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Quantum coherence is a key element in topical research on quantum resource theories and a primary facilitator
for design and implementation of quantum technologies. However, the resourcefulness of quantum coherence is
severely restricted by environmental noise, which is indicated by the loss of information in a quantum system,
measured in terms of its purity. In this work, we derive the limits imposed by the mixedness of a quantum system
on the amount of quantum coherence that it can possess. We obtain an analytical trade-off between the two
quantities that upperbound the maximum quantum coherence for fixed mixedness in a system. This gives rise
to a class of quantum states, “maximally coherent mixed states,” whose coherence cannot be increased further
under any purity-preserving operation. For the above class of states, quantum coherence and mixedness satisfy
a complementarity relation, which is crucial to understand the interplay between a resource and noise in open
quantum systems.
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I. INTRODUCTION

Recent developments in modern science have shown that
quantum coherence plays an important role in low-temperature
physics starting from the formulation of the basic laws of
thermodynamics to work extraction [1–11]. Furthermore, it
is a useful figure of merit in investigating nanoscale systems
[12,13] and understanding efficient energy transfer in complex
biological systems [14–18]. In recent years, researchers have
attempted to develop a framework to formalize the theory of
quantum coherence within the realms of quantum information
and quantum resource theories [19–30]. Within this context,
there are two pertinent theoretical frameworks that attempt
to characterize coherence as a resource. The first is based
on the resource theory of asymmetry relative to phase shifts,
where operations are restricted to phase insensitive operations
and symmetric states are free resources [19,20,22,26]. The
above theoretical structure has been used in several resource
based formulations of quantum thermodynamics [4,5]. The
second formalism is based on a well-defined set of allowed
incoherent operations and a set of freely available incoherent
states [23]. In this framework, quantum coherence is a well-
defined resource, which can be quantified in terms of functions
or coherence monotones that satisfy certain characteristic
conditions. Some of the better known measures of quantum
coherence are those based on l1 norm and relative entropy
[23] and skew information [25]. Incidentally, a recent work
proves that all measures of entanglement can be artfully used
to define a family of valid measures of quantum coherence
[31]. Moreover, the latter formalism has been recently used
to address a fundamental issue of wave-particle duality [32],
thus, enabling coherence to be a valid indicator of the wave
nature of quantum systems.

Another significant aspect in the dynamics of quantum
systems is the role of environmental noise and the unavoidable
phenomenon of decoherence. It is known that decoherence
is detrimental to the amount of information contained in
a quantum state, as measured by its purity. To effectively
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characterize the role of decoherence in erasing information
[33] one needs to quantify the purity or its complementary
property, the mixedness of the state. A faithful measure of
mixedness is the normalized linear entropy [34]. From the
perspective of resource theory of purity [35,36], mixedness
can be obtained as a complementary quantity to global
information. Since noise tends to increase the mixedness of
a quantum system, it emerges as an intuitive parameter to
understand decoherence. A natural question that arises is how
does important physical quantities in quantum information
theory, such as entanglement [37], fare against mixedness of
quantum systems? An interesting direction is to obtain the
maximum amount of entanglement for a given mixedness,
which leads to the notion of maximally entangled mixed states
[38–42]. The amount of entanglement in such states cannot be
increased further under any global unitary operation. Also, the
form of the maximally entangled mixed states depends on the
measures employed to quantify entanglement and mixedness
in the system [41]. Such states have also been investigated in
Gaussian quantum systems [43–45].

In our work, we investigate the limits imposed by mixedness
of a quantum system on the amount of quantum coherence
present in the system. Since we consider quantum systems
where the missing phase-reference frame is apparently lacking,
the formalism based on the resource theory of asymmetry
[22] becomes over-restrictive [46]. Hence, in the present
work, we use the theoretical approach based on the set of
incoherent operations and states [23], to characterize and
quantify coherence. We derive an analytical trade-off between
the two quantities that allows us to upperbound the maximum
coherence in a given mixed quantum state and vice versa.
Using the l1 norm of coherence [23] as a measure of quantum
coherence and normalized linear entropy [34] as a measure
of mixedness, we prove that for a general d-dimensional
quantum system the sum of the (scaled) squared coherence
and the mixedness is always less than or equal to unity. This
allows us to derive a class of quantum states, viz. “maxi-
mally coherent mixed states” (MCMSs), that have maximal
coherence, up to incoherent unitaries, for a fixed mixedness.
These states are parametrized mixtures of a d-dimensional
pure maximally coherent state and maximally mixed state.
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Interestingly, for different values of mixedness the analytical
form of MCMS remains unchanged and, unlike maximally
entangled mixed states, is not dependent on the choice of
the measure of coherence and mixedness, as observed for l1
norm, relative entropy, and geometric measures of coherence.
The obtained analytical results show an important trade-off
between a relevant quantum resource and noise in open
quantum systems and a complementary behavior between
coherence and mixedness in the class of MCMSs, which may
be crucial from the perspective of quantum resource theories
and thermodynamics. Significantly, since the mixedness of
a quantum system can be experimentally measured using
quantum interferometric setups [47,48], without resorting to
complicated state tomography, our results provide a mathe-
matical framework to experimentally determine the maximal
coherence in a quantum state.

The paper is organized as follows. In Sec. II, we briefly
discuss the quantification of coherence and mixedness. In
Sec. III, we theorize the trade-off between coherence and
mixedness in d-dimensional systems. In Sec. IV, we define
a class of maximally coherent mixed states that satisfy a
complementarity relation between coherence and mixedness.
In Sec. V, we investigate the allowed set of transformations
within classes of fixed coherence or mixedness. We conclude
with a discussion of the main results in Sec. VI.

II. QUANTIFYING COHERENCE AND MIXEDNESS

In this section we present a brief overview of the concepts
of quantum coherence and mixedness of quantum systems. To
characterize the coherence in a quantum system, we follow the
theoretical approach developed in Ref. [23]. All mathematical
formulations and results that are subsequently presented and
discussed are valid within the framework of the above theory
of quantum coherence.

A. Quantum coherence

Quantum coherence, an essential feature of quantum me-
chanics arising from the superposition principle, is inherently a
basis dependent quantity. Therefore, any quantitative measure
of it must depend on a reference basis. The framework, to
quantify coherence in the context of quantum information
theory, is based on the characterization of a set of incoherent
states, denoted by I and incoherent operations �I [23].
For a given reference basis {|i〉}, all the states of the
form ρI = ∑

i di |i〉〈i|, where di � 0 and
∑

i di = 1, form
a set, I, of incoherent states. Incoherent operations �I

are defined as completely positive trace preserving (CPTP)
maps, which map the set of incoherent states onto itself,
i.e., �I (I) ∈ I. Under the set of operations �I and the free
incoherent states I, quantum coherence is a valid resource
that can be quantified. A function, C(ρ), is a bona fide
measure of quantum coherence of the state ρ if it satisfies
the following conditions [23]: (1) C(ρ) = 0 iff ρ ∈ I. (2)
C(ρ) is nonincreasing under the incoherent operations, i.e.,
C(�I [ρ]) � C(ρ). (3) C(ρ) decreases on an average under
the selective incoherent operations, i.e.,

∑
k pkC(ρk) � C(ρ),

where ρk = MkρM
†
k/pk , pk = TrMkρM

†
k , and Mk are the

Kraus elements of an incoherent channel. (4) C(ρ) is convex

in its arguments, i.e., C(
∑

k pkρk) �
∑

k pkC(ρk). One may
note that conditions (3) and (4) together imply condition (2).

Measures that satisfy the above conditions, include l1
norm and relative entropy of coherence [23] and the skew
information [25]. Generic monotones of quantum coherence
can also be derived using entanglement monotones that satisfy
the above conditions [31]. In this work, we shall mainly be
focused on the l1 norm of coherence. For a quantum state ρ

and the reference basis {|i〉}, the l1 norm of coherence is given
by

Cl1 (ρ) =
∑
i �=j

|ρij |, (1)

where ρij = 〈i|ρ|j 〉. Another measure of coherence is the
relative entropy of coherence, which is given by Cr (ρ) =
S(ρd ) − S(ρ), where S(ρ) = −Tr(ρlnρ), is the von Neumann
entropy and ρd = ∑

i〈i|ρ|i〉|i〉〈i|. Moreover, a geometric mea-
sure of coherence had also been speculated [23,29,31] and was,
only recently, shown to be a full coherence monotone [31]. The
geometric measure is given by Cg(ρ) = 1 − maxσ∈I F (ρ,σ ),
where I is the set of all incoherent states and F (ρ,σ ) =
(Tr[

√√
σρ

√
σ ])2 is the fidelity of the states ρ and σ . It is

important to note that quantum coherence, by definition, is
not invariant under general unitary operation but does remain
unchanged under incoherent unitaries. Furthermore, the max-
imally coherent pure state is defined by |ψd〉 = 1√

d

∑d−1
i=0 |i〉,

for which Cl1 (|ψd〉 〈ψd |) = d − 1 and Cr (|ψd〉 〈ψd |) = lnd.

B. Mixedness

For every quantum state, the ubiquitous interaction with
environment or decoherence affects its purity. Noise intro-
duces mixedness in the quantum system leading to loss of
information, and hence, its characterization is an important
task in quantum information protocols. The mixedness, which
represents nothing but the disorder in the system, can be
quantified in terms of entropic functionals, such as linear and
von Neumann entropy of the quantum state. For an arbitrary
d-dimensional state, the mixedness, based on normalized
linear entropy [34], is given as

Ml(ρ) = d

d − 1
(1 − Trρ2). (2)

Therefore, for each quantum system, mixedness varies be-
tween 0 and 1, i.e., 0 � Ml(ρ) � 1. Furthermore, since
Trρ2 describes the purity of quantum system, mixedness
expectedly emerges as a complementary quantity to the purity
of the given quantum state. The other operational measure of
mixedness of a quantum state ρ is the von Neumann entropy,
S(ρ) = −Tr(ρlnρ). Moreover, in a manner similar to quantum
coherence, a geometric measure of mixedness can also be
defined, which is given by Mg(ρ) := F (ρ,I/d) = 1

d
(Tr

√
ρ)2

and lies between 0 and 1.

III. TRADE-OFF BETWEEN QUANTUM COHERENCE
AND MIXEDNESS

In this section, we investigate the restrictions imposed by
the mixedness of a system on the maximal amount of quantum
coherence. We prove analytically that there exists a trade-off
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between the two quantities and for a fixed amount of mixedness
the maximal amount of coherence is limited. The results allow
us to derive a class of states that are the most resourceful, in
terms of quantum coherence, under a fixed amount of noise,
characterized by its mixedness.

The important trade-off between quantum coherence, as
quantified by the l1 norm, and mixedness, in terms of
the normalized linear entropy, is captured by the following
theorem:

Theorem 1: For any arbitrary quantum system, ρ, in d

dimensions, the amount of quantum coherence Cl1 (ρ) in the
state is restricted by the amount of mixedness Ml(ρ) through
the the inequality

C2
l1

(ρ)

(d − 1)2
+ Ml(ρ) � 1. (3)

Proof. Using the parametric form of an arbitrary density
matrix, the state of a d-dimensional quantum system can be
written in terms of the generators, �̂i , of SU (d) [49–53], as

ρ = I

d
+ 1

2

d2−1∑
i=1

xi�̂i, (4)

where xi = Tr[ρ�̂i]. The condition of positivity can be
stated in terms of the coefficients of the characteristic
equation for the density matrix ρ. Specifically, Eq. (4)
is positive iff all the coefficients of the polynomial
det(λI − ρ) = ∑d

i=0(−1)iAiλ
d−i = 0, Ai � 0 for 1 � i � d

(A0 = 1). This criterion can be verified simply by calculating

traces of various powers of ρ [52,53]. The generators
�̂i (i = 1,2, . . . ,d2 − 1) satisfy (1) �̂i = �̂

†
i , (2) Tr(�̂i) = 0,

and (3) Tr(�̂i�̂j ) = 2δij . These generators are defined by the
structure constants fijk (a completely antisymmetric tensor)
and gijk (a completely symmetric tensor), of Lie algebra
su(d) [51,52]. The generators can be conveniently written
as {�̂i}d2−1

i=1 = {ûjk,v̂jk,ŵl}. Here ûjk = (|j 〉〈k| + |k〉〈j |),
v̂jk = −i(|j 〉〈k| − |k〉〈j |), and ŵl =

√
2

l(l+1)

∑l
j=1(|j 〉〈j | −

l|l + 1〉〈l + 1|), where j < k with j,k = 1,2, . . . ,d and
l = 1,2, . . . (d − 1) [51,52]. The generators can be labeled
as {�̂1, . . . ,�̂ (d2−d)

2
,�̂ (d2−d)

2 +1
, . . . ,�̂(d2−d),�̂(d2−d)+1, . . . ,

�̂(d2−1)} = {û12, . . . ,û(d−1)d ,v̂12, . . . ,v̂(d−1)d ,ŵ1, . . . ,ŵ(d−1)}.
The l1 norm of coherence of a d-dimensional system, given

by Eq. (4), can be written as

Cl1 (ρ) =
(d2−d)/2∑

i=1

√
x2

i + x2
i+(d2−d)/2. (5)

Furthermore, the mixedness is given by

Ml(ρ) = d

d − 1
(1 − Trρ2) = 1 − d

2(d − 1)

d2−1∑
i=1

x2
i . (6)

Using the expressions for Cl1 (ρ) and Ml(ρ), we obtain

C2
l1

(ρ)

(d − 1)2
+ Ml(ρ)

= 1

(d − 1)2

⎛
⎝(d2−d)/2∑

i=1

√
x2

i + x2
i+(d2−d)/2

⎞
⎠

2

+ 1 − d

2(d − 1)

d2−1∑
i=1

x2
i

= 1 − 1

(d − 1)2

d2−1∑
i=1

x2
i + 1

(d − 1)2

⎡
⎢⎣

⎛
⎝(d2−d)/2∑

i=1

√
x2

i + x2
i+(d2−d)/2

⎞
⎠

2

−
(

d2 − d

2
− 1

) d2−1∑
i=1

x2
i

⎤
⎥⎦

= 1− 1

(d − 1)2

d2−1∑
i=1

x2
i − [(d2 − d)/2 − 1]

(d − 1)2

d2−1∑
i=d2−d

x2
i + 1

(d − 1)2

⎡
⎢⎣

⎛
⎝(d2−d)/2∑

i=1

√
x2

i + x2
i+(d2−d)/2

⎞
⎠

2

−
(

d2 − d

2
− 1

) d2−d∑
i=1

x2
i

⎤
⎥⎦

� 1 − d

2(d − 1)

d2−1∑
i=d2−d

x2
i , (7)

where, in the last step, we have used the inequality 2
√

xy �
(x + y). Since the d

2(d−1)

∑d2−1
i=d2−d x2

i � 0, we have
C2

l1
(ρ)

(d−1)2 +
Ml(ρ) � 1, which concludes our proof.

Theorem 1 proves that the scaled coherence,
Cl1 (ρ)
(d−1) , of

a quantum system with mixedness Ml(ρ), is bounded to a

region below the parabola
C2

l1
(ρ)

(d−1)2 + Ml(ρ) = 1 (see Fig. 1). The
quantum states with (scaled) quantum coherence that lie on

the parabola are the maximally coherent states corresponding
to a fixed mixedness and vice versa. The trade-off obtained
between coherence and mixedness can be neatly presented
for a qubit system. Let us consider an arbitrary single-qubit
density matrix of the form

ρ =
(

a c

c∗ 1 − a

)
. (8)
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(a) d = 2 (b) d = 3

(c) d = 4 (d) d = 5

FIG. 1. (Color online) Plot showing the trade-off between the
(scaled) coherence, Cl1 (ρ)/(d − 1), and mixedness Ml(ρ) as obtained
from Eq. (3). The red line represents the extremal parabola in
Eq. (19), which corresponds to the MCMS class that satisfies a
complementarity relation between coherence and mixedness. The
figure plots the (scaled) coherence, along the Y axis, and mixedness,
along the X axis, for 1 × 105 randomly generated states in d = 2, 3,
4, and 5 dimensions, using a specific Mathematica package [54].

The eigenvalues of the above density matrix are given by
λ± = {1 ±

√
1 − 4[a(1 − a) − 4|c|2]}/2. The positivity and

Hermiticity of the density matrix implies that 0 � a(1 − a) −
4|c|2 � 1/4. Now, the mixedness of the state ρ is given
by Ml(ρ) = 4a(1 − a) − 4|c|2. The l1 norm of coherence
is Cl1 (ρ) = 2|c|. Using the expressions of coherence and
mixedness, we obtain C2

l1
(ρ) + Ml(ρ) = 4a(1 − a). Since

4a(1 − a) � 1, we have C2
l1

(ρ) + Ml(ρ) � 1, with the equality
holding if and only if a = 1/2.

From Theorem 1, we know that the maximum coherence
permissible in an arbitrary quantum state with a fixed mixed-

ness are the values that lie on the parabola
C2

l1
(ρ)

(d−1)2 + Ml(ρ) = 1.
The same holds for the maximum mixedness allowed in a
quantum state with fixed coherence (see Fig. 1). A natural
question arises: What are the quantum states that correspond
to the maximal coherence and satisfy the equality in Eq. (3)?
The above question is addressed in the following section.

IV. MAXIMALLY COHERENT MIXED STATES
AND COMPLEMENTARITY

Let us find the quantum states with maximal l1 norm of
coherence for a fixed amount of mixedness, say Mf . For this,
we need to maximize the coherence under the constraint that
the mixedness Mf as quantified by normalized linear entropy
is invariant. Here we provide the form of maximally coherent
mixed state for a general d-dimensional system.

Theorem 2: An arbitrary d-dimensional quantum system
with maximal coherence for a fixed mixedness Mf , up to

incoherent unitaries, is of the following form:

ρm = 1 − p

d
Id×d + p|ψd〉〈ψd |, (9)

where |ψd〉 = 1√
d

∑d
i=1 |i〉, is the maximally coherent state in

the computational basis, Id×d is the d-dimensional identity
operator, and the mixedness, in terms of normalized linear
entropy, is equal to Mf = 1 − p2.

Proof. Using the parametric form of the density matrix
given in Eq. (4), the expressions for coherence and mixedness
of any d-dimensional system was obtained in Eqs. (5) and (6).
To prove the above theorem, we seek the maximal coherence
for a fixed mixedness, say Mf , i.e., we maximize the function
Cl1 , under the constraint

Mf = 1 − d

2(d − 1)

d2−1∑
i=1

x2
i . (10)

Hence, we need to maximize the Lagrange function

L =
D/2∑
i=1

√
x2

i + x2
i+D/2 + λ

(
1 − d

2(d − 1)

D+d−1∑
i=1

x2
i − Mf

)
,

(11)

where D = d2 − d and λ is the Lagrange multiplier. The
stationary points {x ′

j } of Cl1 (ρ) imply the vanishing of

∂L
∂xj

∣∣∣{x ′
j } =

⎧⎨
⎩

x ′
j√

x ′
j

2+x ′ 2
j+D/2

− λd
d−1x ′

j , for j � D/2

− λd
d−1x ′

j , for j > D
.

(12)

Therefore, we have x ′
j = 0 for all j > D and√

x ′
j

2 + x ′ 2

j+D/2 = d−1
λd

for j � D/2. This implies that

x ′
1

2 + x ′ 2
1+D/2 = x ′

2
2 + x ′ 2

2+D/2 = · · ·

= x ′ 2
D/2 + x ′ 2

D =
(

d − 1

λd

)2

. (13)

Putting these values of x ′
j ’s in the constraint equation (10)

we get λ = (d − 1)/[2
√

(1 − Mf )]. The positive value of λ

is chosen because negative value leads to negative coherence,
which is not desired. The value of coherence for the stationary
states is given by

Cl1 (ρ) =
D/2∑
j=1

√
x ′

j
2 + x ′ 2

j+D/2 = (d − 1)
√

(1 − Mf ). (14)

This is the maximal value of coherence that a state can have
for a fixed value of mixedness Mf . Therefore, the states with
x2

j + x2
j+D/2 = 4(1 − Mf )/d2 for j � D/2 and xj = 0 for

j > D are the states that have maximum coherence for a given
mixedness Mf . These states can be written as

ρm = I

d
+ R

2

D/2∑
i=1

(cos θi�̂i + sin θi�̂i+D/2), (15)

where R = 2
√

(1−Mf )

d
and θi = tan−1(xi+D/2/xi). We ob-

serve that the diagonal part of these states is maximally

052115-4



MAXIMALLY COHERENT MIXED STATES: . . . PHYSICAL REVIEW A 91, 052115 (2015)

mixed and the points, {xi,xi+D/2}D/2
i=1 , that define the off-

diagonal elements, lie on the circle of radius R in the real
(xi,xi+D/2) plane. An equivalent form of the above states
can be written, by identifying {θ1, . . . ,θd−1,θd . . . ,θ(d2−d)/2} =
{φ12, . . . ,φ1d ,φ23, . . . ,φ(d−1)d}, as

ρm = I

d
+ R

2

d∑
i,j = 1
i < j

(eiφij |i〉〈j | + e−iφij |j 〉〈i|). (16)

Now, the phases appearing in the off diagonal components
can be removed by applying an incoherent unitary of the form
U = ∑d

n=1 e−iγn |n〉〈n|, which keeps the coherence invariant.
To this end by choosing φij = γi − γj we get

ρm = I

d
+ R

2

d∑
i,j = 1
i < j

(|i〉〈j | + |j 〉〈i|). (17)

Now, setting R = 2p/d, we obtain the state given in Eq. (9).
Therefore, up to incoherent unitary transformations, the states
with maximal coherence for a fixed mixedness are those that
take the form given by Eq. (9). This completes the proof.

For a single-qubit quantum system, the proof can be math-
ematically elaborated. For the density matrix, given in Eq. (8),
we need to maximize the coherence under the constraint that
Mf = 4a(1 − a) − 4|c|2 is invariant. Hence, we need to max-
imize, Cl1 (ρ) = 2|c| + λ[4a(1 − a) − 4|c|2 − Mf ], where λ

is the Lagrange multiplier. Upon optimization, the stationary
points are given by a = 1/2 and |c| = 1/(4λ). Using constraint
equation, we get λ = ±1/(2

√
1 − Mf ). Choosing the positive

value of λ, we obtain |c| = √
1 − Mf /2. Thus, the maximum

value of coherence is equal to Cl1 (ρ) = √
1 − Mf and the

corresponding states are given by

ρm(φ) = 1

2

(
1

√
1 − Mf exp[iφ]√

1 − Mf exp[−iφ] 1

)
,

(18)

where φ is an arbitrary phase. The phase can be removed
through incoherent unitaries which keeps the coherence
invariant. The density matrix in Eq. (18), up to incoherent
unitaries, has the form ρm = 1−p

2 I2×2 + p|ψ2〉〈ψ2|, where
|ψ2〉 = (|0〉 + |1〉)/√2 is the maximally coherent state, I2×2 is
the identity operator in two dimensions, and p = √

1 − Mf .
From Theorem 2, the l1 norm of coherence of the maximally

coherent mixed state, given in Eq. (9), is Cl1 (ρm) = (d − 1)p,
and the mixedness is equal to Ml(ρm) = d

d−1 (1 − Tr[ρ2
m]) =

1 − p2. Therefore, we obtain a complementarity relation
between coherence and mixedness,

C2
l1

(ρm)

(d − 1)2
+ Ml(ρm) = 1, (19)

which satisfies the equality in Eq. (3), and thus lies on the

parabola,
C2

l1
(ρm)

(d−1)2 + Ml(ρm) = 1, in the coherence-mixedness
plane (see Fig. 1). We call the parametrized class of states,
defined by Eq. (9), that satisfy the complementarity between
coherence and mixedness, i.e., any change in coherence leads

to a complementary change in mixedness, the “maximally co-
herent mixed states.” The MCMS class consists of pseudopure
states, which are an admixture of the maximally coherent pure
state and an incoherent state. Incidentally, states of the form
given by Eq. (9) have also been discussed as states of fixed
purity that maximize the sum of quantum uncertainties [55].

Similarly, one can derive a class of states with maximal
mixedness for fixed coherence. Using an approach similar to
Theorem 2, one can show that the set of maximally mixed
coherent states also satisfy the complementarity relation and
thus lie on the parabola given by Eq. (19), and hence are of the
same form as the MCMS class.

Interestingly, we note that the form of MCMS remains the
same if we employ a different set of measures for characteriz-
ing coherence and mixedness. For example, let us consider the
relative entropy of coherence Cr (ρ) and von Neumann entropy
S(ρ) as our respective measures of coherence and mixedness.
It can be shown, using the formalism employed in Theorems
1 and 2, that the trade-off relation, Cr (ρ) + S(ρ) � 1, and the
subsequent form of MCMS remains the same. Similarly, if one
considers geometric coherence and geometric mixedness for
qubit systems, as the measures of coherence and mixedness,
one can obtain an identical trade-off relation between the
two quantities. To elaborate, the analytical form of geometric
coherence for any arbitrary qubit state [Eq. (8)] is given by
[31],

Cg(ρ) = 1
2 [1 −

√
1 − 4|c|2], (20)

where c is the off-diagonal element of the qubit density matrix
ρ in the computational basis. Further, for an arbitrary qubit
state, the geometric mixedness is given by

Mg(ρ) = 1
2 {1 +

√
4[a(1 − a) − |c|2]}. (21)

From Eqs. (20) and (21), we have

Cg(ρ) + Mg(ρ)=1+ 1
2 {

√
4[a(1 − a) − |c|2]−

√
1 − 4|c|2}

� 1, (22)

where in the last line we have used the fact that 4a(1 −
a) � 1. Hence, we observe that the trade-off relation is
the same in Theorem 1. For arbitrary qubit systems, the
form of MCMS, given in Eq. (9), remains the same for the
geometric coherence and geometric mixedness considered as
the measures of coherence and mixedness, respectively, and
the complementarity relation, Cg(ρ) + Mg(ρ) = 1, is satisfied.
Hence there is a strong sense of universality about the form
of MCMS, within the framework of the considered theory
of coherence, in contrast to the measure dependent class of
maximally entangled mixed states derived in the context of
entanglement theory [38–42]. However, the form of MCMS
for geometric coherence in general qudit systems needs to be
further investigated. We note that the question of universality
of the class MCMS for all equivalent sets of measures for
coherence and mixedness, in any dimension, is still open.

V. TRANSFORMATIONS WITHIN CLASSES OF STATE

The trade-off between coherence and mixedness, as estab-
lished in Theorem 1 along with the complementarity relation
given by Eq. (19) for the MCMS class lead to the question
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of convertibility within the classes of fixed mixedness or
coherence. In other words, given a class of states with fixed
mixedness, what are the transformations that allow one to vary
the coherence, while keeping the mixedness invariant, or vice
versa? The importance of transformation and interconversion
between classes of states lies in the predominant role it
plays in resource theories [20,26,28] and its central status in
the formulation of the second law(s) of thermodynamics in
quantum regime [1,3,6–8,11,21]. In this section, we investigate
the set of operations that allow for such transformations for
qubit states. Here, we exclusively consider the l1 norm of
coherence and normalized linear entropy as the measures of
coherence and mixedness, respectively.

A. States with fixed coherence

For a fixed value of coherence, say α, in a fixed reference
basis, say the computational basis, the states with varying
mixedness, up to incoherent unitaries, are given by

ρ(a) =
(

a α

α 1 − a

)
.

Now, let us consider two states, ρ(a1) and ρ(a2), that have the
same coherence but different mixedness. For the conditions
(1 − a1) � a2 � a1 or (1 − a1) � a2 � a1, the inequality,
a1(1 − a1) � a2(1 − a2) is satisfied. For this case, it is easy
to see that ρ(a2) is majorized [56–60] by ρ(a1), i.e., ρ(a2) ≺
ρ(a1). Therefore, using Uhlmann’s theorem [57–60], we can
write

ρ(a2) =
∑

i

piUiρ(a1)U †
i , (23)

where Ui’s are unitaries and pi � 0,
∑

i pi = 1. For the qubit
case, to keep the coherence invariant, we only allow incoherent
unitaries. In the following, we shall see that the map,

[ρ] = pρ + (1 − p)σxρσx, (24)

where

σx =
(

0 1

1 0

)
,

is sufficient to convert the state from ρ(a1) to ρ(a2), keeping the
coherence unchanged. Specifically, we can achieve ρ(a2) from
ρ(a1) using Eq. (24), by setting p = (1 − a1 − a2)/(1 − 2a1),
which is a valid probability for the case we are considering.
Similarly, in the opposite case with the conditions (1 − a2) �
a1 � a2 or (1 − a2) � a1 � a2, one can find a similar map, as
in Eq. (24), from ρ(a2) to ρ(a1).

Therefore, given two qubit density matrices ρ and σ

with the same coherence, if ρ ≺ σ (σ ≺ ρ), then there will
always exist a probability distribution and incoherent unitaries,
leading to a transformation σ → ρ (ρ → σ ). An interesting
observation of the above analysis arises from considering maps
related to open quantum systems. For noisy operations, for ex-
ample the maps in Eq. (24), the transformation between states
with the same coherence is reminiscent of the phenomenon of
freezing of quantum coherence [24].

B. States with fixed mixedness

In the same vein, we explore the transformations which
convert one state to the other with the same mixedness, but a
varying amount of coherence. The states of the form

ρ(a) =
⎛
⎝ a

√
4a(1−a)−M

4√
4a(1−a)−M

4 1 − a

⎞
⎠ (25)

have the same mixedness M but can have different coherences.
Now, let us consider two different states ρ(a1) and ρ(a2). Since
these states have the same mixedness, and hence the same
eigenvalues, they must be related to each other by a unitary
similarity transformation. This similarity transformation can
be easily found, once we get the eigenvectors of both the
states. Let ρ(a1) |e(1)

i 〉 = λi |e(1)
i 〉 and ρ(a2) |e(2)

i 〉 = λi |e(2)
i 〉

(i = 1,2). Now, the unitary similarity transformation S, such
that ρ(a2) = Sρ(a1)S†, can be obtained from the definition
S |e(1)

i 〉 = |e(2)
i 〉. Thus, for two states of given fixed mixedness,

one can always find a reversible similarity transformation
between them. For an example, consider two states,

ρ1 =
(

0.3 0.4

0.4 0.7

)
; ρ2 =

(
0.9 0.2

0.2 0.1

)
, (26)

of the mixedness M = 0.2. The similarity transformation from
ρ2 to ρ1, i.e., ρ2 = Sρ1S

†, using eigenvectors of both the states,
is given by

S = 1√
2

(
1 1

−1 1

)
,

which is a coherent unitary. In general, the states with identical
mixedness but with varying coherence are connected through
coherent unitaries.

VI. CONCLUSION

In our work, we show that there exists an intrinsic trade-off
between the resourcefulness and the degree of noise in an
arbitrary d-dimensional quantum system, as quantified by its
coherence and mixedness, respectively. The obtained results
are important from the perspective of resource theories as it
allows us to quantify the maximal amount of coherence that
can be harnessed from quantum states with a predetermined
value of mixedness. Thus, we are able to analytically derive a
class of maximally coherent mixed states, up to incoherent
unitaries, that satisfy a complementarity relation between
coherence and mixedness, in any quantum system. Due to
the experimental ease with which the measurement of purity
is feasible [48], our results can be utilized to experimentally
determine the maximal l1 norm of coherence for any general
d-dimensional quantum state. For qubit systems, the above
conclusions can also be extended to the relative entropy and
geometric measures of coherence. Importantly, the theoretical
formulation and results provided in the paper are valid within
the framework of the resource theory of coherence, as defined
in [23], and cannot be mathematically extended directly to the
quantification of coherence based on the theory of asymmetry
[22]. Developing a framework that can operationally connect
the two resource-theoretical perspectives is an important
direction for future research.
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The results presented in the work provide interesting in-
sights on other aspects of the theory of coherence. An immedi-
ate application of our results is in understanding the connection
between the resource theories of coherence and entanglement.
It was shown in a recent paper [31], that the maximum amount
of entanglement that can be created between a system and
an incoherent ancilla, via incoherent operations, is equal to
the coherence present in the system. Using the formalism
presented in [31] and the complementarity relations derived in
our work, one can prove that the maximum entanglement that
can be created between a quantum system and an incoherent
ancilla, via incoherent operations, is bounded from above
by the mixedness present in the system. Another significant
aspect of the results is to address the question of order and
interconvertibility between classes of quantum states, which
is the fundamental premise for developing quantum resource
theory and thermodynamics. Our analysis shows that, for qubit
systems with a fixed coherence, majorization provides a total
order on the states based on their degree of mixedness, while
for fixed mixedness, all the qubit states with varying degree of
coherences are interconvertible. As a future direction, it will be
very interesting to investigate if there exists such a total order
in d-dimensional states with fixed coherence based on their

degree of mixedness. We note that the total order on the states
is only possible for a specific class of states and provided
one works within the framework of the resource theory of
coherence considered in our study. It is known that total order
between states of fixed coherence is not possible within the
resource theory of asymmetry [4,19,20].

To summarize, the present work deals with an important as-
pect of quantum physics, in particular, it addresses the question
of how much a resource can be extracted from any arbitrary
quantum system subjected to decoherence. We prove that there
is a theoretical limit on the amount of coherence that can be
extracted from mixed quantum systems and also derive the
class of states that are most resourceful under decoherence. The
results presented in the work provide impetus and alternative
directions to the study of important physical quantities in
open quantum systems and the effect of noise on quantum
resources.
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