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Multipartite nonlocality is of great fundamental interest and constitutes a useful resource for many quantum
information protocols. However, demonstrating it in practice, by violating a Bell inequality, can be difficult.
In particular, standard experimental setups require the alignment of distant parties’ reference frames, which
can be challenging or impossible in practice. In this work we study the violation of certain Bell inequalities,
namely the Mermin, Mermin-Klyshko, and Svetlichny inequalities, without shared reference frames, when parties
share a Greenberger-Horne-Zeilinger state. Furthermore, we analyze how these violations demonstrate genuine
multipartite features of entanglement and nonlocality. For three, four, and five parties, we show that it is possible
to violate these inequalities with high probability, when the parties choose their measurements from the three Pauli
operators, defined only with respect to their local frames. Moreover, the probability of violation, and the amount
of violation, are increased when each party chooses their measurements from the four operators describing the
vertices of a tetrahedron. We also consider how many randomly chosen measurement directions are needed to
violate the Bell inequalities with high probability. We see that the obtained levels of violation are sufficient
to also demonstrate genuine multipartite entanglement and nonseparability. Finally, we show analytically that
choosing from two measurement settings per party is sufficient to demonstrate the maximum degree of genuine
multipartite entanglement and nonseparability with certainty when the parties’ reference frames are aligned in
one direction so that they differ only in rotations around one axis.
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I. INTRODUCTION

Nonlocality is one of the most intriguing features of
quantum mechanics. Testing it in the laboratory has therefore
been the subject of great research efforts in the past few
years. The motivations are twofold: witnessing nonlocality
answers deep questions in fundamental physics; and it has
practical applications, such as generating random numbers
[1,2] and demonstrating secure communication [3]. But testing
it, by violating a Bell inequality [4], is difficult in practice.
Two related problems are aligning the reference frames and
calibrating the measurement devices of each party, which can
prevent the observation of nonlocality or, worse, lead to an
erroneous certification of its existence [5].

Recently, several works have addressed this issue in various
settings. For two parties, Shadbolt et al. [6] and, independently,
Wallman et al. [7], showed that nonlocality can be proven
between two parties with no shared reference frame if each
party measures the three Pauli operators; given a Bell state,
a subset of the results of these measurements will almost
certainly be able to violate the Clauser-Horne-Shimony-Holt
(CHSH) inequality [8]. Furthermore, Shadbolt et al. [6] found
the probability of a Bell violation when each party performs
three or more random measurements, while Refs. [9,10] did
the same for two randomly chosen measurements per party.
For more than two parties, Refs. [7,9,10] extended this idea
to a class of multipartite Bell inequalities. In Ref. [7] it
was shown numerically that the n-partite Mermin-Klyshko
inequalities [11,12] (there referred to as the Mermin-Ardehali-
Belinskii-Klyshko inequalities) are violated with certainty (or
almost certainty for n = 3) when each party measures the Pauli
operators.

In certain situations, some, but not total, alignment is
possible between parties. Indeed, the assumption that each

party shares a single common axis is a standard noise model,
used for instance in polarization, time and path encoded
photonics [13]. Reference [10] showed analytically that n

parties whose reference frames are aligned in one direction can
always violate the Mermin-Klysko inequalities by measuring
a pair of operators in the plane orthogonal to the shared axis.

In the multipartite setting one is often interested not just
in the existence of nonlocality and entanglement, but also
one would like to confirm that it has features which are
genuinely multipartite. That is, if n parties share a state, which
is entangled or nonlocal, they would like to know if this comes
simply from two party properties—for example, two out of
the n sharing an EPR state—or really from a property that is
shared across all systems—known as genuine nonlocality and
entanglement.

In this work, we investigate genuine multipartite features
of entanglement and nonlocality in the absence of shared
reference frames. To do this, we extend the results of
Refs. [6,7,10] making use of three classes of multipartite
Bell inequalities, namely the Mermin [11], Mermin-Klyshko
[11,12], and Svetlichny [14] inequalities, for parties sharing a
Greenberger-Horne-Zeilinger (GHZ) state. First, we numer-
ically calculate not only the probability of violating each
inequality when each party measures their arbitrarily rotated
qubit with the Pauli operators, as in Refs. [7,9,10], but also its
value. Next we show that four measurement operators arranged
as the vertices of a tetrahedron improve the probability and
value of violation. We also consider how many randomly
chosen measurement operators are needed to give a violation
with high probability. We show that the level of violation is
sufficient to demonstrate genuine multipartite entanglement
and separability with high, almost certain, probability. Finally,
we consider the case where parties share one common axis
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only, and show that nonlocality, but also genuine multipartite
entanglement and separability, can be demonstrated with
certainty in this case. We note that our analytical results for
the Mermin inequalities replicate some of the results shown
in Ref. [10], using a different method. We go beyond this
work by providing new analytical bounds for the Svetlichny
inequalities in the odd n case and the Mermin inequalities
in the even n case; furthermore, our analysis focuses on the
genuine multipartite features demonstrated rather than the
simple existence of nonlocality.

II. BELL INEQUALITY VIOLATION WITHOUT
REFERENCE FRAMES IN THE BIPARTITE CASE

Bell inequalities test whether the behavior of a quantum
system is described by a local hidden variable (LHV) theory,
whereby a system acts according to a predetermined local
deterministic strategy (or a probabilistic mixture of such
strategies). In a LHV model, the probability of measurements
A1 and A2 on each half of a bipartite quantum state yielding
results ν1 and ν2 is

P (ν1,ν2) =
∫

dλ�(λ)P (ν1|A1,λ)P (ν2|A2,λ), (1)

where P (νi |Ai,λ) is the probability of operator Ai giving result
νi , and where λ is a local hidden variable, occurring with
probability �(λ). It is known that LHV models cannot account
for the predictions of quantum mechanics [4]. The most famous
illustration is provided by the CHSH inequality; according to
LHV models, the expectation values of measurements on a
bipartite quantum state respect ICHSH � 1, where

ICHSH := 1
2 |E(A1A2) + E(A′

1A2) + E(A1A
′
2) − E(A′

1A
′
2)|,
(2)

and the expectation values, E(A1A2), are calculated based on
Eq. (1). This inequality can be violated, i.e., ICHSH > 1, using
quantum mechanical expectation values, such as E(A1A2) =
tr(A1 ⊗ A2|φ−〉〈φ−|), where the maximally entangled state
|φ−〉 = (|01〉 − |10〉)/√2 is measured using single qubit ob-
servables A1 and A2.

Shadbolt et al. [6], Liang et al. [9], and Wallman et al. [7]
considered violating the CHSH inequality between two parties
who do not share a global reference frame. In this case, the
quantum state can be written as ρ = (R1 ⊗ R2)|φ−〉〈φ−|(R1 ⊗
R2)†, where ρ denotes that the state |φ−〉 has undergone
arbitrary unknown local rotations,

Rj = cos
θj

2
I − i sin

θj

2

(
n1

j σ1 + n2
j σ2 + n3

j σ3
)
, (3)

where θj and nk
j are real,

∑
k nk

j = 1, and σ1 = |1〉〈0| +
|0〉〈1|, σ2 = i|0〉〈1| − i|1〉〈0|, σ3 = |0〉〈0| − |1〉〈1| are the
Pauli operators. Since the rotations are unknown, this state
can alternatively be thought of as a mixed state integrated over
all values of Rj [15]. However, the form of Eq. (3) suffices for
our analysis since our results will be independent of Rj .

III. MULTIPARTITE BELL INEQUALITIES

We consider three classes of n-party Bell inequalities: the
Mermin (IM) [11], the Mermin-Klyshko (IMK) [11,12], and the

Svetlichny (IS) inequalities [14]. As in the CHSH inequality,
each party k performs measurements in two bases, Ak or A′

k ,
which give outcomes ak ± 1. According to a LHV model the
bound of each inequality is 1; however, some entangled states
can violate this bound. We consider the n-party GHZ state,
|Gn〉 = (|0〉⊗n + |1〉⊗n

)/
√

2, which maximally violates these
Bell inequalities.

We use a standard formulation for constructing the Bell
inequalities [16], according to which a Bell inequality is made
from a Bell polynomial, PB , which contains products such
as a

(′)
1 a

(′)
2 . This is transformed into a Bell expression, IB, by

replacing these products with expectation values, E(A(′)
1 A

(′)
2 ),

and taking the absolute value of the resulting expression.
This is called the Bell value. Finally, the Bell inequality is
constructed by introducing a bound respected by all LHV
models to the Bell expression, IB � 1. (Note that we will
sometimes call IB the Bell inequality. The bound IB � 1
is implied.) As an example, in the bipartite case the CHSH
polynomial is

PCHSH := 1
2 (a1a2 + a′

1a2 + a1a
′
2 − a′

1a
′
2). (4)

In the multipartite case, nonlocality alone is not the only
quality that one can test with a Bell inequality. There are
two other interesting properties. First, we can detect genuine
multipartite entanglement, GME(m), where a state of m

systems is said to have genuine m-party entanglement if there
exists no bipartite cut across which it is separable—that is all
systems are involved in the entanglement. An n-party state is
said to contain GME(m) if some choice of m subsystems has
GME(m). Second, we can have a similar notion for nonlocality
called separability. We say that n systems demonstrate Sep(l)
if there is no partitioning of the n into more than l groups
such that they are local [16] with respect to that partitioning.
For example, Sep(1) means that if the n systems are separated
into two groups, they are nonlocal with respect to this partition
(i.e., they would violate some two-party Bell inequality), for
any such partitioning.

In general, nonlocality and entanglement are not identical,
nonlocality being the stronger property. This means that there
are states that are entangled but do not exhibit nonlocality, but
the inverse is not true. This holds for the aforementioned mul-
tipartite notions as well; there exist states of n systems which
contain GME(n) but do not demonstrate Sep(1) nonlocality.
That is, these states are entangled across any bipartition but
for some bipartitions they do not violate any Bell inequality.

In addition to demonstrating the presence of some non-
locality, as studied in Refs. [7,9,10], the Bell inequalities
used in this work can detect these multipartite notions.
The Mermin-Klyshko inequalities can differentiate different
classes of genuine multipartite entanglement [17–20]; as can
the Svetlichny inequalities for separability [16,21]; finally, the
Mermin inequalities have maximum algebraic values saturated
by entangled quantum states.

The Mermin-Klyshko expressions [11,12] are generated by
the polynomials

(PMK)n := 1
2 (PMK)n−1(an + a′

n) + 1
2 (PMK)′n−1(an − a′

n), (5)

where (PMK)′k is found by exchanging all ai and a′
i in

(PMK)k [16]. The fundamental MK polynomial is the CHSH
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polynomial, (PMK)2 = PCHSH. The n-party IMK inequality,
(IMK)n � 1, can be violated using entangled states. For n �
5—as shall be the case for our investigation—if the state’s
largest entangled subspace contains no more than m parties,
where 1 � m � n, then (IMK)n � 2(m−1)/2 [17]; a violation
of this bound implies GME(m + 1). For instance, for three
parties,

(PMK)3 := 1
2 (a1a2a

′
3 + a1a

′
2a3 + a′

1a2a3 − a′
1a

′
2a

′
3), (6)

(IMK)3 >
√

2 shows genuine three-party entanglement. Note
that for arbitrary n we can still characterize entanglement,
albeit less precisely: all biseparable correlations satisfy
(IMK)n � 2

n
2 −1 [18]; conversely, (IMK)n > 2

n
2 −1 implies the

correlations are not biseparable, which in turn implies the
state is GME(n). Taking into account the number of unentan-
gled particles—as well as entangled ones—lets one further
differentiate the entanglement classes [19,20].

The Svetlichny polynomials [14,16] are

(PS)n := 1
2 [(PMK)n + (PMK)′n] (7)

for n odd, while they coincide with (PMK)n for n even. The
Svetlichny inequality is (IS)n � 1. For GME(n) [correspond-
ing to Sep(1)], (IS)n � 2

n−1
2 for n even and (IS)n � 2

n−2
2 for

n odd. If the state belongs to Sep(m), then (IS)n � 2
n−m

2 for
n even and (IS)n � 2

n−m−1
2 for n odd [16,21]. Considering a

system of three parties we see that separability is a priori
different to entanglement. A pair of generally nonlocal states
locally connected to a third one [Sep(2)] gives (IS)3 � 1; a
three-party entangled state [GME(3)] can violate this, reaching
(IS)3 = √

2 [14].
Finally, the Mermin inequalities are derived from the

polynomials [11]

(PM)n := 1

2
n+2

2 i

n∏
j=1

(aj + ia′
j ) − 1

2
n+2

2 i

n∏
j=1

(aj − ia′
j ), (8)

for n even. [(PM)n coincides with (PMK)n for n odd.] In other
words, (PM)n contains all permutations of l primed and n − l

unprimed operators, where l is odd. Terms l = 3,7,11, . . . have
a coefficient −1. The Mermin inequality is (IM)n � 1. For the
state |Gn〉, (IM)n � 2

n
2 −1, the algebraic maximum of (IM)n,

for odd n. This means that no combination of expectation
values taking the values ±1 can outperform the predictions of
quantum mechanics.

IV. RESULTS FOR GENERAL ROTATIONS

We now consider the case where n parties share a GHZ
state, but do not share a global reference frame. Equivalently,
each part of |Gn〉 undergoes a random local rotation, |Gn〉 =
(R1 ⊗ R2 ⊗ · · · ⊗ Rn)|Gn〉, with Rn chosen according to the
Haar measure.

We numerically calculate the probability of violating the
(IM)n, (IMK)n, and (IS)n inequalities for n = 3, 4, 5 parties for
the following protocol: each party measures his share of |Gn〉
in a number of bases. We then pick the two bases from each
party whose results maximize each Bell value. We consider
three settings. First, we assume the parties have local reference
frames. Each party measures the Pauli operators, ±σi , on |Gn〉.

FIG. 1. (Color online) The four vertices of the tetrahedron are
used to define measurement directions evenly spaced over the Bloch
sphere.

As we will show, three measurement operators are not always
enough to guarantee a Bell violation. The second setting uses
four measurement directions—defined by the vertices of a
tetrahedron, Fig. 1—per qubit to improve the probability of
violation. In the third setting, we assume that the parties have
neither a global nor a local reference frame and calculate the
distribution of Bell values when each party measures in a
number of random directions, chosen according to the Haar
measure. We want to know how many measurement operators
we need to observe a violation with high probability.

Figure 2 shows our results. We make several observations.
First we consider the Pauli operators which often, but not
always, suffice to violate the (IM)n and (IMK)n inequalities: the
(IM)3 inequality is violated with probability roughly 99.99%.
An example of a rotated state that does not allow a violation
is |G3〉 = Rt ⊗ Rt ⊗ Rt |G3〉, where

Rt = cos
θt

2
I − i sin

θt

2

1√
2

(σ1 + σ2), (9)

and θt = arctan
√

2. This rotation gives the three observables
an equal component on the σ1-σ2 plane. In this case (IM)3 =
0.98, implying that there exists a set of states of nonzero
measure containing |G3〉 such that (IM)3 < 1. For n = 5
parties, the Pauli operators show GME(3) with certainty, while
the GME(5) and Sep(1) bounds can also be violated, albeit
with lower probabilities [around 19% for GME(5) and 18%
for Sep(1)].

The tetrahedral basis gives better results for all inequalities,
violating the Mermin inequalities with almost unit probability,
although there is still a chance of not violating—around
10−5 for the (IM)3 inequality. One nonviolating rotated
state is |G3〉 = I ⊗ I ⊗ Rs |G3〉, where Rs = cos(3π/20)I −
i sin(3π/20)σ1, giving (IM)3 = 0.93. The tetrahedral basis
also improves the probability of demonstrating genuine
multipartite entanglement: for n = 3 parties, GME(3) is
demonstrated with a probability close to 92%. As in the
bipartite case [6], random measurements are less effective;
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FIG. 2. (Color online) Probability distributions of (IM)n, (IMK)n, and (IS)n values for n = 3, 4, 5 parties when a randomly rotated GHZ
state is measured in the Pauli (red, dashed) and tetrahedral (blue, dotted) bases (color online), and in 3, 4, 5, 6, 7 randomly chosen directions
(in increasingly dark shades of gray). The vertical lines mark the LHV, and multipartite entanglement and separability bounds. Note that the
latter calculation was not possible for all numbers of random measurement operators beyond the three-party case.

even with seven operators, the (IM)3 inequality is only violated
with probability 81%.

For four parties we see that the tetrahedral basis gives
violation of (IM)4 with almost certainty, hence demonstrating
nonlocality, although we do not see genuine multipartite
features here. For five parties we see that the tetrahedral basis
gives almost certain demonstration of nonlocality, and further
that the state demonstrates Sep(2) and that it contains GME(4)
with high probability.

Finally, we note that the Svetlichny inequalities are harder
to violate than the Mermin and Mermin-Klyshko inequalities;
for instance, the (IS)3 inequality is violated with probability
roughly 55% using the Pauli operators. This is because these
inequalities test nonseparability, which is more general than
entanglement.

V. RESTRICTED ROTATIONS

We now consider the special case of rotations restricted to
the σ1-σ2 plane, |Gn〉 = (Rz

1 ⊗ Rz
2 ⊗ · · · ⊗ Rz

n)|Gn〉, where

Rz
i = cos

θi

2
I − i sin

θi

2
σ3. (10)

We show analytically that two perpendicular measurement
operators on that plane are sufficient to violate the (IM)n and
the (IS)n inequalities with certainty. Furthermore, the violation
is always large enough to demonstrate full genuine multipartite
entanglement, GME(n), for (IM)nodd and complete nonsepara-
bility, Sep(1), for (IS)n. Note that the identities (IM)nodd ≡
(IMK)nodd and (IS)neven ≡ (IMK)neven mean this section has some

overlap with Ref. [10], which lowerbounded the value of
(IMK)n in this scenario, although the authors did not consider
genuine multipartite entanglement and separability. Indeed,
we use the result of Ref. [10] to show that (IMK)neven always
demonstrates GME(n) and, when interpreted as (IS)neven , also
demonstrates Sep(1). For (IM)nodd , we derive our own proof
that GME(n) is demonstrated with certainty; however, the
same observation could have been made given the result of
Ref. [10].

First, let us consider the n-party Mermin inequalities.
Proof. Choosing operators Ai = σ1 and A′

i = σ2 the expec-
tation values are

E(A(′)
1 A

(′)
2 . . . A(′)

n ) = cos

(

 − p

π

2

)
, (11)

where 
 = ∑
i θi and p is the number of primed terms. The

Bell value is

(IM)n = N

∣∣∣∣∣∣
∑

p=1,5,9...

(
n

p

)
cos

(

 − p

π

2

)

−
∑

p=3,7,11...

(
n

p

)
cos

(

 − p

π

2

)∣∣∣∣∣∣ , (12)

where N = 2− n
2 for n even and N = 2− n−1

2 for n odd. The terms
p = 1,5,9, . . . are sin 
. Terms p = 3,7,11, . . . have a minus
sign, − sin 
. The Bell value, (IM)n = N

∑
p odd(n

p)|sin
| =
N2n−1|sin
|, depends on whether n is odd or even. First, we
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consider n odd,

(IM)nodd = 2
n−1

2 |sin
|. (13)

The inequality is violated whenever

|sin
| >
1

2
n−1

2

. (14)

This is not satisfied for some values of 
 but, in this case, a
different combination of measurements will give a violation.
Swapping the operators, so that Ai = σ2 and A′

i = σ1, gives
expectation values

E(A(′)
1 A

(′)
2 . . . A(′)

n ) = cos

[

 − (n − p)

π

2

]
. (15)

For n odd n − p is even, so the expectation values are cos 


for n − p = 0,4,8, . . . and − cos 
 for n − p = 2,6,10, . . .,
giving (IM)nodd = 2

n−1
2 |cos
|. Hence, for n odd, the Bell

value is (IM)nodd � max{2 n−1
2 |sin
|,2 n−1

2 |cos
|} � 2
n
2 −1.

For n even, using Ai = σ1 and A′
i = σ2, we have

(IM)neven = 2
n
2 −1|sin
|. (16)

For values of 
 for which the inequality is not violated we set
A1 = σ2, A′

1 = −σ1, Ai>1 = σ1, and A′
i>1 = σ2 (−σ1 is done

by flipping the sign of any expectation value containing σ1)
giving (IM)neven = 2

n
2 −1|cos
|.

Since the Mermin and Mermin-Klyshko inequalities are
equivalent for odd n, we can apply the genuine multipartite
entanglement bounds to (IM)nodd . We see from our lowerbound,
(IM)nodd > 2

n
2 −1, that (IM)nodd demonstrates GME(n) with

certainty for arbitrary n.
The proof for the Svetlichny inequalities follows a similar

argument.
Proof. We consider odd n. Using the identity (PM)nodd ≡

(PMK)nodd , the Svetlichny polynomial becomes

(PS)nodd = 1
2

(
(PM)nodd + (PM)′nodd

)
. (17)

As before we will need two measurement strategies. The first
is Ai = σ1 and A′

i = σ2, giving

(IS)nodd =N

2

∣∣∣∣
∑

p=1,5,9...

(
n

p

){
cos

(

 − p

π

2

)
+ cos

[

 − (n − p)

π

2

]}

−
∑

p=3,7,11...

(
n

p

){
cos

(

 − p

π

2

)
+ cos

[

 − (n − p)

π

2

]}∣∣∣∣, (18)

where N = 2− n−1
2 .

We consider two cases. First, n = 1,5,9 . . ., in which case

(IS)n=1,5,9... = N

2

∑
p odd

(
n

p

)
|sin
 + cos 
|. (19)

Second, n = 3,7,11 . . ., giving

(IS)n=3,7,11... = N

2

∑
p odd

(
n

p

)
|sin
 − cos 
|. (20)

In both cases there are values of 
 for which the inequality
is not violated. The second measurement strategy—A1 = σ2,
A′

1 = −σ1, Ai>1 = σ1 and A′
i>1 = σ2—introduces an addi-

tional rotation of π/2, hence,

(IS)nodd = 2
n−3

2 max

{
|sin
 ± cos 
|,

∣∣∣∣ sin

(

 + π

2

)
± cos

(

 + π

2

)∣∣∣∣
}
. (21)

Equation (21) implies (IS)nodd � 2
n−3

2 , which means that
(IS)nodd demonstrates Sep(1) with certainty.

For even n the Svetlichny inequality coincides with the
Mermin-Klyshko inequality, and so is covered by the result
of Ref. [10], which shows that (IMK)neven � 2

n
2 −1. In other

words (IS)neven � 2
n
2 −1, demonstrating Sep(1) with certainty.

Furthermore, this result also implies that (IMK)neven demon-
strates GME(n) with certainty.

VI. DISCUSSION

We have numerically calculated the probabilities of vi-
olating the Mermin, Mermin-Klyshko, and Svetlichny in-
equalities, for three, four, and five parties, when each party
measures the Pauli operators on their share of a locally rotated
GHZ state, showing that it is possible to reliably demonstrate
multipartite nonlocality without a global reference frame. The
probability of violation increases when a tetrahedral basis of
four operators is used, although even in this case violation is not
guaranteed. Increasing the number of measurement operators
may help in this direction. The set of platonic solids, to
which the tetrahedron belongs, is a natural way of distributing
the measurement directions. Several random measurement
directions can also be used to violate the inequalities, albeit
with lower probability.

In contrast with previous investigations, we have considered
the genuine multipartite entanglement and separability. Being
stronger than the nonlocality demonstrated by violating a
Bell inequality, these concepts need a large violation of the
Bell inequalities which becomes easier as n increases, as
noted in Ref. [9]. We see that for three and five parties
genuine multipartite features can be demonstrated with high
probability.

Finally, when the rotations of the quantum state are
restricted to a plane, we show analytically, for arbitrary n,
that just two operators per party are sufficient to violate the
(IM)n and (IS)n inequalities, and to demonstrate the maximal
degree of genuine multipartite entanglement, GME(n), and
nonseparability, Sep(1), with certainty.
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It will be interesting to study the possibility to demonstrate
strong nonlocal phenomena for multipartite states other than
the GHZ state.

Our results have a practical application since local state
rotations can be thought of as a type of noise. In particular,
the restricted case, where each party shares a common
axis, is a common noise model for phonic quantum sys-
tems encoded in polarization, time, or path [13]. In this
sense, we have shown that highly sophisticated multipartite

nonlocal phenomena can be seen even in the presence of
noise.
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