2π/T , the quasienergy
has a full width 2π/T . The energy band of the whole system is
4J . Therefore, a band gap with finite width 2π/T − 4J can be
present in the quasienergy spectrum only in the high-frequency
(i.e., 2π/T > 4J ) driving case. This can be tested by Fig. 3(c)
where the band gap vanishes whenever 2π/T < 4J . It leads
to the continuous energy band of the environment filling up the
Floquet spectrum. Thus there is no room for forming the FBS
here. Reflecting on Pt in Fig. 3(d), although it is greatly slowed,
Pt approaches zero eventually. Therefore, we conclude that the
FBS can be present only in the high-frequency driving case
2π/T > 4J , which supplies a necessary condition to stabilize
decoherence. It is a very useful criterion on designing a driving
scheme for decoherence control.

Our finding in the periodically driven system is an analog to
the bound-state-induced decoherence suppression revealed in
a static system [18–20]. For a static two-level system [19,20]
or a harmonic oscillator [53] interacting with an environment,
depending on the parameters in the spectral density, the
total system may possess a stationary state named as bound
state [19] localized out of the continuous energy band of the
environment. As a stationary state, the bound state contained
as one superposition component in the initial state does not
lose its quantum coherence during time evolution. Thus the
system evolves exclusively to the time-invariant component
of the bound state with other components in the continuous
band vanishing due to their out-of-phase interference. This
idea was used previously to suppress spontaneous emission of
quantum emitters via introducing spatial periodic confinement
to the radiation field in a photonic crystal setting [21–24].

The spatial periodicity introduces a band gap structure to
the environmental energy spectrum such that an emitter-
environment bound state is formed when the frequency of
the emitter falls in the band gap. Here we demonstrate that
the parallel picture can be set up by introducing temporal
periodicity to the system. The benefit of using the temporal
periodic driving instead of the spatial periodic confinement is
that its high controllability greatly relaxes the experimental
difficulty in fabricating the spatial periodic confinement. Thus
it is easier to realize in practice.

B. Comparisons with the previous methods

There are several methods in the literature to explore the ef-
fects of periodic driving on quantum systems. For example, via
neglecting the coupling between different temporal subspaces
of the Floquet eigenequation (7) in the high-frequency driving
condition, it was shown that the periodic driving can induce
the suppressed tunneling of a quantum particle, a phenomenon
called coherent destruction of tunneling [25–27], and the
decoupling between open system and its environment [30,31].
It was also revealed that, via introducing the first-Markovian
approximation to Eq. (3), the dynamics of the open system
under periodic control can be characterized by an overlap
integration of the noise spectrum and the spectrum of the
control, and thus one can craft the filter-transfer function of the
control field to suppress decoherence [12]. It is called spectral
filtering theory and has been generalized to give a unified
description to a dynamical decoupling method [12–16]. In
the following we compare our exact treatment with the above
approximate methods.

First, our decoherence inhibition mechanism is more
robust to the imperfect fluctuation of the driving parameters
than the decoupling mechanism revealed in Ref. [30,31],
where the decoupling is achieved only in certain single
values of the driving parameters. To see this, we resort
to the same approximate method as in Refs. [27,30,31].
Expanding |uα(t)〉 in a new set of basis of the tem-
poral space as |uα(t)〉 = ∑

k Ût e
ikωt |ũα(k)〉〉, where Ût =

exp[−(i/2)
∫ t

0 (A(t ′) − Ā)σ̂z dt ′] with Ā = (1/T )
∫ T

0 A(t) dt

subtracted to guarantee the periodicity of |uα(t)〉, we can obtain
a similar form as Eq. (7) but

ˆ̃Hl−k =
[
λ + Ā

2
σ̂ z

0 + ĤE

]
δl,k + g(Fl−kσ̂

+
1 σ̂−

0 + H.c.), (13)

Fl−k =
∫ T

0

exp
{ − i

∫ t

0 [A(t ′) − Ā] dt ′
}
e−i(l−k)ωt

T
dt. (14)

Using the approximation in Refs. [30,31], we neglect the
terms Fl−k with l = k and keep only F0. It reduces to a spin
system coupled to an environment with the coupling strength
renormalized by a factor F0. In Fig. 4 we plot |F0|2 and Pt

with the change of a2 in the symmetric driving situation,
i.e., a1 = −a2. It shows that although no FBS is formed,
F0 = 0 is achievable in certain values of driving parameters. As
expected, it induces the decoherence inhibited [see Fig. 4(b)].
However, the decoupling is sensitive to the driving parameters
and any small deviation to the decoupling driving values would
cause the asymptotic vanishing of Pt . Different from this, it
is a wide parameter regime in our mechanism which makes
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FIG. 4. (Color online) The renomalization factor |F0|2 in (a)
and the evolution of Pt in (b) with the change of a2

in the symmetric driving case (i.e., a1 = −a2). The inset of (a) shows
the Floquet quasienergy spectrum revealing the absence of the FBS.
The parameters are T = 0.4πJ −1 and τ = 0.2πJ −1, and the others
are the same as Fig. 1.

decoherence inhibited (see Figs. 1 and 3), which is more stable
to the parameter fluctuation in the practical experiments than
the decoupling one.

Second, we emphasize that our mechanism is substantially
different from the spectral filtering theory [12–16]. That theory
works only in the first-Markovian approximation, with which
the convolution in the exact evolution equation (3) can be
removed [12], i.e.,

α̇(t) ≈ −α(t)
∫ t

0
dτε∗(t)ε(τ )f (t − τ )eiωa (t−τ ) (15)

with α(t) = c′
0(t)ei

∫ t

0 [λ+A(τ )]dτ , ε(t) = ei
∫ t

0 [A(τ )−Ā]dτ , and ωa =
λ + Ā. Its solution can be obtained readily as

|α(t)| = |c0(t)| = exp[−R(t)Q(t)/2], (16)

where

R(t) ≡ 2π

∫ +∞

−∞
G(ω + ωa)

|εt (ω)|2
Q(t)

dω, (17)

Q(t) =
∫ t

0
dτ |ε(τ )|2 (18)

with the environmental spectral density G(ω) relat-
ing to its correlation function f (t − τ ) as f (t − τ ) =∫

G(ω)e−iω(t−τ )dω and εt (ω) = 1√
2π

∫ t

0 ε(τ )eiωτ dτ . Thus it
is only under the first Markovian approximation that |c0(t)|
can be denoted by such filtered spectrum form. To check
the physics missed by this approximation, we plot in Fig. 5
the comparison of our exact result with the one obtained
firmly from the spectral filtering theory. We can see from
Fig. 5(a) that the spectral filtering theory shows a complete
decoherence to zero because of a dramatic overlap between
the environmental spectrum and the control spectrum [see
Fig. 5(b)]. However, our exact result in Fig. 5(c) shows a
stabilization on decoherence due to the existence of the FBS
in the quasienergy spectrum [see Fig. 5(d)]. It means that the
spectral filtering theory totally breaks down in describing the

FIG. 5. (Color online) The comparison of Pt calculated by the
spectral filtering method in (a) and our exact method in (c). (b) The
noise spectrum G(ω + ω0) and the spectrum of the control Ft (ω) ≡
|εt (ω)|2/Q(t) used in the spectral filtering method to determine Pt .
The contribution of the formed FBS to Pt is also plotted in (c). The
Floquet quasienergy spectrum in (d) shows the existence of the FBS.
a2 = 3.2J is further used in (a–c) and other parameters are same as
Fig. 1.

long-time steady state behavior here. To give more evidence
on the dominate role of the formed FBS in the steady-state
behavior, we plot in Fig. 5(c) the fidelity of the FBS in
the time-evolved state, which matches well with Pt in the
long-time limit. Therefore, it confirms again that the formed
FBS is the physical reason for decoherence inhibition in
long-time limit of our model. Thus the decoherence cannot
be simply described as an overlap between the noise spectrum
and the control field here and the spectral filtering theory is
inapplicable to explain our result.

As a final remark, the mechanism revealed in our spin-bath
model can also be readily extended to other excitation-number-
conserving models, e.g., a two-level system in a coupled cavity
array [30,31] and a harmonic oscillator in a bosonic bath
model [53].

V. CONCLUSIONS

We have studied the decoherence dynamics of a periodically
driven spin-1/2 particle interacting with an XX coupled spin
chain. It is found that the decoherence of the system can be
inhibited by the periodic driving. We have revealed that the
mechanism of such decoherence inhibition induced by the
periodic driving is the formation of a FBS in the quasienergy
spectrum. This can be seen as a close analog of the bound-
state induced decoherence suppression in a photonic crystal
system, but it relaxes greatly the experimental difficulties
of a photonic crystal system in fabricating specific spatial
periodicity to engineer a bound state. It opens a door to
beat decoherence by tailoring temporal periodicity. Compared
with the conventional schemes of decoherence control using
periodic driving or pulses, our scheme is robust to the practical
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driving parameter fluctuation. Given the fact that periodic
driving offers a high controllability to quantum system,
our decoherence inhibition mechanism provides us with a
promising and realistic way to practical decoherence control.
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APPENDIX A: THE CONTRIBUTION OF THE FORMED
FBS TO THE LONG-TIME STEADY STATE

For the initial state |�(0)〉 = |↑〉 ⊗ |{↓1 · · · ↓L}〉, |�(t)〉
can also be expanded in the Floquet basis as

|�(t)〉 = ei Lλt
2 [xe−iε FBSt |uFBS(t)〉 +

∑
α∈B

yαe−iεα t |uα(t)〉],

(A1)

where |uFBS(t)〉 is the formed FBS with quasienergy εFBS,
|uα(t)〉 are the Floquet eigenstates in the continuous band with
quasienergies εα , x = 〈uFBS(0)|�(0)〉, and yα = 〈uα(0)|�(0)〉.
Then we can calculate the probability of the system spin
keeping in an up state as

Pt = |x|2|〈�(0)|uFBS(t)〉|2

+
∑

α,β∈B

y∗
αyβe−i(εβ−εα)t 〈�(0)|uβ(t)〉〈uα(t)|�(0)〉

+
∑
α∈B

[xy∗
αe−i(ε FBS−εα )t 〈�(0)|uFBS(t)〉〈uα(t)|�(0)〉

+ c.c.] (A2)

Due to the out-of-phase interference contributed from
e−i(εβ−εα)t with α = β and e−i(εFBS−εα)t , Pt tends to

P∞ = |x|2|〈�(0)|uFBS(∞)〉|2 +
∑
α∈B

|yα|2|〈�(0)|uα(∞)〉|2

= |x|2|〈�(0)|uFBS(∞)〉|2 +
∑
α∈B

|yα|4|〈uα(0)|uα(∞)〉|2,

(A3)

where the orthogonality of Floquet eigenstates has been used.
Noticing the fact that

∑
α∈B |yα|2 = ∑L

α=1 |yα|2 ∼ 1 (because
we have L Floquet eigenstates forming the continuous
quasienergy band), we can estimate that |yα|2 ∼ 1/L. In the
thermodynamics limit L ⇒ ∞, the last term tends to zero.
Thus we have

P∞ = |x|2|〈�(0)|uFBS(∞)〉|2. (A4)

From the above analysis, we can see that the preserved
excited-state probability is determined by the weight of
|uFBS(0)〉 in the initial state |�(0)〉 and the excited-state
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FIG. 6. (Color online) The distribution of excited-state popula-
tion of the formed Floquet bound state at time t = T/4 over the
spin sites. The parameters used are T = 0.25πJ−1, τ = 0.1πJ −1,
a2 = 3.2J , and a1 = 0.

probability of the system spin in |uFBS(∞)〉 itself. In Fig. 6 we
plot the distribution of excited-state population of the formed
FBS at time t = T/4 over the spin sites. We can see that its
excited-state population is mainly confined in the site of the
system spin, which acts as an impurity in the whole system.

APPENDIX B: THE EFFECT OF PERIODIC DRIVING
ON THE INITIAL SUPERPOSITION STATE

For the general initial state |�(0)〉 = |φ〉 ⊗ |{↓j =0}〉 with
|φ〉 = α|↑0〉 + β|↓0〉 under |α|2 + |β|2 = 1, its evolved state
|�(t)〉 can be expanded as

|�(t)〉 = ei Lλt
2

⎡
⎣α

L∑
j=0

cj (t)σ̂+
j |{↓j }〉 + βei

∫ t

0
λ+A(t ′)

2 dt ′ |{↓j }〉
⎤
⎦ ,

(B1)

where c0(t) satisfies Eq. (3) in the main text. The fidelity of
the system in its initial state |φ〉 can be calculated as

Ft = 〈φ|TrE[|�(t)〉〈�(t)|]|φ〉
= ||α|2c0(t)e−i

∫ t

0
λ+A(t ′)

2 dt ′ + |β|2|2
+ |αβ|2|[1 − |c0(t)|2]. (B2)

Since |φ〉 is not an eigenstate of the system even in the
absence of the environmental influence, Ft is a temporally
oscillating function even in the long-time limit. To quali-
tatively reflect the performance of the periodic driving on
suppressing decoherence, we use the maximal value Ft to
characterize it. This happens at a set of times τn such that

c0(τn)e−i
∫ τn

0
λ+A(t ′ )

2 dt ′ = |c0(τn)|. Under this condition, Eq. (B2)
has the form

Fτn
= 1 − |α|4[1 − |c0(τn)|2] − |αβ|2[1 − |c0(τn)|]2

� |β|2 + |α|2|c0(τn)|2. (B3)

When the FBS is absent, |c0(∞)| = 0 and thus Fτn
= |β|2.

This corresponds to the complete decoherence (i.e., the
system spin decays totally to its low-energy spin down state).
Whenever the FBS is formed, a nonzero |c0(∞)| would be
achieved. Then we could have Fτn

> |β|2 in the steady state.
From this analysis, we can see that the preserved probability
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for arbitrary initial state is determined by the same long-time behavior of |c0(∞)| as the one for the spin up initial state. This
proves well that our mechanism of dissipation suppression can also be applied to the initial superposition state.

More precisely, we can evaluate the contribution of the formed FBS to the steady state. |�(t)〉 can also be expanded in the
Floquet basis as

|�(t)〉 = ei Lλt
2

{
βei

∫ t

0
λ+A(t ′)

2 dt ′ |{↓j }〉 + α[xe−iεFBSt |uFBS(t)〉 +
∑
γ∈B

yγ e−iεγ t |uγ (t)〉]
}
. (B4)

Due to the out-of-phase interference, the reduced density matrix tends to

ρ(∞) = TrE[|�(∞)〉〈�(∞)|] = |β|2|↓0〉〈↓0| + |α|2{|x|2ρFBS(t) +
∑

γ

|yγ |2TrE[|uγ (t)〉〈uγ (t)|]}

+ {βα∗x∗μ(t)TrE[|{↓j }〉〈uFBS(t)|] + H.c.}, (B5)

where ρFBS(t) = TrE[|uFBS(t)〉〈uFBS(t)|] and μ(t) = ei
∫ t

0
λ+A(t ′)+2εFBS

2 dt ′ . Noticing the fact that TrE[|uγ (t)〉〈uγ (t)|] is dominated by
|↓0〉〈↓0| and

∑
γ |yγ |2 + |x|2 = 1, we have

∑
γ |yγ |2TrE[|uγ (t)〉〈uγ (t)|] ≈ (1 − |x|2)|↓0〉〈↓0|. Thus the asymptotic state of the

system spin is

ρ(∞) = (1 − |α|2|x|2)|↓0〉〈↓0| + |α|2|x|2ρFBS(t) + {βα∗x∗μ(t)TrE[|{↓j }〉〈uFBS(t)|] + H.c.}. (B6)

Then the analytical form of the fidelity in the long-time limit can be calculated by F∞ = 〈φ|ρ(∞)|φ〉. It gives the contribution
of the formed FBS to the asymptotical state and can be used to check the validity of our FBS theory in explaining the dynamics
of the system spin.
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[17] A. M. Souza, G. A. Álvarez, and D. Sutter, Phil. Trans. R. Soc.

A 370, 4748 (2012).

[18] M. Miyamoto, Phys. Rev. A 72, 063405 (2005).
[19] Q.-J. Tong, J.-H. An, H.-G. Luo, and C. H. Oh, Phys. Rev. A 81,

052330 (2010).
[20] P. Zhang, B. You, and L.-X. Cen, Opt. Lett. 38, 3650

(2013).
[21] M. R. Jorgensen, J. W. Galusha, and M. H. Bartl, Phys. Rev.

Lett. 107, 143902 (2011).
[22] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda,

Science 308, 1296 (2005).
[23] D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang,

T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, Phys.
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