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Conditions for coherence transformations under incoherent operations
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We build in this paper the counterpart of the celebrated Nielsen theorem for coherence manipulation. This
offers an affirmative answer to the open question: whether, given two states ρ and σ , either ρ can be transformed
into σ or vice versa under incoherent operations [Baumgratz et al., Phys. Rev. Lett. 113, 140401 (2014)]. As a
consequence, we find that there exist essentially different types of coherence. Moreover, incoherent operations
can be enhanced in the presence of certain coherent states. These extra states are coherent catalysts: they allow
uncertain incoherent operations to be realized without being consumed in any way. Our main result also sheds
light on the construction of coherence measures.
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Introduction. Superposition is a critical property of quan-
tum systems resulting in quantum coherence and quantum
entanglement. Quantum coherence and also entanglement pro-
vide important resources for quantum information processing;
for example, the Deutschs algorithm, the Shors algorithm,
teleportation, superdense coding, and quantum cryptography
[1]. As with any such resource, there arises naturally the
question of how it can be quantified and manipulated. Attempts
have been made to find meaningful measures of entanglement
[2–6], and also to uncover the fundamental laws of its
behavior under local quantum operations and classical com-
munication (LOCC) [2–12]. The celebrated Nielsen theorem
finds possible entanglement manipulation between bipartite
entangled states by LOCC [7]. Let |ψ〉 = ∑d

i=1

√
ψj |jj 〉 and

|φ〉 = ∑d
i=1

√
φj |jj 〉 be two bipartite states whose Schmidt

coefficients are ordered in decreasing order, ψ1 � ψ2 � · · · �
ψd , φ1 � φ2 � · · · � φd . Then |ψ〉 → |φ〉 by LOCC if and
only if (ψ1,ψ2, . . . ,ψd ) ≺ (φ1,φ2, . . . ,φd ). This reveals a
partial ordering of the entangled states and connects quantum
entanglement to the algebraic theory of majorization.

In [13], the researchers establish a rigorous framework for
the quantification of coherence as a resource following the
viewpoints that have been established for entanglement in [6].
The setting of single copies of coherent states is of considerable
interest from the practical point of view as this is most readily
accessible in the laboratory. It is expected that a theory of
coherence manipulation can be established that proceeds along
the lines of analogous developments in entanglement theory
[13]. The aim of this paper is to build the counterpart of Nielsen
theorem for coherence manipulation. What is surprising is that
majorization is also a key ingredient. It provides the relevant
structure that determines the interconvertibility of coherent
states.

Majorization is an active research area in linear algebra. We
use Chap. 2 of [14] as our principal reference on majorization.
Suppose x = (x1,x2, . . . ,xd )t and y = (y1,y2, . . . ,yd )t are
real d-dimensional vectors; here x = (x1,x2, . . . ,xd )t denotes
the transpose of the row vector (x1,x2, . . . ,xd ). Then x is
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majorized by y (equivalently y majorizes x), which is written
x ≺ y, if for each k in the range 1, . . . ,d,

∑k
i=1 x

↓
i �

∑k
i=1 y

↓
i

with the equality holding when k = d, and where x
↓
i indicates

that elements are to be taken in descending order; so, for
example, x

↓
1 is the largest element in (x1, . . . ,xd ). The

majorization relation is a partial order on real vectors, with
x ≺ y and y ≺ x if and only if x↓ = y↓.

In the following, we introduce the concepts of incoherent
states and incoherent operations taken from [13]. Let H be
a finite-dimensional Hilbert space with dim(H) = d. Fixing a
particular basis {|i〉}di=1, we call all density operators (quantum
states) that are diagonal in this basis incoherent. This set of
quantum states is labeled by I; all density operators ρ ∈ I are
of the form

ρ =
d∑

i=1

λi |i〉〈i|. (1)

Quantum operations are specified by a finite set of Kraus
operators {Kn} satisfying

∑
n K

†
nKn = I , where I is the

identity operator on H. Quantum operations are incoherent if
they fulfill KnρK

†
n/Tr(KnρK

†
n) ∈ I for all ρ ∈ I and for all n.

Results. To state our central result linking coherence
manipulation with majorization, we need some notation.
Suppose |ψ〉 = ∑d

i=1 ψi |i〉 and |φ〉 = ∑d
i=1 φi |i〉 are any pure

states. |ψ〉 ico−→ |φ〉 (read “|ψ〉 transforms incoherently to |φ〉”)
indicates that |ψ〉〈ψ | transforms to |φ〉〈φ| by incoherent
operations. Then we have the following theorem:

Theorem 1. |ψ〉 transforms to |φ〉 using incoherent op-
erations if and only if (|ψ1|2, . . . ,|ψd |2)t is majorized by
(|φ1|2, . . . ,|φd |2)t . More succinctly,

|ψ〉 ico−→ |φ〉 if and only if
(|ψ1|2, . . . ,|ψd |2)t ≺ (|φ1|2, . . . ,|φd |2)t .

(2)

One direct consequence of Theorem 1 is that there exist
pairs |ψ〉 and |φ〉 with neither |ψ〉 ico−→ |φ〉 nor |φ〉 ico−→ |ψ〉.
For example, when d = 3,

|ψ〉 =
√

0.4|1〉 +
√

0.3|2〉 +
√

0.3|3〉, (3)

|φ〉 =
√

0.5|1〉 +
√

0.1|2〉 +
√

0.4|3〉. (4)
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These provide an example of essentially different types of
coherence, from the point of view of incoherent operations.
We will say that |ψ〉 and |φ〉 are incomparable in coherence.
In addition, for any two pure states |ψ〉 and |φ〉, |ψ〉 and |φ〉 can
be incomparable with respect to incoherence under a change of
basis. This may seem odd at first, but it turns out that coherence
is a basis-dependent phenomenon.

For entanglement transformations, a major interest has
been catalysis. This enables the conversion between two
initially inconvertible entangled states assisted by a borrowed
entangled state, which is recovered at the end of the process
[10,15–19]. For two states |ψ〉 and |φ〉 which are incomparable
in coherence, if |ψ〉|δ〉 ico−→ |φ〉|δ〉, we say |ψ〉 is transformed
into |φ〉 under coherence-assisted incoherent operations, and
|δ〉 is called a coherent catalyst. This state acts much like a
catalyst in a chemical reaction: its presence allows a previously
forbidden transformation to be realized, and since it is not
consumed it can be reused. Here we use the phrase “coherence
assisted” because |δ〉 must be coherent. Combining Theorem
1 and proofs of Lemmas 1, 2, and 3 in [10], we immediately
have the following interesting results:

(i) No incoherent transformation can be catalyzed by a
maximally coherent state |ψd〉 = ∑d

k=1
1√
d
|k〉. This shows a

surprising property of coherent catalysts: they must be partially
coherent. If the catalyst has not enough coherence, then |ψ〉
cannot be transformed into |φ〉 with certainty, but if it has too
much then the result is same.

(ii) Two states are interconvertible (i.e., both |ψ〉 → |φ〉 and
|φ〉 → |ψ〉) under coherence-assisted incoherent operations if
and only if they are equivalent up to a permutation of diagonal
unitary transformations. One consequence of this result is that,
if a transition that is forbidden under incoherent operation
can be catalyzed (i.e., |ψ〉 � |φ〉 under incoherent operation
but |ψ〉|δ〉 → |φ〉|δ〉 for some |δ〉), then the reverse transition
(from |φ〉 → |ψ〉) cannot be catalyzed. In particular, only
transitions between incomparable states may be catalyzed.

(iii) |ψ〉 → |φ〉 under coherence-assisted incoherent oper-
ation only if both |ψ1| � |φ1| and |ψd | � |φd |.

Theorem 1 provides a necessary condition for coherence
measures. From [13], coherence measures should satisfy
monotonicity under incoherent operations, i.e., C(�(ρ)) �
C(ρ) for any incoherent operation � and state ρ. Let
|ψ〉 = ψ1|1〉 + · · · + ψd |d〉, |φ〉 = φ1|1〉 + · · · + φd |d〉, with
(|ψ1|2, . . . ,|ψd |2)t ≺ (|φ1|2, . . . ,|φd |2)t . By Theorem 1, we
have C(|φ〉〈φ|) � C(|ψ〉〈ψ |). This necessary condition of the
coherence measure implies that Result 1 in [20] is not true.
That is, the Wigner-Yanase-Dyson skew information

C(ρ,K) = − 1
2 Tr([

√
ρ,K]2) (5)

is not a good coherence measure since it violates this necessary
condition. Assume d = 3; let

K = |1〉〈1| + 10|2〉〈2| + 5|3〉〈3|,
|ψ〉 = 1√

3
|1〉 + 1√

3
|2〉 + 1√

3
|3〉, (6)

|φ〉 = 1√
2
|1〉 + 1√

2
|2〉.

It is easy to check that ( 1
3 , 1

3 , 1
3 )t ≺ ( 1

2 , 1
2 ,0)t and

C(|φ〉〈φ|,K) = 81
4 > C(|ψ〉〈ψ |,K) = 122

9 . (7)

The following construction of coherent measures originates
from Theorem 1. For an arbitrary pure state |ψ〉 = ∑d

i=1 ψi |i〉,
we define Cl(|ψ〉〈ψ |) = ∑d

i=l |ψi |2↓
(l = 2,3, . . . ,d); here

(|ψ1|2↓
,|ψ2|2↓

, . . . ,|ψd |2↓
)t is the vector obtained by rearrang-

ing the coordinates of (|ψ1|2,|ψ2|2, . . . ,|ψd |2)t in decreasing
order, and extending it over the whole set of density matrices
as Cl(ρ) = minpj ,ρj

∑
j pjCl(ρj ), where the minimization

is to be performed over all the pure-state ensembles of ρ,
i.e., ρ = ∑

j pjρj . In [21], we show that Cl are coherence
measures.

Theorem 1 also paves the way for the following question:
suppose there is a pure coherent state |ψ〉 = ∑d

i=1 ψi |i〉 which
we would like to convert into another pure coherent state |φ〉 =∑d

i=1 φi |i〉 by incoherent operations. What is the greatest
probability of success in such a conversion? In [21], we give the
explicit formula for the greatest probability P (|ψ〉 ico−→ |φ〉).
A parallel result in entanglement theory is the optimal local
conversion strategy between any two pure entangled states of
a bipartite system [8].

Proof. Now we do some preparatory work to prove Theorem
1 by collecting some useful facts:

(i) For real vectors x,y, x ≺ y if and only if x = Ay for
some doubly stochastic matrix. Recall that a d × d matrix
A = (aij ) is called doubly stochastic if aij � 0 and

∑d
i=1 aij =∑d

j=1 aij = 1.
(ii) For every doubly stochastic matrix A, it is a matrix that

may be written as a product of at most d − 1 T transforms. A
T transform, by definition, acts as the identity on all but two
matrix components. On those two components, it has the form

T =
(

t 1 − t

1 − t t

)
, (8)

where 0 � t � 1. In terms of transformation,
T (x1,x2, . . . ,xd )t = (x1, . . . ,xi−1,txi + (1 − t)xj ,xi+1, . . .

xj−1,(1 − t)xi + txj ,xj+1, . . . ,xd )t for some indices i,j and
0 � t � 1.

(iii) Let π be a permutation of {1,2, . . . ,d} and Pπ be the
permutation matrix corresponding to π that is obtained by
permuting the rows of a d × d identity matrix according to π .
A permutation matrix has exactly one entry 1 in each row and
each column and 0 elsewhere.

(iv) For the quantum operation �(·) = ∑
n KnK

†
n, it is easy

to see that � is incoherent if and only if every column of Kn

in the fixed basis {|i〉}di=1 has at most one nonzero entry.
Now, we are in a position to give the proof of Theorem 1.
Proof. First, we can suppose that all ψk,φk(k = 1,2, . . . ,d)

are non-negative and sorted in descending order. Indeed,
in the general case, let ψk = |ψk|eiαk , φk = |φk|eiβk and
|ψπ(1)| � |ψπ(2)| � · · · � |ψπ(d)|, |φσ (1)| � |φσ (2)| � · · · �
|φσ (d)|, where π,σ are two permutations of {1,2, . . . ,d}.
One can define U = Pπdiag(e−iα1 ,e−iα2 , . . . ,e−iαd ) and
V = Pσ diag(e−iβ1 ,e−iβ2 , . . . ,e−iβd ); here Pπ and Pσ are
permutation matrices corresponding to π and σ , respectively.
Note that U |ψ〉 ico−→ V |φ〉 ⇔ |ψ〉 ico−→ |φ〉; we can replace |ψ〉
and |φ〉 by U |ψ〉 and V |φ〉.
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Now, we prove the “if” part. Assume that
(|ψ1|2, . . . ,|ψd |2)t ≺ (|φ1|2, . . . ,|φd |2)t . We will apply
the inductive method.

Assume dim H = 2. If ψ2 = 0, from the majorization,
it follows that φ2 = 0. That is, |ψ〉 = |φ〉 = |1〉. Then the
identity operation is the one desired. Now we may suppose
ψ2 
= 0. Let A = ( a 1 − a

1 − a a ) (0 � a � 1) be a doubly
stochastic matrix such that(

ψ2
1

ψ2
2

)
=

(
a 1 − a

1 − a a

)(
φ2

1

φ2
2

)
. (9)

Define

K1 =
(√

a
φ1

ψ1
0

0
√

a
φ2

ψ2

)
, (10)

K2 =
(

0
√

1 − a
φ1

ψ2√
1 − a

φ2

ψ1
0

)
. (11)

One can check that the incoherent operation whose Kraus
operators are K1 and K2 is the one desired.

Assume that the result holds true for dim H � d − 1; we
will prove that the result holds true for dim H = d and divide
the proof into two cases.

Case 1. There is a k (1 < k < d) such that ψk 
= 0 and
ψk+1 = · · · = ψd = 0. From the majorization, it follows that
φk+1 = · · · = φd = 0. The k-level vector (|ψ1|2, . . . ,|ψk|2)t is
majorized by (|φ1|2, . . . ,|φk|2)t . From the inductive assump-
tion, there is an incoherent operation �̃ on Mk [the set of
all (k × k)-level matrices], with the specified Kraus operators

K̃n (n = 1,2, . . . ,N ) such that
∑k

i=1 ψi |i〉 �̃−→ ∑k
i=1 φi |i〉.

Define Kn = K̃n ⊕ 1√
N

Id−k; then �(·) = ∑N
i=1 KnK

†
n is an

incoherent operation which transforms |ψ〉〈ψ | to |φ〉〈φ|.
Case 2. ψd 
= 0. Let A be a doubly stochastic matrix

with (|ψ1|2, . . . ,|ψd |2)t = A(|φ1|2, . . . ,|φd |2)t . Note that the
composition of incoherent operations is also incoherent; by the
fact (ii), A can be reduced to a T transform for some indices i,j

and 0 � t � 1. Let π = (1,2, . . . ,i − 1,j,i + 1, . . . ,j − 1,

i,j + 1, . . . ,d) be a permutation of {1,2, . . . ,d}, and

K1 = √
tdiag

(
φ1

ψ1
, . . . ,

φd

ψd

)
, (12)

K2 = √
1 − tdiag

(
φ1

ψ1
, . . . ,

φi−1

ψi−1
,
φi

ψj

,
φi+1

ψi+1
, . . . ,

φj−1

ψj−1
,
φj

ψi

,
φj+1

ψj+1
, . . . ,

φd

ψd

)
Pπ . (13)

Then

K
†
1K1 = tdiag

(
φ2

1

ψ2
1

, . . . ,
φ2

d

ψ2
d

)
, (14)

K
†
2K2 = (1 − t)diag

(
φ2

1

ψ2
1

, . . . ,
φ2

i−1

ψ2
i−1

,
φ2

j

ψ2
i

,
φ2

i+1

ψ2
i+1

, . . . ,
φ2

j−1

ψ2
j−1

,
φ2

i

ψ2
j

,
φ2

j+1

ψ2
j+1

, . . . ,
φ2

d

ψ2
d

)
. (15)

From (|ψ1|2, . . . ,|ψd |2)t = A(|φ1|2, . . . ,|φd |2)t , it follows that
K

†
1K1 + K

†
2K2 = I . Furthermore, it is easy to check that

�(·) = ∑2
n=1 KnK

†
n transforms |ψ〉〈ψ | to |φ〉〈φ|. Note that

each column of Kn (n = 1,2) has at most one nonzero entry,
so � is incoherent. This finishes the proof of the “if” part.

To prove the converse, we consider only the three-
dimensional case; other cases can be treated similarly. Now, we
suppose that dim H = 3 and there is an incoherent operation
� that transforms |ψ〉〈ψ | to |φ〉〈φ|. Let

�(|ψ〉〈ψ |) =
∑

n

Kn|ψ〉〈ψ |K†
n = |φ〉〈φ|. (16)

Hence there exist complex numbers αn such that Kn|ψ〉 =
αn|φ〉. Let k

(n)
j (j = 1,2,3) be the nonzero element of Kn in

the j th column (if there is no nonzero element in the j th
column, then k

(n)
j = 0). Suppose k

(n)
j is located in the i(j )th

row. Let

δs,t =
{

1, s = t

0, s 
= t
.

Then there is a permutation πn such that

Kn = Pπn

⎛⎜⎜⎝
k

(n)
1 δ1,i(2)k

(n)
2 δ1,i(3)k

(n)
3

0 δ2,i(2)k
(n)
2 δ2,i(3)k

(n)
3

0 0 δ3,i(3)k
(n)
3

⎞⎟⎟⎠ . (17)

From
∑

n K
†
nKn = I , we get that

∑
n

|k(n)
j |2 = 1, (j = 1,2,3),

∑
n

k
(n)
1 δ1,i(2)k

(n)
2 = 0,

(18)∑
n

k
(n)
1 δ1,i(3)k

(n)
3 = 0,

∑
n

(δ1,i(2)δ1,i(3) + δ2,i(2)δ2,i(3))k
(n)
2 k

(n)
3 = 0.
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By a direct computation, one can get

Kn|ψ〉 = Pπn

⎛⎜⎜⎝
k

(n)
1 ψ1 + δ1,i(2)k

(n)
2 ψ2 + δ1,i(3)k

(n)
3 ψ3

δ2,i(2)k
(n)
2 ψ2 + δ2,i(3)k

(n)
3 ψ3

δ3,i(3)k
(n)
3 ψ3

⎞⎟⎟⎠ ,

(19)

and so

k
(n)
1 ψ1 + δ1,i(2)k

(n)
2 ψ2 + δ1,i(3)k

(n)
3 ψ3 = αnφπ−1

n (1),

δ2,i(2)k
(n)
2 ψ2 + δ2,i(3)k

(n)
3 ψ3 = αnφπ−1

n (2), (20)

δ3,i(3)k
(n)
3 ψ3 = αnφπ−1

n (3).

Applying
∑

n | · |2 to the above equations, we have

ψ2
1 + δ1,i(2)ψ

2
2 + δ1,i(3)ψ

2
3 =

∑
n

|αn|2φ2
π−1

n (1)
,

δ2,i(2)ψ
2
2 + δ2,i(3)ψ

2
3 =

∑
n

|αn|2φ2
π−1

n (2)
, (21)

δ3,i(3)ψ
2
3 =

∑
n

|αn|2φ2
π−1

n (3)
.

Note that, for s = 1,2,3,∑
n

|αn|2φ2
π−1

n (s)
=

∑
n,π−1

n (s)=1

|αn|2φ2
1 +

∑
n,π−1

n (s)=2

|αn|2φ2
2

+
∑

n,π−1
n (s)=3

|αn|2φ2
3 . (22)

Let dij = ∑
n,π−1

n (i)=j |αn|2, 1 � i, j � 3; then the matrix
D = (dij ) is a doubly stochastic matrix, since

∑
n |αn|2 = 1.

Furthermore,

D
(
φ2

1 ,φ
2
2 ,φ

2
3

)t = (
ψ2

1 + δ1,i(2)ψ
2
2 + δ1,i(3)ψ

2
3 ,δ2,i(2)ψ

2
2

+ δ2,i(3)ψ
2
3 ,δ3,i(3)ψ

2
3

)t
. (23)

This implies that(
ψ2

1 + δ1,i(2)ψ
2
2 + δ1,i(3)ψ

2
3 ,δ2,i(2)ψ

2
2 + δ2,i(3)ψ

2
3 ,δ3,i(3)ψ

2
3

)t

≺ (
φ2

1 ,φ
2
2 ,φ

2
3

)t
. (24)

It is easy to check that(
ψ2

1 ,ψ2
2 ,ψ2

3

)t ≺ (
ψ2

1 + δ1,i(2)ψ
2
2 + δ1,i(3)ψ

2
3 ,δ2,i(2)ψ

2
2

+ δ2,i(3)ψ
2
3 ,δ3,i(3)ψ

2
3

)t
. (25)

Therefore (ψ2
1 ,ψ2

2 ,ψ2
3 )t ≺ (φ2

1 ,φ
2
2 ,φ

2
3)t .

Outlook. Our results raise many interesting questions. It
would be of great interest to determine when a mixed state
ρ can be transformed to a mixed state σ by incoherent
operations. We get the result that if σ is incoherent then
there exists an incoherent operation � such that �(ρ) = σ

for any state ρ. We show this by explicitly constructing an

incoherent operation that achieves the transformation in the
Appendix. What are sufficient conditions for the existence of
catalysts? Finally, all of the considerations above implicitly
assumed a finite-dimensional setting, but this is neither
necessary nor desirable as there are very relevant physical
situations that require infinite-dimensional systems for their
description. Most notable are the quantum states of light,
that is, quantum optics, whose bosonic character requires
infinite-dimensional systems, harmonic oscillators, for their
description. Hence, coherence manipulation and existence of
catalysts in infinite-dimensional systems are needed. Mirroring
analogous developments in entanglement manipulation [22],
we expect that the manipulation of coherence in infinite-
dimensional systems can be built.

Conclusions. In this paper, we give a complete character-
ization of coherence manipulation for pure states in terms of
majorization. This result offers an affirmative answer to the
open question of whether, given two states ρ and σ , ρ can be
transformed into σ or vice versa under incoherent operations
[13]. The proof of the result also provides an effective con-
structive method to find the incoherent operation transforming
|ψ〉 to |φ〉, whenever (|ψ1|2, . . . ,|ψd |2)t ≺ (|φ1|2, . . . ,|φd |2)t .
The majorization approach used here is similar to that used
to establish the ordering of entangled states, which led to
advancement in the field of quantum computation. Based on
Theorem 1, some interesting properties of coherent catalysts
were discovered.
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APPENDIX: TRANSITION OF MIXED STATES

We will show that if the output mixed state σ is incoherent,
i.e., σ ∈ I, then for any quantum state ρ there exists an
incoherent operation � such that �(ρ) = σ . We do this by
an explicit construction of an incoherent operation. Define the
incoherent operation

�1(ρ) :=
d∑

i=1

|i〉〈i|ρ|i〉〈i|.

The effect of this operation is to remove all off-diagonal
elements of λi,j |i〉〈j | (i 
= j ) from ρ = ∑d

i,j=1 λi,j |i〉〈j |,
leaving the diagonal elements λi,i |i〉〈i| intact. Denote by
{λi= 〈i|ρ|i〉}di=1 and {μi}di=1 the eigenvalues of �1(ρ) and σ ,
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respectively. Let

A1 = √
μ1|1〉〈1| + √

μ2|2〉〈2| + · · · + √
μd |d〉〈d|,

A2 = √
μ2|1〉〈2| + √

μ3|2〉〈3| + · · · + √
μd |d − 1〉〈d| + √

μ1|d〉〈1|,
...,

Ai = √
μi |1〉〈i| + · · · + √

μms+i−1 |s〉〈ms+i−1| + · · · + √
μmd+i−1 |d〉〈μmd+i−1 |,

...,

Ad = √
μd |1〉〈d| + √

μ1|2〉〈1| + · · · + √
μd−1|d〉〈d − 1|.

Here mx = x − [ x−1
d

]d. It is easy to check that
∑d

i=1 AiA
†
i = I . By a direct computation, one can get �2(�1(ρ)) =∑d

i=1 A
†
i �1(ρ)Ai = σ . Let � = �2 ◦ �1; then � is an incoherent operation satisfying �(ρ) = σ .
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