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Equivalent emergence of time dependence in classical and quantum mechanics
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Beginning with the principle that a closed mechanical composite system is timeless, time can be defined
by the regular changes in a suitable position coordinate (clock) in the observing part, when one part of the
closed composite observes another part. Translating this scenario into both classical and quantum mechanics
allows a transition to be made from a time-independent mechanics for the closed composite to a time-dependent
description of the observed part alone. The use of Hamilton-Jacobi theory yields a very close parallel between the
derivations in classical and quantum mechanics. The time-dependent equations, Hamilton-Jacobi or Schrödinger,
appear as approximations since no observed system is truly closed. The quantum case has an additional feature
in the condition that the observing environment must become classical in order to define a real classical time
variable. This condition leads to a removal of entanglement engendered by the interaction between the observed
system and the observing environment. Comparison is made to the similar emergence of time in quantum gravity
theory.
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I. INTRODUCTION

In very many languages the same word or phrase is used
to denote both spatial and temporal order. As the linguist
Haspelmath [1] has observed, “But space and time seem to
show a peculiar relatedness that is perhaps not evident to
a naive philosophical observer: Human languages again and
again express temporal and spatial notions in a similar way.”
Examples from the English language are the modern use of
“ahead of” to imply temporal precedence, or the older use of
“before” to describe a spatial precedence.

The interchangeability of position and time is a conse-
quence of the fact that the time concept is of human invention,
arising from the attempt to quantify changes in position
of observed objects by comparing with position changes
of a standard object. A simple example is the motion of
celestial bodies used to define time, until quite recently. Early
earth-bound objects include the sundial, later superseded by
the pendulum. All use position as time. To qualify to be
categorized as what is known as a “clock” such a standard
instrument must exhibit regularity in its position changes. The
more regular, the more accurate the clock. Time is measured by
position. The perfect clock would be a point particle having
constant momentum. For practical reasons, real clocks are
localized by enforcing circular or periodic position changes.

Here attention is confined to the use of practical timepieces
as employed in a laboratory. “Regularity” of a time-keeping
device is necessary—a chaotic motion would not qualify
as a clock. By “regularity” we imply reproducibility and
predictability of the position changes over repeated standard
time intervals of the clock; let us call it the clock’s “second.”
For the perfect clock this second could be as small as one
likes, limited by the accuracy of the position measurement.
For an atomic clock the regularity is in the constancy of the
frequency or better, the wavelength, of the light and this is
the root of its great accuracy. However, a precise definition
of clocks is far from trivial. A clear discussion of clocks and
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indeed time itself at a more fundamental level is contained
in Barbour’s essay on “The Nature of Time” [2]. There it is
concluded that clocks can only be properly defined in terms of
the correlated position changes of many degrees of freedom
which “march in step,” in which ephemeris time governed by
motion of heavenly bodies plays a key role. Application of
these ideas and interesting conclusions as to the origin of the
arrow of time are to be found in Ref. [3]. As stated, here a
more mundane approach will be adopted in that time will be
interpreted as that variable read from a laboratory clock in
experiments whose results are compared to predictions of the
time-dependent dynamical equations of physics.

Consider, either in classical or quantum mechanics, a closed
composite, denoted by C, consisting of two parts. One part, to
be called the environment E , observes another part, to be called
the system S. It will be shown how a position coordinate of
E and its changes can define a time parameter for changes in
the mechanical coordinates of S. Of course the division of a
composite into system and environment is never exact, simply
because the two parts interact. What is implied here is the
artificial separation made when the environment is a measuring
device monitoring changes in the system. One strives to keep
the interaction weak enough so that the measured properties
can be ascribed to properties of the isolated system alone. It is
in this approximation that the separation between environment
and system will be implied, with the exception of Sec. V B.

The starting point, then, is a closed mechanical system,
whether quantum or classical. Being closed it has a fixed
total energy and therefore a time-independent Hamiltonian.
In classical mechanics the state is described by a structure
in phase space subject to the constraint [H (p,q) − E] = 0,
and in quantum mechanics by a time-independent wave
equation (H − E)� = 0. Time is unnecessary in describing
the dynamical state. Time can be introduced when one part of
this composite observes the other, that is, time parametrizes
changes in S when an observer (in the most general sense)
constitutes the environment E .

To illustrate clearly that time emerges in exactly the same
way in classical and quantum mechanics, a mathematical
method will be used which allows the parallel to be traced
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most easily. This is the Hamilton-Jacobi (HJ) approach to
classical mechanics. This close analogy led Schrödinger to
his time-independent equation in the paper introducing wave
mechanics [4]. Incidentally, Schrödinger [5] had much greater
difficulty with time dependence and one object of this paper
is to give a clearer illustration of the path to a time-dependent
equation.

It is interesting that the approach used here in nonrelativistic
classical and quantum mechanics is also a standard approach
to the problem of time in quantum gravity [6,7]. The close
similarity of the introduction of time into the time-independent
Schrödinger equation (TISE) and the equivalent Wheeler-
DeWitt equation (WDE) of quantum gravity is outlined.

The plan of the paper is as follows. First the time-
independent HJ equation (TIHJE) of classical mechanics is
derived for C by using a Jacobi time-independent variational
principle for the path in phase space of a closed system.
In particular, generalized momenta will be defined in a
time-independent way, i.e., without recourse to the standard
definition in terms of derivatives with respect to velocities
(as no time is defined, neither are velocities). In this way,
momentum is interpreted as the propensity of objects to change
position or, in the case of bound complexes, to change position
and shape. This allows the Hamiltonian in the constraint
(H − E) = 0 to be defined in terms of these momenta and so
to derive the TIHJE in which momenta are given as derivatives
of Hamilton’s characteristic action function.

In quantum mechanics essentially the same procedure
is followed, defining the wave function as an exponential
of an action function. However, since this wave function
is distributed over all space, following the recipe of the
Cook books [8], the momentum must be interpreted as a
momentum density distribution. Then the TISE for C is
derived by minimizing the expectation value of the constraint
(H − E) = 0 over all space with respect to variations in the
unknown wave function.

These full equations TIHJE and TISE for C are then
transformed to coupled equations by writing the total action
function as a sum of a part for the observer E and a part for the
observed S which depends parametrically on the coordinates
of the observing E . In both classical and quantum cases, the
same approximations then lead to a partial decoupling of the
two parts and to a time-dependent HJ equation (TDHJE) or a
time-dependent Schrödinger equation (TDSE) for the system
S alone. In particular, it is emphasized that the time appearing
in quantum mechanics is always classical.

The paper closes with a commentary on the derivation of
these time-dependent equations using different approximate
quantum wave functions. Comments are made also on the role
of entanglement in the transition from TISE for C to a TDSE
for the observed part S and on how interacting environments
lead to effective time-dependent potentials. The relevance of
these results from nonrelativistic quantum mechanics to the
question of time in quantum gravity is discussed also.

II. TIME-INDEPENDENT CLASSICAL
AND QUANTUM MECHANICS

In most textbooks on classical or quantum mechanics, the
time-dependent equations, either TDHJE or TDSE, are con-

sidered the fundamental equations and the time-independent
versions derived as the special case of a time-independent
Hamiltonian. However, in this work space is taken as given
but time is a relational quantity derived from space. Hence, the
time-independent equations involving space coordinates only
are viewed as fundamental. These time-independent equations
of classical mechanics, the TIHJE, and of quantum mechanics,
the TISE, are derived first, using time-independent variational
principles.

A. Time-independent classical mechanics

To introduce a dynamics which is timeless we will follow
Lanczos [9] and begin with the variational principle of Jacobi
in which the time-independent action is defined as the line
integral between two points in configuration space, called by
Lanczos the C curve of a C point, i.e.,

W =
∫

ds (1)

between the initial point (q0
1 · · · q0

n) and the final point
(q · · · qn). Minimization of this action (the arc length) gives
the C curve as a geodesic between the two points. To quote
Lanczos: “The principle of minimizing the integral to find the
path of the mechanical system is called Jacobi’s principle. The
time does not appear in its formulation. It determines the path
in the configuration space, not the motion in time.” However,
he also remarks: “In particular, we may take the time to be one
of the qi , for example qn, giving all the other qi as a function
of qn.” This is precisely what will be done below to introduce
time into the dynamics.

Following and extending the treatment of Chapter 7 of
Lanczos, the line element between two points is defined,

ds2 = f 2(q1 · · · qn)
∑
ik

aikdqidqk, (2)

where the metric coefficients aik in general are functions of
the q’s and the function f is to be specified. Then ds is written

ds = f (q)

√∑
ik

aikdqidqk = f (q)
√

dqAdq. (3)

For brevity in Eq. (3) the coordinates qi have been written as
the vector q (and correspondingly for the dq) and the metric
coefficients aik as the matrix A.

Now generalized canonical momenta are introduced as

pj = ∂[f (q)
√

dqAdq]/∂(dqj )

= f (q)(dqAdq)−1/2(Adq)j . (4)

Here the partial derivative ∂(dqi) has been introduced to
quantify the explicit dependence of W on the changes dqi in the
coordinates qi . Such a definition was introduced by Barbour
[10]. Hence this definition gives momentum as a measure of
the propensity of a body to change shape. The usual definition
of momentum in terms of velocities, i.e., ∂(dqi/dt), requires
the introduction of time, which is not defined for a closed
system. Then we can write the vector of the momenta as

p = f (q)(dqAdq)−1/2(Adq). (5)
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This leads to a simple expression for the scalar product

p dq = f (q)
√

dqAdq. (6)

Hence, from Eqs. (1) and (3), the integral to be minimized is
the action

W =
∫ ∑

j

pj dqj . (7)

The minimization is to be performed subject to the constraint,
which is readily proved using Eq. (5),

pBp = f 2(q), (8)

where B is the inverse of the matrix A. The integral W becomes
the usual action integral when the choice

f (q) =
√

2[E − V (q)] (9)

is made. Then the constraint appears in the form of the
conservation of total energy E and V is the potential energy,
i.e.,

1
2 pBp + V (q) = E. (10)

The function on the left-hand side (l.h.s.) of this equation is
called the Hamiltonian, i.e.,

H (p,q) = 1
2 pBp + V (q). (11)

For this choice of constraint the metric elements aij have
physical dimensions of mass. However, it is simpler to choose
the coordinates as mass weighted, i.e., qj = √

mj q̃j , when the
elements aij and bij are dimensionless. Then for the simple
choice of metric aij = δij we have the constraint

H = E = 1

2

∑
i

p2
i + V. (12)

The action integral can be written in the simple form

W =
∫ √

(pBp) (dqAdq). (13)

As Lanczos [9] has emphasized, since the p’s and q’s are
independent variables, in the form Eq. (7) the end points of the
integral must be varied. Indeed, rather than δW = 0, one has

δW =
∑

i

(
piδqi − p0

i δq
0
i

)
. (14)

With the choice Eq. (10) leading to energy conservation H =
E, the integral W is identical to Hamilton’s principal function.
Then,

δW =
∑

i

(
∂W

∂qi

δqi + ∂W

∂q0
i

δq0
i

)
. (15)

A comparison of the two forms of δW gives

pi = ∂W

∂qi

(16)

and

p0
i = − ∂W

∂q0
i

. (17)

The q0
i can be taken to be n constants of integration so

that the constraint H − E = 0 becomes the time-independent
Hamilton-Jacobi partial differential equation (TIHJE),

H

(
q1 · · · qn,

∂W

∂q1
· · · ∂W

∂qn

)
− E = 0, (18)

whose solution gives the relation between the p and q

variables. The dynamics are timeless as is the definition of
generalized momentum, Eq. (4).

B. Time-independent quantum mechanics

One notes that the classical TIHJE is the constraint H = E

for a closed system, where the path variation has led to the
identification of momentum with the derivative of the action
function W . Now exactly the same results will be employed to
derive the TISE. This method is actually that of Schrödinger’s
1926 papers [4,5], although little used in standard quantum
mechanics books today (see, however, Cook [8]). Schrödinger
began with the TIHJE and Hamilton’s characteristic function
derived above for classical mechanics. He postulated a wave
function � such that

W = k ln � or � = exp

(
1

k
W

)
, (19)

where k is a real constant. In fact, in his first derivation
Schrödinger did not admit complex wave functions. With the
benefit of hindsight one takes the functions

W = −i� ln � or � = exp

(
i

�
W

)
, (20)

where W is in general complex. Note that this means that
the i in the exponential could be dropped; it is retained by
convention. This logarithmic relation is motivated by the
observation that for many particles the classical action is
additive, whereas the wave function is multiplicative. The use
of a complex action in the quantum case, leading to a complex
wave function, whereas the classical action is real, has been
the subject of some discussion [11–13] and will be justified
below in Sec. V.

The quantum momenta are defined exactly as in the classical
case, Eq. (16),

pi = ∂W

∂qi

= −i�

(
1

�

∂�

∂qi

)
. (21)

Recognizing that the kinetic energy must be real, a direct
substitution of Eq. (21) in Eq. (18) gives rise to the equation

1

2

∑
i

∣∣∣∣−i�

(
1

�

∂�

∂qi

)∣∣∣∣
2

+ V − E = 0. (22)

Such a nonlinear differential equation is not appropriate to
describe matter waves. Rather, as Cook has emphasized [8],
the wave function � represents a distribution over all space and
the quantum |pi |2 is a momentum density. Then the optimum
form of � is obtained from minimizing the mean value of the
HJ constraint equation over all space, i.e., one demands

δ

∫
|�|2

[
H

(
q,

∂W

∂q

)
− E

]
dq = 0, (23)
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with the momenta to be substituted from Eq. (21). This is then
the Euler variational problem,

δ

∫ [∑
i

�
2

2

(
∂�∗

∂qi

∂�

∂qi

)
+ �∗ (V − E) �

]
dq1 · · · dqn

= 0, (24)

with � = �(q1 · · · qn). This variational principle leads to the
differential equation

−�
2

2

∑
i

(
d

dqi

∂�

∂qi

)
+ (V − E)�

= −�
2

2

∑
i

∂2�

∂q2
i

+ (V − E)� = 0, (25)

i.e., to the TISE for the composite of environment and system.
Inclusion of the mass scaling would give the appropriate mass
factors. Note also that formally one can write Eq. (21) as the
equation

pi� = −i�

(
∂�

∂qi

)
(26)

which illustrates the origin of this differential form. Again,
as in classical mechanics, for the quantum dynamics of the
composite C at fixed energy E, no time is defined.

III. THE EMERGENCE OF TIME
IN CLASSICAL MECHANICS

Time emerges when the composite is separated into system
and environment and one or more of the environment variables
are taken as the clock variables. The environment coordinates
will be denoted by

R = R · · · Rl ≡ q1 · · · ql (27)

and the system coordinates by

x = x · · · xn−l ≡ ql+1 · · · qn. (28)

Without loss of generality, the total action W can be written as
a sum of system and environment actions in the form

W (x,R) = Wε(R) + WS (x,R), (29)

i.e., the system depends parametrically on the state of the
environment. Although not necessary, it is by far simpler if
initially only a single variable x for the system and R for the
environment, are considered. Then, with H = T + V , the total
potential energy can be decomposed into the potential energy
Vε of the environment alone, the potential energy VS of the
system alone, and the potential energy VI of the necessary
interaction of the environment with the system, i.e., the total
Hamiltonian is written

H = T + V = T + Vε + VS + VI = E. (30)

The total kinetic energy T is given by

T = 1

2

n∑
i=1

(
∂W

∂qi

)2

, (31)

which, for just two degrees of freedom, reduces to

T = 1

2

[ (
∂Wε

∂R

)2

+ 2

(
∂Wε

∂R

∂WS
∂R

)

+
(

∂WS
∂R

)2

+
(

∂WS
∂x

)2 ]
. (32)

The constraint equation can be split into two parts as
follows. First, to make the physical dimensions clear, the mass
scaling of coordinates will be abandoned and the mass M

of E and m of S indicated explicitly. Then, all the terms not
dependent upon x are grouped on the right-hand side (r.h.s.)
of the equation to give

1

2m

(
∂WS
∂x

)2

+ VS + VI

+ 1

M

(
∂Wε

∂R

∂WS
∂R

)
+ 1

2M

(
∂WS
∂R

)2

= −
[

1

2M

(
∂Wε

∂R

)2

+ Vε(R)

]
+ E, (33)

which can be written

HS + VI + 1

M

(
∂Wε

∂R

∂WS
∂R

)
+ 1

2M

(
∂WS
∂R

)2

= −Hε + E. (34)

Now both sides of the equation can be put equal to a function
of R only; call it US (R). This gives an equation for changes
of E dependent on the state of the system,

Hε ≡ 1

2M

(
∂Wε

∂R

)2

+ Vε(R) = E − US (R), (35)

and correspondingly the system change depends upon the
state of the environment,

HS + VI + 1

M

(
∂Wε

∂R

∂WS
∂R

)
+ 1

2M

(
∂WS
∂R

)2

= US (R). (36)

These two equations, which are still exact, indicate the
coupling between environment and system. Energy can be
transferred between the two parts; only the sum E is conserved.

The effective energy for both E and S varies with R

according to the magnitude of US (R). However, for the
environment to function as a clock it must have a regular
variation in its position, not dependent upon the state of the
system. This requires that US (R) in Eq. (35) be neglected
or replaced by a constant average value. In turn this implies
that VI , although finite, must be small compared to the clock
energy. Then one has a fixed clock Hamiltonian

1

2M

(
∂Wε

∂R

)2

+ Vε(R) = Ec, (37)

where Ec is a fixed energy of the clock. In this approximation
energy conservation for the composite C as a whole is
abandoned.

Now the condition of a minimum invasion of the system
by the environment (clock) is imposed in that the dependence
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of the system on the environment variables through ∂WS/∂R

will be assumed small. Then the quadratic term in ∂WS/∂R

in Eq. (36) can be neglected. The validity and consequences
of this are discussed further below. At this stage a transition
from a position R dependence to a time dependence for the
system can be made.

The clock time is introduced by defining the environment
parameter,

t = M

∫ R dR′

p(R′)
, (38)

with p(R) = ∂Wε/∂R = [2M(Ec − Vε(R)]1/2. Then 1
M

∂Wε/

∂R = dR/dt and the cross term in Eq. (36) can be written

1

M

(
∂Wε

∂R

∂WS
∂R

)
=

(
dR

dt

∂WS
∂R

)
= ∂WS

∂t
. (39)

This changes the parametric R dependence of S into a
parametric t dependence and Eq. (36) becomes

HS (x) + VI (x,t) + ∂WS
∂t

= US (t). (40)

The energy US does not depend upon x and can be
transformed away by the substitution S(x,t) = WS (x,t) −∫ t

US (t ′)dt ′ (here the usual notation S for a time-dependent
action function has been introduced). This gives the TDHJE
for the observed system,

1

2m

(
∂S(x,t)

∂x

)2

+ VS (x) + VI (x,t) + ∂S(x,t)

∂t
= 0, (41)

or

HS

(
x,

∂S(x,t)

∂x

)
+ VI (x,t) + ∂S

∂t
= 0. (42)

Note again that the parametric R dependence has now been
replaced by the parametric time dependence. To monitor the
“true” time dependence of system S the interaction potential
VI has to be negligibly small.

The foregoing analysis shows explicitly how the parameter
of time, arising from a spatial correlation of the position coor-
dinates of system and clock, enters into classical mechanics.
The usual Hamilton and Newton time-dependent equations
of the system dynamics (but where time is not assumed, as
Newton and Hamilton did, simply to exist, rather it arises from
comparison with the position coordinate of a material clock)
follow directly from the TDHJE of Eq. (42). The key element
in the derivation of the TDHJE for the system is the neglect
of the kinetic energy term (∂WS/∂R)2. If this term cannot be
neglected one obtains corrections to Hamilton’s and Newton’s
equations of motion. This point is discussed further in Sec. V C.

IV. THE EMERGENCE OF CLASSICAL TIME IN
QUANTUM MECHANICS

To summarize the results of the previous section, two
approximations have led from the TIHJE for the composite
C to the TDHJE for the system S alone. One is that the term
(∂WS/∂R)2 can be neglected. In addition, in order to function
as a clock, the back-reaction of the interaction potential has
been neglected in obtaining a fixed-energy TIHJE for E alone.
Then the total TIHJE for C separates into a TIHJE for E and

a TDHJE for the observed system S. The environment kinetic
energy provides the time variable for the system via the
( ∂Wε

∂R
)/M velocity term. Now it will be shown that exactly the

same approximations in the quantum mechanics case allow
the derivation of a TDSE for S alone from the TISE for C.

The starting point is the full TISE in the form

− �
2

2M

(
∂2�

∂R2

)
− �

2

2m

(
∂2�

∂x2

)
+ [Vε(R) + VS + VI (x,R) − E]�(x,R) = 0, (43)

which is the analog of the classical equation (30). Now one
takes an action function exactly of the form of Eq. (29),

W (x,R) = Wε(R) + WS (x,R), (44)

of the classical case, but to conform with quantum mechanics
these action functions may be complex. Then the total wave
function is written

�(x,R) = exp

(
i

�
W (x,R)

)

= exp

(
i

�
[Wε(R) + WS (x,R)]

)
≡ χ (R)ψ(x,R). (45)

This product form is of adiabatic type but is exact at the
moment [14].

Substitution in the TISE gives the equation

χ

(
HS + VI − �

2

M

1

χ

∂χ

∂R

∂

∂R
− �

2

2M

∂2

∂R2

)
ψ

= −ψ (HE − E) χ, (46)

which is the direct term-by-term analog of the classical
equation (34). Integration over the space of x only, gives the
defining equation for χ ,(

− �
2

2M

∂2

∂R2
+ VE

)
χ = [E − US (R)] χ (47)

with the definition, where parentheses on the l.h.s. indicate
integration over x

(ψ |HS (x) + VI (x,R) − �
2

M

1

χ

∂χ

∂R

∂

∂R
− �

2

2M

∂2

∂R2
|ψ)

≡ US (R). (48)

These last two equations are the transcription of the classical
equations (35) and (36) as may be seen by inspection.

The equation for the wave function ψ is then[
HS + VI (x,R) − US (R) − �

2

2M

∂2

∂R2
− �

2

M

1

χ

∂χ

∂R

∂

∂R

]
ψ

= 0. (49)

Note that in the quantum equations the kinetic energy terms
appear as second derivatives, and in the classical equation as
a quadratic term in first derivatives. This is a standard result
of the calculus of variations and is the difference between
deterministic classical and probabilistic quantum mechanics.

Although exact, the two equations (47) and (49) are not
easy to solve since they are strongly coupled in that ψ appears
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in Eq. (47) and χ in Eq. (49). To allow the environment to
function as a clock, exactly the same approximations as in the
classical case are necessary. First, the back-coupling of the
system on the clock must be neglected by ignoring US (R) or
putting it equal to a constant in Eq. (47). In the classical case
this suffices to define time as in Eq. (38). In the quantum case,
since time is a classical quantity, the further step of going to a
classical limit for the environment action Wε(R) is necessary.
This one sees by putting

χ = exp

(
i

�
Wε

)
(50)

in Eq. (47), now with fixed Ec ≈ E − US (R). This gives

1

2M

(
∂Wε

∂R

)2

− i
�

2M

∂2Wε

∂R2
+ Vε(R) = Ec. (51)

The difference compared to the classical equation (37) is the
second term involving � arising from the transition to quantum
mechanics. Then this term must be neglected to obtain the
WKB approximation with Wε the real classical action leading
to a real classical time.

Following the transition of the environment to classical
mechanics, in Eq. (49) the cross term becomes

�
2

M

1

χ

∂χ

∂R

∂ψ

∂R
= i�

1

M

∂Wε

∂R

∂ψ

∂R

= i�
∂ψ

∂t
,

(52)

to give a time derivative exactly as in the classical equa-
tion (39). Secondly, the “crucial approximation” to neglect
(∂WS/∂R)2 in the classical case, translates into the neglect of
the term ∂2ψ/∂R2 in the quantum equation (49).

With the quantum R dependence replaced by a classical
t(R) dependence, then Eq. (49) reduces to[

HS + VI (x,t) − US (t) − i�
∂

∂t

]
ψ = 0. (53)

As in the classical case the purely time-dependent potential
US (t) can be removed, here by a phase transformation, to
yield the TDSE[

HS + VI (x,t) − i�
∂

∂t

]
ψ = 0 (54)

for the quantum system alone. In full this TDSE reads

− �
2

2m

∂2ψ(x,t)

∂x2
+

[
VS + VI (x,t) − i�

∂

∂t

]
ψ(x,t) = 0, (55)

which is to be compared to the equivalent TDHJE of
Eq. (41). This demonstrates that exactly the same physical
approximations lead to time dependence of a system observed
by an environment in both classical and quantum mechanics.

V. COMMENTARY

To summarize, a closed composite at fixed total energy E,
comprised of an environment and a system interacting via a
potential VI has been considered. Beginning with the classical
constraint (H − E) = 0, a TIHJE for the composite has been
derived in deterministic classical mechanics. This involves the

action functions of E and S. In probabilistic quantum mechan-
ics an analog equation has been derived from the constraint
(〈� |H | �〉 − E) = 0 where H is interpreted as a Hamiltonian
density. Then a variational principle for the form of this
unknown wave function leads to the TISE for the composite.

An ansatz for the total action as a sum of two parts, with
the observed system part dependent parametrically upon the
environment coordinate, is then made as in Eq. (29). In the
classical case subject to the validity of two approximations,
this leads to two equations: a TIHJE for E and a TDHJE for
S. In an exactly analogous way, the same two approximations
lead to a TISE for E and a TDSE for S. In the quantum case,
additionally the environment must be taken in its classical
TIHJE limit to define a real-time variable. In both cases it is
the same part of the kinetic energy of the environment, the
changes in position of the “clock,” that provide the classical
time variable for the system S.

The method of derivation has been tailored specifically
to highlight the extremely close similarity of the emergence
of time in classical and quantum mechanics. However, the
quantum case allows much more flexibility in that the linear
TISE, in contrast to the nonlinear TIHJE, admits sums of
products as a solution as is discussed next.

A. Superposition wave functions and entanglement

As mentioned, the Eqs. (47) and (49) for the two factors of
the exact single product wave function are strongly coupled. A
different set of equations are obtained if an, in principle, infinite
sum is made over product wave functions, one set of which
is of a prespecified type. The most common example from
molecular physics is the Born-Oppenheimer (BO) expansion,

�(x,R) =
∑

n

χn(R)ψn(x,R), (56)

where now the ψn are not to be determined but are fixed at the
outset as the various eigenstates of the equation

[HS (x) + VI (x,R)] |ψn〉 = UBO
n (R)|ψn〉 (57)

for each fixed value of R. This is also called the adiabatic
expansion and its use in deriving the TDSE is described in
Ref. [15].

Several authors [14,16] have shown that, although ostensi-
bly the same as a single-channel BO form, the single product
wave function of Eq. (45) is an exact representation of the total
wave function (as is obvious if one formally sets ψ = �/χ ).
From the single product form one could also infer that this
represents a nonentangled state. However, that this is a fully
entangled wave function is seen readily if one expands

ψ(x,R) =
∑

n

cn(R)φn(x) (58)

so that

�(x,R) = χ (R)
∑

n

cn(R)φn(x) =
∑

n

χ (R)cn(R)φn(x)

≡
∑

n

κn(R)φn(x). (59)

Clearly such a form is an exact representation if the sum
covers the whole Hilbert space of both parts. Introducing this
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form into the full TISE (H − E)� = 0 gives the set of coupled
equations

[Hε − E]κm(R) = −
∑

n

(φm|HS + VI |φn)κn(R), (60)

where parentheses indicate integration over x only.
To derive the system TDSE in the case of the entangled

state expansion Eq. (59), one writes explicitly

κm(R) = cm(R) exp

[
i

�
W (R)

]
. (61)

Here W is real and as yet unspecified but the cm are com-
plex functions. Substitution in Eq. (60) gives the equivalent
equations[

1

2M

(
∂W

∂R

)2

+ �
2

2M

∂2

∂R2
+ VE (R) − E

]
cm

+
[

i�

2M
cm

∂2W

∂R2
+ i�

M

∂cm

∂R

∂W

∂R

]

+
∑

n

(φm |HS + VI | φn)cn(R) = 0. (62)

As before, to derive the TDSE, the second derivatives
with respect to R must be neglected. This gives the simpler
equations,[

1

2M

(
∂W

∂R

)2

+ VE (R) − E

]
cm(R)

= −
[

i�

M

∂cm

∂R

∂W

∂R

]
+

∑
n

(φm |HS + VI | φn)cn(R). (63)

Here the terms on the r.h.s. play the role of the potential US (R)
in the product expansion. This form illustrates that the states
cm(R) of the environment are dependent upon all possible
states of excitation of the system. In this form one sees very
clearly that choosing W to be the classical action causes the
l.h.s. of the above equation to become zero. If for simplicity,
although not necessary, one chooses the φn to diagonalize HS
with eigenenergies εn one has the simpler coupled equations

εmcm(R) − i�

M

∂cm

∂R

∂W

∂R
+

∑
n

(φm |VI | φn)cn(R) = 0. (64)

Proceeding exactly as before to define time through R(t) and
introducing the phase transformation

cm(t) = am(t) exp

(
i

�
εmt

)
(65)

leads to the coupled equations,

i�
∂am

∂t
=

∑
n

(φm |VI (t)|φn)an(t) exp

[
i

�
(εm − εn)t

]
. (66)

Now the environment wave function amplitudes cm(R) have
been transformed to the occupation amplitudes am(t) of the
system eigenstates. This set of equations is equivalent to
the TDSE for the system, as is readily seen by substituting

the expansion

ψ(x,t) =
∑

n

an(t)φn(x) exp

(
i

�
εnt

)
(67)

in the TDSE, Eq. (54), and projection on (φm|.
This derivation illustrates concisely how the entanglement

between environment and system expressed through the
dependence of environment spatial wave functions upon
the occupation of a given system state n, is transformed
into a coupling between time-dependent complex system
amplitudes. Also it makes clear that the environment must be
describable by a classical action in order to obtain a real-time
variable.

Entanglement is of course entirely dependent upon the
interaction VI between E and S. Were this zero, the composite
is separable and there is no entanglement. In the case of the
product form, Eq. (45), the entanglement is not so transparent
since it arises not only from the interaction potential but also
from the derivatives with respect to R. In particular, the term(

�
2

M

1

χ

∂χ

∂R

∂

∂R

)
ψ (68)

in Eq. (49) which ultimately becomes the ∂/∂t in the classical
limit represents quantum entanglement of environment and
system, as seen from the expansion equation (58),

�
2

M

1

χ

∂χ

∂R

∂ψ

∂R
= �

2

M

1

χ

∂χ

∂R

∑
n

∂cn(R)

∂R
φn(x). (69)

Although the environment wave function χ is retained at the
semiclassical level, to give the ∂/∂t parametric derivative from
the expression above, one sees that the only elements appearing
in the TDSE for the quantum system are this derivative
and the classical time t(R). Hence, there is no remnant of
quantum entanglement between environment and system in
this approximation. There is of course correlation through
interaction, directly by the environment on the quantum system
via the operator VI and a back reaction of the quantum system
on the environment via the potential US (R).

Since the coupling element

1

M

(
∂Wε

∂R

∂WS
∂R

)
(70)

leading to time dependence ∂/∂t in the classical equation is of
the same form

�
2

M

1

χ

∂χ

∂R

∂ψ

∂R
= i

�

M

∂Wε

∂R

∂WS
∂R

(71)

as that in the quantum case, this provokes the question as
to the interpretation of the quantum entanglement and its
classical counterpart. However, although Eq. (29) leads to the
product entangled wave function and so could be interpreted as
“classical” entanglement, there is no separation of the classical
action corresponding to the sum over products

∑
n κn(R)φn(x).

It is more correct to say that the nature of the correlation
between E and S is the same in classical and quantum
mechanics.
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B. Environments interacting strongly with the system

In the development of time-dependent equations the case of
a clock as environment has been considered. The interaction
VI has been taken as negligibly small to minimize the back-
coupling on the clock. However, most books tacitly assume that
VI is identically zero. However, when VI is put to zero and the
neglect of ( ∂WS

∂R
)2 is taken as exact, the system Hamiltonian

is time independent in both classical and quantum mechanics.
In this approximation the classical TDHJE, Eq. (40), assumes
the form

HS

(
x,

∂S

∂x

)
+ ∂S

∂t
= 0. (72)

However, since WS is now time independent one can put S =
WS − ES t to give the TIHJE for the system

HS

(
x,

∂WS
∂x

)
= ES . (73)

Now of course the system is considered closed and no time
is necessary. Nevertheless, this TDHJE, Eq. (72), is usually
considered more “fundamental” than the TIHJE, Eq. (73).

An analogous situation is encountered in quantum mechan-
ics. If VI is taken to be identically zero in Eq. (55), then the
Hamiltonian is time independent and Eq. (54) becomes the
TDSE

HS (x)ψ(x,t) − i�
∂ψ(x,t)

∂t
= 0. (74)

Again, however, the quantum system is now closed so that the
simple phase transformation

ψ(x,t) = φ(x) exp

(
− i

�
ES t

)
(75)

leads to the TISE

HS (x)φ = ESφ. (76)

Interestingly, even very prominent physicists [17] have in-
terpreted Eq. (75) as implying that the eigenfunction of a
time-independent quantum system oscillates in time—a rather
remarkable behavior for a closed system without time.

Most authors simply generalize the TDHJE and TDSE
above for time-independent Hamiltonians, where the time is
spurious, to time-dependent Hamiltonians, where, unlike for
the clock, the interaction VI (x,t) is not negligible but drives
transitions in the system.

In the formalism developed here, this time dependence of
the Hamiltonian appears naturally. The environment is taken
to consist of two parts, each providing an interaction VI (x,t)
and a time derivative ∂/∂t . For the minimally invasive clock,
the interaction VI (x,t) must be negligibly small. The invasive
interaction provides a finite VI (x,t) which drives transitions
in the system. Each environment degree of freedom provides
a time variable for the system. However, it is shown explicitly
in Ref. [18] that the time for the interacting part can be
synchronized to the unique clock time to give a single ∂/∂t

term. Then the generalization of Eq. (72) to

HS

(
x,

∂S

∂x

)
+ VI (x,t) + ∂S

∂t
= 0 (77)

is justified. The VI (x,t) comes from the external interaction
and the ∂/∂t from the clock. However, the condition that
(∂WS/∂R)2 be negligible, where R is now the coordinate of
the interacting environment, is still necessary for the validity of
this equation. A good example of an interacting environment
in classical mechanics is where an external frictional force
is modeled by a time-dependent potential acting on the
system. The degrees of freedom of the environment are not
taken into account explicitly, they provide merely an effective
time-dependent force and any back-reaction is ignored. This
is in direct analogy to the treatment of open quantum systems
where external stochastic forces are added to the system TDSE.

The quantum case is more complicated in that, to provide a
time-dependent potential, the interacting environment must be
treated classically, a requirement ignored in most textbooks.
The situation arises when environments which normally
should be treated by quantum mechanics have energy so
great that they can be described by classical mechanics to
a good approximation. In fact, this classical approximation of
perturbing potentials on a quantum system is the only source
of time-dependent Hamiltonians in quantum mechanics. From
this point of view the TDSE is always a mixed quantum-
classical equation.

The prime examples of transition from quantum to classical
mechanics are to be found in the description of the impact of
a particle or light beam on a quantum system; for simplicity,
call it an atom. If the beam energy is low the projectile must
be treated fully quantum mechanically by the TISE of the
composite of (beam + atom). Energy is exchanged between
beam and atom in entangled states. When the beam energy
greatly exceeds atom energies, the beam motion can be treated
by Newton’s equations along a classical trajectory [19]. Then
one has the limit of a TDSE for the atom alone and there is
no entanglement with the beam. The classical beam motion
gives rise to a time-dependent potential VI (t) acting on the
atom. When the beam energy is sufficiently large, one may
in addition forget the back-reaction on the beam motion via
the potential US (t), decoupling the projectile beam motion
entirely from the target atom.

In the same way, when a light beam consists of a few
photons its field must be quantized and treated in a TISE with
the atom. There is full entanglement and changes in the atom
energy are exactly balanced by changes in the field energy.
However, in the case of a very intense beam, where absorption
of a few photons by the atom does not affect the beam intensity,
it can be treated classically and described by a time-dependent
field obeying Maxwell equations [20].

The two examples above are of applied deterministic
classical perturbing environments. Of course there is a great
amount of literature on open quantum systems interacting with
environments of essentially infinite dimension, e.g., a bath of
oscillators, leading to a stochastic TDSE or equivalent density
matrix descriptions.

C. Corrections to time-dependent equations

The approximation in deriving the TDSE is the neglect
of certain second-order derivatives with respect to R. For
the classical limit, say of a particle beam, as shown above
this involves the neglect of 1

2M

∂2Wε

∂R2 . This requires that the
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environment action varies only slowly over atomic dimensions
which is the case where the beam energy and hence the
momentum is large on an atomic scale. In the extreme
approximation of a fixed large momentum P = ∂Wε

∂R
then,

this second derivative is identically zero. Incidentally this
would provide the perfect clock—a point particle moving with
constant velocity.

The important approximation necessary to derive the TDSE
for the system is the neglect of �

2

2M

∂2ψ

∂R2 in Eq. (49). In the limit
that the environment is treated classically, one can transform
to t(R). For simplicity put t = MR/P ≡ R/v where v is the
constant classical velocity. Then one has a correction term to
the TDSE of magnitude

− �
2

2M

∂2ψ

∂R2
= − �

2

2Mv2

∂2ψ

∂t2
(78)

to be compared to the retained term

−i�
∂ψ

∂t
. (79)

Clearly, irrespective of the higher power of �, the presence of
the classical beam energy in the denominator of the neglected
term indicates that this is of small magnitude. Nevertheless,
this second derivative is the first “quantum” correction to
the half-classical TDSE. A similar correction term has been
discussed by Arce [16].

In fact, the corrections to the TDSE could readily be traced
experimentally. For example, in the ion-atom collision case
discussed above, one could begin with, say a proton, of low
velocity (a few eV) necessitating quantization of the beam and
use of the TISE for the composite. Then one could increase
the energy successively all the way up to a few keV where
the beam can be treated by classical mechanics providing an
effective TDSE for the target atom alone.

The classical case is somewhat more straightforward in
that both environment and system always obey classical
mechanics. The question is, which classical mechanics? In the
reduction to a TDHJE for the system alone the term 1

2M
( ∂WS

∂R
)2,

which is the classical analog of the quantum term − �
2

2M

∂2ψ

∂R2 ,
has been neglected. Again in the simplest form of environment
motion R = vt this gives

1

2M

(
∂WS
∂R

)2

= 1

2Mv2

(
∂WS
∂t

)2

(80)

to be compared to the retained term ∂WS
∂t

in Eq. (40). Again
the correction is lower by at least a factor the inverse of
the environment kinetic energy. Also it is often so that ∂WS

∂t

itself is small so that the square is yet smaller. Quite what is
the environment energy to be included is questionable. The
correction is difficult to estimate in detail but some idea can
be obtained from the order of magnitude estimate WS ∼ ESt .
Then Eq. (73) would become

HS

(
x,

∂WS
∂x

)
= ES

(
1 − ES

2Mv2

)
, (81)

that is, the neglected term gives an effective change in the
system energy.

In principle in classical mechanics an interaction with the
rest of the universe is unavoidable which would make the cor-

rection truly negligible, except perhaps for systems of cosmic
size or for integral over astronomical time. Nevertheless, since
the TDHJE leads to Hamilton’s and Newton’s equations, there
are, in principle, corrections to these equations, however small.

D. Quantum gravity

The main subject of this paper is nonrelativistic classical
and quantum mechanics, although it has been shown [15] that
in the case of a relativistic single particle the transition from
a time-independent Dirac equation to a time-dependent one
can be made exactly as for the Schrödinger equation. There is
another field of relativity which parallels closely the transition
from time independence to time dependence which has been
given here. This is the problem of time in quantum gravity.

The TIHJE and the TISE refer to closed systems. Clearly,
for any finite system this is an approximation to the extent that
the interaction with the rest of the universe is ignored. Any
system observed by humans is, of course, in principle open
and the extent to which it can be viewed as closed depends
upon the accuracy of the measurement upon it. The only
truly closed system devoid of all external interaction is the
whole universe. The dynamics of this is described classically
by the field equations of general relativity (GR) which of
course contain time as a component of the four-vectors of
space-time. Interestingly, the quantum equation which reduces
to the classical GR equation contains only the three-metric, i.e.,
is timeless. The equation describing the composite (quantum
gravity + quantum matter fields) is the WDE, H� = 0. That
is, the total energy put equal to zero, as is reasonable to assume
for the entire universe. Specifically the WDE in a compact form
reads [21][

− �
2

2M
Gab

δ2

δhaδhb

+ 2Mc2
√

h(2� − R) + Hm

]
� = 0.

(82)

Here M ≡ c2/(32πG), where c is the light velocity and G

the gravitational constant, and Gab and ha are coefficients
of the DeWitt metric and the three-metric, respectively, � is
the cosmological constant, R is the three-dimensional Ricci
scalar, and h is the determinant of the three-metric. The matter
Hamiltonian Hm for a matter field φ is taken as

Hm = 1

2

(
− �

2

√
h

δ2

δφ2
+

√
h[m2φ2 + U (φ)] +

√
hhabφ,aφ,b

)
,

(83)

where the matter potential U is arbitrary.
Although these equations contain functional derivatives

with respect to three-metric and matter field functions (which
makes any solution exceedingly difficult to obtain), one sees
a striking resemblance to the TISE of quantum mechanics
Eq. (43) written in the form, with the total energy E ≡
Eε + ES ,(

− �
2

2M

∂2�

∂R2
+ [Vε(R) − Eε] + HS

)
�(x,R) = 0 (84)

and

HS ≡ − �
2

2m

∂2

∂x2
+ [VS − ES ] + VI (x,R). (85)
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Clearly, gravity (the three-metric) is the environment and the
matter field is the quantum system. The energy density term
2Mc2

√
h(2� − R) of the gravitational field plays the role of

the environment energy Vε(R) − Eε. Similarly the energy term√
h[m2φ2 + U (φ)] of the matter field is equivalent to the en-

ergy VS − ES of the quantum system. The interaction minimal
coupling between three-metric and matter

√
hhabφ,aφ,b is the

analog of the interaction potential VI (x,R) which here has
been included as part of the system Hamiltonian.

Apart from the timeless approach of Barbour [10], the ab-
sence of time in the fundamental equation of quantum gravity
has been viewed as a problem [12]. However, the analogy
with nonrelativistic quantum mechanics would indicate no
conceptual difficulty. A time-independent quantum state of
a nucleus, for example, is a superposition of various states
of different character and apportionment of energy between
the nucleons, but all at the same total energy. The quantum
solution says that the universe exists in various states of
different character, products of states of the three-metric and
corresponding states of matter, all at the same total energy
zero but characterized by different apportioning of energy
density between metric and matter. The difference with the
nucleus is that there is nothing exterior to the universe so no
observation can be made. However, a human is a negligibly
small part of the universe and so effectively can make a
noninvasive observation of the various states of the universe.
Then time arises when the matter is observed and is introduced
only in the limit that the gravitational environment becomes
classical, obeying Einstein’s classical field equations. Then
one obtains a time-dependent “Schrödinger” equation for the
matter fields. This is absolutely parallel to the classical limit
of a massive environment of Sec. V B above. There the TDSE
for the quantum system with an effective time-dependent
Hamiltonian arises from a classical environment obeying
Newton or Maxwell equations.

There are many papers employing the above strategy
(examples are [12] and [24–26]). Almost all begin with a
product BO ansatz and then make a WKB approximation
for the gravity term in the product (so-called semiclassical
gravity). Although it is recognized that a more exact form is a
linear combination of such products, as in Eq. (56), there have
been no attempts to solve the coupled equations. Non-BO
terms have been considered explicitly by Kiefer and Singh
[21]. However, they adopt a different strategy by first writing
the composite total wave function in terms of a total action
and then proceed by an expansion of this action in powers
of M . Their result is equivalent to a functional of BO form
(translating their notation to the notation of this paper)

� ≈ exp

[
i

�
MW (hab)

]
ψ(φ,hab). (86)

Here the functional W satisfies the classical HJ equation

1

2
Gab

δW

δha

δW

δhb

+ V (ha) = 0, (87)

which is equivalent to Einstein’s classical equations. This is
the direct analog of the classical mechanics HJ equation (37)
used to derive the WKB environment wave function. Using
this result one derives a “TDSE” (also called the Tomonaga-
Schwinger equation) for the matter field in a classical space-

time background

Hmψ = i�Gab

δW

δha

δψ

δhb

≡ i�
δψ

δτ
, (88)

the analog of Eq. (54). Kiefer and Singh then show that in
higher order there are correction terms, as in the case Eq. (78)
of the TDSE. However, since their development is as a power
series the precise connection to the correction exposed here is
not clear.

Several points can be made regarding the implications of
the simple problem of quantum mechanics treated here for the
much more difficult problem of quantum gravity.

(a) In the applications to quantum gravity the single-product
form of the wave function � is usually referred to as the BO
form. It does not seem to have been appreciated that the single-
product wave function for the universe is, in principle, exact
as given by the coupled equations (47) and (49) in quantum
mechanics.

(b) A sum of products of BO wave functions has often
been suggested for quantum gravity. The simpler strategy of
the use of an entangled sum of product wave functions of
the form Eq. (59) has not been employed. This would lead
to coupled equations for quantum gravity of the simpler form
Eq. (60) where the reaction of matter on the gravitational
wave functions is explicit and vice versa. Again the WKB
approximation would give the time-dependent coupled equa-
tions for the matter field alone, as in Eq. (66). This involves
semiclassical gravity interacting via the minimal coupling
term of Eq. (83) only [the analog of VI (x,R)] and the wave
functions of the different three-metric states will transform
into occupation amplitudes for the matter states.

(c) There is another problem frequently referred to in
connection with quantum gravity. This is the question as
to why, in the real TISE [11] or WDE [12,13], the wave
function is complex in general, or equivalently, that the
action is complex. Again a consideration from ordinary
quantum mechanics sheds some light on this “problem.”
First, it is clear that the assumption of a complex action
for the environment is the origin of the factor i multiplying the
time derivative in the TDSE. Since the TISE and the WDE are
real, there seems no compulsion to introduce a complex wave
function, whose real and imaginary parts both must satisfy
the equation. The necessity of this is traced to the description
of free rather than bound motion. This point does not appear
to have been appreciated hitherto in the various arguments
advanced to justify a complex wave function. In the points
below reference is to the TISE but apply equally well to the
WDE of quantum gravity.

The steps leading to a complex time-independent wave
function are as follows:

(1) As already stated, a wave function or functional must be
an exponential function of the action since, for many particles
the action is additive but a wave function multiplicative.

(2) Bound-state (spatially confined) wave functions can
always be chosen real. The resulting wave function must be
normalizable, i.e., square integrable.

(3) Mathematically a solution to the real TISE can be written
exactly in the form

� = e(i/�)W, (89)
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where W is a complex function. The splitting off of the factor
i in the exponential is a matter of convention, justified below.

(4) Momenta are defined as in classical mechanics, for
example, pR = ∂W/∂R.

(5) Real wave functions correspond either to a purely
imaginary W or to the combination � + �∗.

(6) The necessity of complexity of the wave function arises
when one or more particles execute what would classically be
unconfined directional motion, practically either translation or
rotation. Then the action must have a real part to give a wave
function describing such directed change of position. Wave
functions of this type are complex. The simplest examples for
translation and rotation are of the form � = e(i/�)W , where
W is the real classical action. This is also the reason for the
convention of splitting off the factor i in the general case
where W is complex. Then the real part of the quantum action
corresponds to the real classical action.

(7) Finally, to ensure pR = ∂W/∂R, the corresponding
quantum operator must be pR = −i�∂/∂R. This is the origin
of the factor i� in the TDSE and the complexity of its solutions.

These points are most simply illustrated by the TISE in one
dimension which reduces to

d2

dx2
φ + k2φ = 0 (90)

with real solutions sin(kx) and cos(kx). These real solutions
give the bound-state standing waves in the case of confinement
in a box of length L. A bound standing wave has no direction.
One can think of a bound wave function sin(kx) corresponding
to equal superpositions of free waves with momenta ±�k.
Since a bound state of fixed energy corresponds to a large time
limit, in this limit there is no preferred direction. Similarly,
a classical oscillator averaged over many periods shows no
preferred direction.

However, when the particle becomes free it can be detected
in the +x or the −x direction. A directed wave can be
formed as a linear combination of the two bound solutions,
i.e., φ(x) = cos(kx) + a sin(kx) where a is a complex number.
Merzbacher [27] has shown that if the resulting x dependence
is invariant under translation (corresponding to conservation
of linear momentum), then a = ±i, i.e., φ = e±ikx and W =
�kx = px the real classical action. The necessity of this form
arises simply from our ability to distinguish position change
occurring from left to right or vice versa. These solutions
of the real TISE are complex. Similar considerations apply
to complex wave functions describing rotation e(±imφ) or
spherical waves e(±ikR)/R giving expansion or contraction.
We can detect the direction of shape positional changes.

(d) There has been much speculation as to the role of
decoherence due to environment interaction on the wave
function (or density matrix) of quantum gravity [21,23].
Halliwell [28] discusses “the manner in which the gravitational
field becomes classical in quantum cosmology.” To become
classical it is necessary that quantum entanglement disappears,
as outlined in this paper. However, whether background
interactions are responsible, e.g., [28] “that the density matrix
of the Universe will decohere if the long-wavelength modes
of an inhomogeneous massless scalar field are traced out.”
remains speculation. There has also been discussion of the
effect of decoherence on the expanding and contracting parts

of the Hartle-Hawking wave function of the universe [29],
the analogs of the expanding and contracting spherical waves
e(±ikR)/R.

In quantum gravity the consequences of a quantum-
mechanical result known as the “imaging theorem” [30,31]
do not appear to have been considered. This theorem shows
that any quantum wave function propagating to large distances
or times (more accurately to large accumulated values of the
action) shows a behavior in which position, momentum, and
time appear in their classical relationship. In other words,
at macroscopic distances, classical behavior appears indepen-
dently of any external decohering interactions. However, as
explained in Ref. [31], the propagation of the wave function in
time leads to an effective internal decoherence via a stationary
phase approximation.

VI. CONCLUSIONS

The standpoint is adopted that all time occurring in
dynamics is relative in that, if a clock is used to measure
time, one is quantifying positional changes of an observed
object by comparison with standard positional changes of a
generalized clock pointer. A closed composite of several parts
is timeless and its states in phase space are described by the
classical TIHJE or the quantum TISE. Observation of one
part (the system) by another (the environment) is an invasive
action requiring interaction. Separating the total action in
an “adiabatic” form allows an approximate time-dependent
dynamics to emerge in which the environment acts as a clock.
To function as a clock the interaction with the system must be
negligible.

The mathematical development is almost identical in
classical and quantum cases. However, the quantum case is
more interesting in that the linearity of the TISE allows more
flexibility of solution. Additionally, in order to achieve a real
classical time variable in the quantum case, the environment
must itself behave classically so that quantum entanglement
of system and environment is destroyed. Strongly interacting
parts of the environment give rise to effective time-dependent
potentials and in the quantum case this time arises from
classical motion of the environment. The resulting TDHJE
and TDSE time-dependent equations for the observed system
are approximate and some estimate of the magnitude of the
corrections is given.

Suggestions are made as to how the results of this study
may throw light on the parallel problem of time dependence in
quantum gravity. It is argued that the complexity of the solution
of the real TISE and the resulting complexity of the TDSE has
its root in the description of the direction of unconstrained
positional change.

Finally, it is observed that Barbour [2], beginning, as here,
with a time-independent action, has defined time in classical
mechanics in terms of the correlated displacements of many
degrees of freedom. Interestingly, this has parallels and support
from the quantum many-body problem. It has been shown
[18,22], that when many degrees of freedom are assigned to the
environment and each gives rise in the TDSE to its own ∂/∂t

term, then the normal one-time TDSE is obtained only when all
clocks are synchronized, i.e., march in step. Perhaps even more
strikingly, scattering solutions to the many-body TISE [32]
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show that the asymptotic form of the quantum Green function
in coordinate space gives ratios between particle coordinates
corresponding to classical motion. Furthermore, a classical
time involving all particle coordinates which is identical in
form with that proposed by Barbour, emerges naturally from
the time-independent dynamics.
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APPENDIX: THE QUANTUM TIME

Since the classical time arises in the semiclassical limit of
a quantum wave function, it is interesting to examine this limit
from a general definition of a quantity with dimensions of
time. Hence, first a “quantum time” τ is defined with respect
to any wave function K(R) as

τ = i

�
M

∫ R K(R′)
(∂K/∂R′)

dR′. (A1)

One notes that this “time” is, in general, a complex quantity
and for wholly real wave functions is purely imaginary.
Such complex times have found application in discussions
of tunneling, for example.

If K = χ is assumed and one substitutes for τ in Eq. (49),
neglecting the second R derivative gives a new TDSE[

HS + VI (τ ) − US (τ ) − i�
∂

∂τ

]
ψ(x,τ ) = 0, (A2)

where the complex τ (R) is derived from the environment wave
function. It would be interesting to explore the consequences

of this new equation, intermediate between the full TISE for
C and the real-time TDSE for S alone.
If one writes K = χ = A(R) exp [ i

�
W̃ (R)], where A and W̃

are real functions, one has the complex time

τ = M

∫ R A(R′)(
A∂W̃

∂R′ − i� ∂A
∂R′

)dR′. (A3)

One notes that even if W̃ is approximated by the classical
action, as in the WKB wave function, the time is still complex.
However, the classical action is of macroscopic size and hence
the term involving � is much smaller and can be neglected.
Then the function A cancels to give the real classical time

τ ≡ t = M

∫ R dR′

∂W̃/∂R′ = M

∫ R dR′

P (R′)
. (A4)

In the extreme case that VE is also zero one has what is called
the “perfect” clock. This perfect clock is a point particle with
fixed linear momentum, i.e., moving on a straight line. Then
W = PR and the time is given simply by t = (MR)/P . If the
classical velocity is introduced as dR/dt = P/M ≡ v, then
one has the simple classical relation R = vt . It is interesting
that in this special case, the quantum time, Eq. (A1), and the
classical time defined by the semiclassical wave function are
identical. The exact wave function is of course the plane wave

χ (R) =
(

1

2π�

)1/2

exp

(
i

�
PR

)
. (A5)

However, since the momentum P is fixed, then the spatial
wave function occupies all space and one requires again the
classical limit to define position and so function as a clock.
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