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We discuss the prospect of P7 -symmetric Hamiltonians finding applications in quantum information science,
and conclude that such evolution is unlikely to provide any benefit over existing techniques. Although it has been
known for some time that P7 -symmetric quantum theory, when viewed as a unitary theory, is exactly equivalent
to standard quantum mechanics, proposals continue to be put forward for schemes in which P7 -symmetric
quantum theory can outperform standard quantum theory. The most recent of these is the suggestion to use
‘PT -symmetric Hamiltonians to perform an exponentially fast database search, a task known to be impossible
with a quantum computer. Further, such a scheme has been shown to apparently produce effects in conflict with
fundamental information-theoretic principles, such as the impossibility of superluminal information transfer, and
the invariance of entanglement under local operations. In this paper we propose three inequivalent experimental
implementations of P7 -symmetric Hamiltonians, with careful attention to the resources required to realize each
such evolution. Such an operational approach allows us to resolve these apparent conflicts, and evaluate fully

schemes proposed in the literature for faster time evolution and state discrimination.

DOI: 10.1103/PhysRevA.91.052113

I. INTRODUCTION

In standard quantum theory, observables are associated with
Hermitian operators, and time evolution is generated by a
Hermitian Hamiltonian. The Hermiticity (or more precisely
self-adjointness [1-4]) of the Hamiltonian ensures both the
reality of the spectrum of allowed energy eigenvalues, and
arguably more importantly, that the resulting time evolution is
unitary. Non-Hermitian Hamiltonians are nevertheless ubiqui-
tous in quantum physics as effective Hamiltonians, describing
the effective dynamics on a restricted subspace of a quantum
system, or the coherent part of the evolution in Markovian
master equations in the study of open quantum systems (see,
e.g., [5-8]).

Surprisingly, some non-Hermitian Hamiltonians can also
describe unitary evolution, if we are prepared to redefine the in-
ner product on the linear space of quantum states [9-16]. Such
unitary theories are possible for so-called quasi-Hermitian
Hamiltonians' —those with an entirely real spectrum and a
complete set of linearly independent eigenvectors. Further,
these turn out to be equivalent to standard, Hermitian quantum
theory, in that there exists a one-to-one unitary mapping from
states and observables in a unitary quasi-Hermitian theory
to states and observables in a regular, Hermitian quantum
theory [15].
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'For a yet more general class of Hamiltonians - pseudo-
Hermitian [10] - an inner product can also be defined which is
invariant under the evolution generated by H. The inner product so
defined however is indefinite - that is, assigns negative norm to some
states. For the purposes of the present work we restrict attention to
quasi-Hermitian Hamiltonians, for which the re-defined inner product
retains a clear physical interpretation.
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Of these quasi-Hermitian theories, those which are also
‘PT symmetric in particular have received a lot of attention
(see, e.g., [17] for a review). P7 -symmetric Hamiltonians
are those which are invariant under the combined symmetry
operations of parity P (spatial reflection) and time reversal 7 .
Bender and Boettcher studied such a Hamiltonian in 1998 [18],
showing through numerical and asymptotic studies that the
non-Hermitian but P7 -symmetric Hamiltonian

H = p* +m*x* — (ix)" (1
has a real, positive spectrum for N > 2. It was later shown
that so-called unbroken P7 symmetry, when the eigenstates
of a P7 -symmetric Hamiltonian are also eigenstates of P7,>
guarantees the reality of the spectrum [19]. In the region of
unbroken symmetry therefore a P7 -symmetric Hamiltonian
is also quasi-Hermitian, and can be considered to generate
unitary evolutions in an appropriately defined Hilbert space.
In the early years of P7 symmetry it was further suggested that
the physically motivated symmetry requirement of invariance
under P7 is perhaps more appealing than the seemingly purely
mathematical condition of Hermiticity [17].

The study of P7 -symmetric quantum mechanics has since
flourished into a thriving field of research. Nonetheless,
although there are sometimes advantages in performing cal-
culations in one theory over the other [20], P7 -symmetric
quantum theory, when considered as a unitary theory, and
when defined in a dynamically consistent way [16,21-23], is
a special case of a quasi-Hermitian theory, and is known to be
exactly equivalent to standard quantum theory [15].

In light of this equivalence, two proposed applications of
PT-symmetric quantum mechanics in quantum information
theory seem somewhat surprising; namely faster time evo-
lution in the so-called quantum brachistochrone [24], and
single-shot discrimination of nonorthogonal states [25]. On

Note that although H commutes with P7 this is not automatically
the case since P7 is antilinear.
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first sight, each of these seems to conflict with fundamental
physical principles: the known bound on the speed of evolution
between some specified initial and final states under an energy
constraint is closely related to the energy-time uncertainty
principle [26,27], while the ability to distinguish nonorthog-
onal states better than the known quantum bound leads to a
violation of the no-signaling principle [28]. Although in [25]
the authors state that each of the brachistochrone and state
discrimination schemes can only be successful with some
probability less than 1, an analysis of the expected performance
(i.e., probability of success) of either scheme is lacking.
Further, the authors go on to suggest considerable benefits
of the state discrimination scheme in quantum information
theory, including searching a database exponentially fast. As
it is well known that Grover’s quantum search algorithm [29],
which gives a square-root speedup over the classical case—
searching a database of size 2" in time O(2"/?)—is optimal on
a quantum computer [30-32], such a suggestion indicates that
the schemes may be expected to be able to perform better than
is allowed by standard quantum theory. It is this claim that we
seek to refute in this paper.

The quantum brachistochrone sparked a lively debate in the
literature [33—44], in which it was shown that non-Hermitian
Hamiltonians obey the same bounds as Hermitian ones as
long as in each case the respective theory is globally valid. In
the gedanken experiment of [24], however, a quantum system
passes from a region governed by a Hermitian Hamiltonian
to one governed by a non-Hermitian Hamiltonian, and it is at
the boundary between these regions that the apparent speedup
happens. More recently it has been pointed out that failing to
take proper care at this boundary leads to a violation of the
no-signaling principle [45], at the heart of the “peaceful co-
existence” of quantum mechanics and special relativity [46].

Despite this already quite extensive discussion, it seems
that there is still some confusion in the literature surrounding
how to treat the boundary between regions of space in which
evolution is governed by a Hermitian Hamiltonian, and those
in which it is governed by a non-Hermitian Hamiltonian. This
confusion appears to stem from the fact that it is not known
how to simulate P7-symmetric Hamiltonians in quantum
systems, even as effective Hamiltonians. Although there are
various experimental implementations of P7 -symmetry in
the literature [47-51], with the noteable exception of [52],
these all use classical systems governed by an effective
PT-symmetric Hamiltonian. Without an understanding of
how to physically implement a P7 -symmetric Hamiltonian
in a quantum system, it has not been possible to evaluate
the efficacy of schemes involving such evolutions. Thus, even
several years after the quantum brachistochrone debate was
settled, similar arguments led to the erroneous suggestion
discussed above, that P7 -symmetric Hamiltonians could be
used to search a database exponentially fast. The purpose of
this paper therefore is to fill this gap in the literature. We
propose three inequivalent implementations in a two-level
system, each corresponding to a different physical situation.
We also discuss the physics at the boundary in each case,
and the relationship between nonunitarity at the boundary and
no-signaling.

In Sec. IT we provide a self-contained review of P7
symmetry and the relationship of P7-symmetric quantum
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theory (and more generally quasi-Hermiticity) to standard
quantum theory accessible to quantum information theorists.
Although such material is available in the reviews [16,24], it
will not be familiar to quantum information theorists, who may
be wondering if there is anything to the suggestions made of the
potential benefits of P7 -symmetric Hamiltonians in quantum
information. Readers already familiar with the field of P7
symmetry may wish to skip this section. The new material
appears in Sec. III, in which we provide a comprehensive
discussion of the prospects for experimental implementation of
‘PT -symmetric Hamiltonians in two-level systems. Although
for simplicity we discuss two-level systems, the arguments
presented apply equally to higher-dimensional systems, and
in the limiting case to continuous variable systems. A full
discussion of infinite-dimensional systems however is beyond
the scope of this work. Finally we conclude in Sec. I'V.

II. REVIEW OF PT-SYMMETRY
AND QUASI-HERMITICITY

A. PT symmetry

A P7T-symmetric Hamiltonian is one which is invariant
under the combined symmetry operations of parity (P), and
time reversal (7). Due to the presence of the antilinear P7
symmetry [12], such Hamiltonians have a spectrum which is
either entirely real, or is composed of real eigenvalues and
complex conjugate pairs. The condition that the eigenvectors
of H are also eigenvectors of P7 is sufficient to ensure
the reality of the spectrum—if this condition is satisfied
the Hamiltonian is said to have unbroken P7 symmetry.
Typically, P7 -symmetric Hamiltonians encountered in the
literature are characterized by a set of parameters, and the
PT symmetry may be broken for some regions of parameter
space and unbroken in others. For example, the Hamiltonian in
Eq. (1) has unbroken symmetry for N > 2, but the symmetry is
broken for N < 2. A P7 phase transition occurs at symmetry-
breaking points—parameter values at which the symmetry
changes from unbroken to broken. Such phase transitions have
been demonstrated experimentally in a variety of physical
systems [47-51], in which classical systems evolve under a
PT -symmetric effective Hamiltonian.

Evolution under a P7 -symmetric effective Hamiltonian is
nonunitary evolution, involving a balance of loss and gain.
When the symmetry is unbroken, and the spectrum entirely
real, the resulting evolution has stable states, despite the non-
Hermiticity of H (the eigenstates however are nonorthogonal
with regard to the standard Hilbert space inner product). This
case has been described as intermediate between open and
closed quantum system evolution [53]. In the region of broken
symmetry, the spectrum contains complex-conjugate pairs,
resulting in exponential growth and exponential decay—the
exponentially growing eigenstates then dominate.

Alternatively, in the region of unbroken P7 symmetry,
H is quasi-Hermitian, and can be considered to define unitary
evolution in an appropriately defined Hilbert space. Since a full
discussion of implementation of P7 -symmetric Hamiltonians
must consider unitary and nonunitary theories, we review
quasi-Hermiticity in the rest of this section.

052113-2



PT-SYMMETRIC HAMILTONIANS AND THEIR ...

B. Preliminaries: Self-adjointness as a physically
motivated requirement

We begin with some preliminaries regarding the mapping
of the physical system to mathematical theory, which although
likely to be familiar to many readers are necessary for clarity of
language in what follows. We also defend the requirement that
Hamiltonians should be represented by Hermitian operators.

The mathematical description of physical systems in quan-
tum theory is through the introduction of a Hilbert space—
essentially a linear vector space endowed with an inner product
(together with the mathematical requirement of completeness).
Allowed states of the physical system are mapped one-to-one
to rays in the Hilbert space, while observables are mapped to
operators. Note that neither “an observable” nor “a physical
state” correspond to directly measurable quantities, at least
not independently of one another. An observable can only
be measured on a physical system prepared in some physical
state, and measurable quantities are then the frequencies of
occurrence of different possible results in such an experiment.
To calculate the expectation value of an observable Oy4 in a
physical state A, the corresponding mathematical objects A,
Y are combined in the familiar way,

(A) = (¥, AY),

where (,) denotes the inner product. Thus, to state the obvious,
not only do we require the mapping from states and observables
to vectors and operators, but also the definition of inner product
in order to map a physical system to a theory that allows us to
make predictions about physically measurable quantities.

To clarify the role of Hermiticity in the theory, note that
the designation of an operator as Hermitian or otherwise is,
of necessity, relative to an underlying inner product. Indeed,
recall the definition of the adjoint of an operator A: it is the
operator Af such that

(u,Av) = (Alu,v)

for all v in the domain of A. Although the physics literature
often uses the terms “Hermitian” and “self-adjoint” inter-
changeably, in the mathematical literature, an operator A is
Hermitian, if

(u,Av) = (Au,v)

for all u,v in the domain of A. A more restrictive definition,
which is however the relevant concept to quantum theory, is
that of self-adjointness; an operator A is self-adjoint if it is
Hermitian and the domain of A is the same as that of AT,
Indeed, the theory of self-adjoint operators was essentially
invented by von Neumann [1] (see also, e.g., [2-4]) to put
the then new quantum theory on a rigorous mathematical
footing. The difference is of physical importance, since it is
self-adjoint operators which have a spectral theorem [1], and
which, via Stone’s theorem [54,55], which we discuss next,
are the generators of continuous unitary evolution.

Once we have accepted that physical states are represented
by vectors in Hilbert space, along with the probabilistic
interpretation of the norm of the state, we can ask what
sort of evolution is possible for a closed quantum system.
Conservation of probability leads to the requirement that
evolution during any time interval T should be described by a
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unitary operator U(7).> We further expect that evolution should
be continuous, and for a closed conservative system, invariant
under time translation. Mathematically, these requirements
may be expressed as

lim U() = 1,
U(t+1)=U@)U(7).

That every such evolution is generated by a self-adjoint
operator H such that U(t) = e *#7 is the content of Stone’s
theorem [54,55]. Physically, this self-adjoint operator may
be identified with the system Hamiltonian. Far from being
a purely mathematical constraint, the requirement that the
Hamiltonian operator be self-adjoint follows directly from
physical considerations. Although the details and the proof
are rather mathematical in nature, the motivations are quite
firmly physical.

In the remainder of the paper we do not distinguish
between Hermitian and self-adjoint operators, and use the
rather looser terminology Hermitian to mean self-adjoint, as
is common in the physics literature. For the most part we will
be interested in finite-dimensional systems, for which the two
definitions coincide.

C. Quasi-Hermiticity: Non-Hermitian Hamiltonians
generating unitary evolution

What then is meant by the statement that some non-
Hermitian Hamiltonians can describe unitary evolution on
a Hilbert space with a suitably modified inner product?
As we have discussed, the classification of an operator as
non-Hermitian is relative to some assumed inner product.
Consider two Hilbert spaces H, H’, which share the same
linear space of vectors V, but differ in their inner product. We
have thus far avoided using bra-ket notation, which assumes
the inner product

(@.¥) = (D1¥), 2)

where (¢| is the dual vector to |¢), obtained by Dirac
conjugation. The choice of inner product is implicit in the
mapping from vector space (kets) to dual space (bras).
Recall that the square overlap |(¢|y)|> may be interpreted
physically as the probability that state |y) can pass as |¢) in a
measurement to verify |¢).

We now wish to be able to talk about the two different
Hilbert spaces H and H’, representing the same physical
system. For clarity we will use the following notation: the
state of the physical system is denoted A, the vector in ‘H
representing this physical state is denoted |v), while that in
‘H' is denoted |v')). H and H’ share the same linear vector
space V, and the inner product on H is given in the usual way,
as in Eq. (2).

By definition, any other inner product on V (and thus that of
‘H’) must be linear in one argument and antilinear in the other,
and so may be expressed relative to H through the introduction

3 An antiunitary operator would also preserve probabilities, but turns
out to be ruled out by the other considerations listed.
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of a linear metric operator 7,
(@' 1) = (@' ¥y = (¢ Inly).

We restrict attention to theories with positive-definite norm, in
order to retain the probabilistic interpretation of the resulting
theory. This requirement thus gives

(W1 =Wy = W'nly’) >0,

for all nonzero vectors ¥'. In other words, the metric operator 7
should be positive-definite with respect to the usual Dirac inner
product on H. Equivalently, the eigenvalues of n are strictly
positive, and since 1 has no zero eigenvalues it is therefore an
invertible operator. We also assume, for simplicity, that 7 is
bounded, although we note that unbounded metric operators
have been considered in the literature [56].

As the adjoint depends on the definition of inner product,
for any operator A on V we define Af, the adjoint in H and
A?, the adjoint in H’ via

(u,Av) = (Alu,v),
(u,Av), = (Atu,v),
= (nA'u,v),
for all v in the domain of A. The two are related since
(u,Av), = (nu,Av)
= (ATnu,v),

and thus AT = nAty~L.

We are now in a position to ask what properties must
an operator H have in order to be the generator of unitary
evolution on H'. The answer of course [10] is that H must be
Hermitian on H: H = HY¥, or equivalently

H'=nHn™ . 3)

For nontrivial , H is manifestly non-Hermitian on H, H #
H', but is Hermitian on H'—a space with a suitably modified
inner product. It follows from the above discussion that

(i) Every operator H on V which is Hermitian with respect
to some inner product (,), has the form Eq. (3).

(i1) For every operator H of the form Eq. (3), there exists
a Hilbert space H’ with an inner product (,), with respect to
which H is Hermitian.

Operators of this form are called quasi-Hermitian, and are
the most general type of operators that may be associated
physically with Hamiltonians (assuming a Hilbert space with
positive-definite norm).

Finally we note that for quasi-Hermitian H satisfying
Eq. (3), the combination

h=pHp™!
is Hermitian for any invertible p satisfying pfp = n [11]:
ht = (o~ Hp!
= (0" 'nHn~'pf
= (" '~ hon™'p
=h.

T
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The time evolution operator e~/ 7" may similarly be expressed,

e—th — Io—le—ihtlo7 (4)

as is easily verified by Taylor expansion of each side. Evolution

is unitary in H':
(@) 1y (@))) = (d@) Inly (1))

= (p(0Y|(e” ") Tne™ " |y (0)')

= (@) Ip'e™ (0™ p o™ e ™ ply(0))

= (p(0) 0" plyr(0))

= {@(0) [y (0)).

Each p defines a similarity transform mapping Hermitian
operators on H' to Hermitian operators on . Note that for
bounded 5 the most general p satisfying pfp = n may be
written p = Un'/? for an arbitrary unitary operator U (recall
that 7 is positive definite, and so n'/? is well-defined and may
be chosen positive definite).

D. Observables in quasi-Hermitian theories

An observable A in the quasi-Hermitian theory may be
represented by an operator which is Hermitian with respect
to the appropriate inner product, A = A*. As above, for any
invertible p satisfying p'p = 7, the combination

a=pAp! (5)

is Hermitian with respect to the usual inner product, a =
a’ [21]. The expectation value of the observable A, when
measured on a system prepared in state |/') is thus given by

(A) = (Y, AY), = (W' InAlY)
W'lp pp " ap) |y’
(

v'|plaply’)
= (Ylal¥), (6)
where in the last line we have defined
1) = ply'). @)

Note that if |1/} is normalized in the quasi-Hermitian theory,
(Y'In|l¥’y =1, then |¢) is normalized according to the
standard inner product (y|y) = 1. Further, if |a@;) is an
eigenket of a with eigenvalue ¢;, then |a}) = o !a;) is an
eigenket of A with the same eigenvalue:

Ala)) = (p™'ap)la;)
= p lala;)
= aip”'ai) = aila).

The eigenstates of a Hermitian operator a form a complete
orthonormal set. As p is invertible, it follows that the
eigenstates of A form a complete, linearly independent set.

It also follows from the above that A and a can be
considered to describe the same physical observable, and
further that the physical state for which measurement of that
observable yields value a; with certainty is associated with
laj), la;) respectively. For each orthonormal basis {|a/)} in
‘H', representing a complete set of physically distinguishable
states, there is a corresponding basis {|a;)} in H representing
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the same physical set of states. The two bases are related via
ja;) = pla).

Equations (5) and (7) thus provide a one-to-one mapping
between states and observables in a quasi-Hermitian theory
to those in a standard, Hermitian theory [15]. Since the
measurable quantities, Eq. (6), are the same in each case, the
two theories are indistinguishable by any physically allowed
measurement.

It is worth stressing that the Hermitian and quasi-Hermitian
theories describe the same physical system with the same
set of physical observables. There is a one-to-one mapping
from physical states of that system to vectors in a linear
vector space V in each case, and from physical observables
to operators in H and H’ respectively. The resulting vectors
may be related via the (nonunique) invertible mapping Eq. (7),
while the operators representing observables are related via
the similarity transform Eq. (5). Further, the transformation
p, when considered as a mapping from H’ to H, is a unitary
transformation [15].

In the P7 -symmetric literature the inner product is said to
be “dynamically determined,” that is, the system Hamiltonian
determines the inner product [13,14,17,24,25,41]. It is worth
stressing, to avoid confusion, that this is purely a mathematical
consequence with no physical meaning, and is not related to
the physical dynamics of the system as may be construed from
the term “dynamically determined.” That this must be the case
is demonstrated by the fact that the same dynamics may just as
well be described in a different Hilbert space, with a different
but physically equivalent Hamiltonian. We note further thatitis
equally valid of course to consider the converse to be true—that
it is the inner product which determines those operators which
may play the role of Hamiltonian in the theory. The freedom in
choosing an inner product has been described as analogous to
a gauge freedom [16]—in certain cases the choice of one inner
product over another simplifies calculations [20], but there is
no physical significance to the choice.

III. EXPERIMENTAL SIMULATIONS
OF PT SYMMETRIC SYSTEMS

The equivalence of quasi-Hermitian theories and Hermitian
quantum mechanics is thus well understood. More recently at-
tention has turned to the interaction between systems governed
by Hermitian and non-Hermitian Hamiltonians, with studies
of scattering from P7 -symmetric potentials [57,58], coupling
between Hermitian and non-Hermitian Hamiltonians [59], and
the gedanken experiment of [24,25], which is the focus of this
paper, in which a Hermitian quantum system is subjected to a
‘PT -symmetric (non-Hermitian) Hamiltonian for a period of
time.

Our aim in this section is to give a comprehensive
treatment of the prospects for physical implementation of this
gedanken experiment, providing three physically inequivalent
implementations. We begin by briefly reviewing the proposed
applications to the quantum brachistochrone [24,41] and to
quantum state discrimination [25].

In the quantum brachistochrone, the problem is to find
the shortest time for evolution from some specified initial
state |y;) to some specified final state |yr). For a two-
level system with time-independent Hamiltonian the time for
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unitary evolution from |y;) to | ) is lower bounded by

2h
At > A 2rocos [(YElY), (8

where AE = E, — E; is the difference in energies between
the two eigenstates of the Hamiltonian. This bound is a special
case of the so-called Anandan-Aharonov bound [26]. As well
as being of theoretical interest, the speed of unitary evolution
between states is relevant in quantum computation, as it
determines the time needed for elementary gate operations.

In [24] the authors considered evolution between orthog-
onal states |0) and |1), and showed that apparently faster
evolution can be achieved given the ability to apply a P7 -
symmetric Hamiltonian. The gedanken experiment presented
therein is as follows: a Stern-Gerlach device is used to prepare
a beam of spin-1/2 particles in a spin-up state, along some
axis z. The beam then passes through a black box in which the
evolution of the spin state is governed by a P7 -symmetric
Hamiltonian. Finally the outgoing beam enters a second
Stern-Gerlach device which performs a o, measurement on the
spin state. The second Stern-Gerlach device acts as a verifier
that the desired evolution from spin-up to spin-down has been
achieved. The authors showed that the time needed in the black
box could be chosen to be arbitrarily small for fixed AE (now
the energy gap for the non-Hermitian Hamiltonian H). Note
that in the limit of vanishingly small passage times however,
the matrix elements of the non-Hermitian Hamiltonian become
arbitrarily large (see, e.g., [44,60]).

Nevertheless, the Anandan-Aharanov bound turns out
to hold also for P7-symmetric (and more general quasi-
Hermitian) theories, as long as the appropriate inner product is
used in the evaluation of the overlap between initial and final
states [33,34,37,38]. The apparent speedup happens entirely at
the boundary between Hermitian and non-Hermitian regions—
by simply choosing a non-Hermitian Hamiltonian whose inner
product interprets the initial and final states to be closer than
in the Hermitian region, we can achieve faster time evolution
while still respecting the Anandan-Aharanov bound. Note that
this proposal explicitly assumes nonunitary evolution, since
the inner product changes at the boundary. (This nonunitarity
at the boundary seems to have been recognized already in [24],
and is stated explicitly in [41,61].) Inspired by the quantum
brachistochrone, nonunitary evolution is used to speed up
energy transfer between two coupled classical oscillators
in [62].

A similar effect is used in the more recently proposed
application of P7 -symmetric Hamiltonians to state discrim-
ination [25]. The problem discussed therein is the following:
given a system prepared in one of two possible nonorthogonal
states |vr1), |¥»), make a measurement to determine which
one was actually prepared. Perfect discrimination is possible
only for orthogonal states. Surprisingly however, for two
nonorthogonal states error-free discrimination is possible,
but only at the cost of allowing for an inconclusive result
(see, e.g., the reviews [63—65]). When this result occurs we
learn nothing about the identity of the state, and tight bounds
are known on the probability of occurrence of this inconclusive
result [66—69]. In particular it can be shown that error-free
discrimination with a higher probability of success than the
known bounds leads to the possibility of using quantum
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correlations to instantaneously send information, a violation
of the no-signaling principle [28]. The central idea in [25] is to
choose a non-Hermitian Hamiltonian with an associated inner
product under which the states [y}, |¢,) are orthogonal, and
simply measure in the region governed by this Hamiltonian.
Alternatively, let the system evolve under a non-Hermitian
Hamiltonian for a time such that on re-entering the Hermitian
region, they are orthogonal under the standard inner product.
We note again that in either case, the proposal explicitly
involves nonunitary evolution (nonorthogonal states evolve to
orthogonal ones).

In arecent paper Lee et al. showed [45] that the nonunitary
evolution necessary for either of the above schemes, if
assumed to occur with probability 1, can allow two spacelike
separated parties to communicate faster than light through
local measurements on preshared entangled states. In related
work Pati [70] also showed that this evolution leads to a
violation of invariance of measures of entanglement under
local unitaries (see also the earlier work [71] on the apparent
dependence of the entanglement entropy on the choice of
metric). In the P7 -symmetric literature, it is however accepted
that the change in Hilbert space necessary at the boundary
can only happen with some probability less than 1 [25].
Thus an open question remains of how to properly treat the
boundary between Hermitian and non-Hermitian regions, and
with what probability of success such an evolution can be
achieved.

To move from a region in space in which the system is
described in the standard way to one in which the evolution is
governed by a non-Hermitian Hamiltonian H there are only
four options:

1. The Hilbert space in the two regions is the same. There is
no change in the inner product. H is a non-Hermitian effective
Hamiltonian, and evolution under H is nonunitary.

2. There is a change of the inner product at the boundary,
and the system is described by two different Hilbert spaces, H
in the Hermitian region and 7’ in the non-Hermitian region.
The two Hilbert spaces describe the same physical system,
with the same physical observables. The transformation is
passive.

3. There is a change in Hilbert space at the boundary, and
the two Hilbert spaces describe the same physical system,
with the same physical observables. The transformation is
active.

4. There is a change in Hilbert space at the boundary, and
the two Hilbert spaces describe the same physical system, but
with a different set of physical observables.

We may immediately discount the last option, since as we
have shown above, there is always a one-to-one mapping from
observables in the non-Hermitian theory to observables in a
physically equivalent Hermitian theory. We note that each of
the other options correspond to distinct physical situations, and
discuss each of these in turn. Moreover, we claim that these
four possibilities are exhaustive: either there is no change in
Hilbert space at the boundary, or there is a change in Hilbert
space. If there is a change in Hilbert space either the two
Hilbert spaces describe the same physical system, or they
describe different ones. Finally, if the two spaces describe the
same physical system we must transform between the Hilbert
space descriptions—this transformation can either be passive
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or active. These are only options that do not introduce new
physics.*

Evolution under H is thus either nonunitary, in which case
there is no troublesome change in Hilbert space, or unitary,
in which case H describes evolution in a transformed frame.
Transformation to this frame can be passive—requiring an
update in the mathematical description of the state at the
boundary, or active—evolution in a transformed frame is
simulated entirely within the original frame through a physical
transformation of the system.

The physically distinct scenarios of nonunitary evolution
under a non-Hermitian P7 -symmetric effective Hamiltonian
and unitary evolution under the same Hamiltonian on a Hilbert
space with a suitably modified inner product are sometimes
conflated in the literature. In [25] the authors refer in the same
paragraph to the fact that the time evolution is unitary under
an appropriately chosen inner product, and to experimental
implementations requiring a delicate balance of loss and gain.
A system evolves unitarily if and only if there is no flow
of information to the environment [72], and true open system
evolution with loss and gain cannot simulate unitary evolution.

In each case the physical setup we are considering is
the following: we consider a two-level quantum system, and
assume that at time ¢ < 0 our physical system is described by
a state |y) in Hilbert space H, endowed with the usual inner
product. At time ¢ = 0O the system enters a region in which
the evolution is governed by a non-Hermitian Hamiltonian
H, in which it remains for some finite time, exiting at time
t = tp. The system may undergo measurement at some time
t > 1y, at which point it is again described by a state in H,
and probabilities are calculated according to the usual rules
of quantum theory. The question then is how to describe the
evolution of the state throughout this sequence, in order to
predict the statistics of the final measurement. For concreteness
we will consider the Hamiltonian H used in [24,25,38,45]
(written in H and in the eigenbasis of the o, operator {|0),|1)}):

H:S(l sino . 1.
1 —isina

) , s,a €R, 9

where s is a scaling constant, and « is a measure of the

non-Hermiticity. For |o| < Z, H has real eigenvalues EL =

+s cos &, with corresponding (right) eigenstates

ioz/2 1
E = ——\ —ia)>
|EL () oo (e )
B (o) =~ ( ; )
(@)) = —— ).
V2cosa \—€“

These states are nonorthogonal in H, but are orthonormal under
a suitably modified inner product, with metric operator given

by
1 1 —isina
= cos o <l sin & 1 > ’ (10)
Fora = % the states become the same, and the metric becomes
singular—this is the so-called P7 symmetry breaking point.

“At least the only independent ones—it is always possible to
consider combinations of these three extremes.
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For p = n'/2, we can calculate the corresponding Hermitian
h, which is given by

h=pHp! =scoscx<? (1)> (11

A. Evolution under a local P7 -symmetric
effective Hamiltonian

In this case the system is described at all times in the same
Hilbert space, and nothing special happens at the boundary.
The physical state of the system is described as the vector |¢/)
in H at time t = 0. H is an effective Hamiltonian. One of
the reasons it has not been possible to evaluate the probability
of success of the schemes discussed above is because there
appear to be as yet no examples in the literature of physical
processes under which a quantum system undergoes such
effective evolution. Physically, if we consider the action of
H on the orthonormal basis {|0),]1)} it is tempting to interpret
the diagonal terms as gain or loss respectively to and from
states |0), |1), at rate ssin«, while the off-diagonal terms
represent coupling between the states. In classical simulations
of PT -symmetric evolution, this is precisely the interpretation
given, for a variety of physical systems [47-51]. In quantum
systems however, such an interpretation is problematic, as gain
leads to an increase in the norm of a state, and is unphysical.

Consider the evolution of a normalized state |v) in the
infinitesimal time interval §7:

V) = (I —istH)|y).

Since the evolution is not unitary, the norm is not preserved,
and we obtain

(W@HIYED) = (Y +iH'st)I — i HS1)|Y)
=1+4ist(y|(H = H)|y) + 0@6t?).

The operator i(H' — H) is a Hermitian operator, with in
general both positive and negative eigenvalues. For H given
in Eq. (9) we find

e _ sin o 0
i(H H)_2s< 0 —sinoe)’

and there exist states [e.g., |0) = (1 0)7] which, to first order
in 8¢, have a norm greater than 1 after evolution. For such
states we can no longer retain the probabilistic interpretation
of the norm of the state, and the evolution is thus unphysical.
Note that a decrease in the norm on the other hand is perfectly
acceptable and can be interpreted as a process which occurs
with some probability less than 1.

Thus H can represent a physically allowed effective
Hamiltonian only for initial states which evolve to physically
allowed states, with a norm less than 1. We solve this problem
by considering instead the Hamiltonian H:

H=H—issinal =s 0 .l. .
1 —2isinwx

The evolution generated by H does have a clear physical
interpretation, as unitary coupling between states |0) and |1),
together with loss from state |1). As a result of the loss, the
evolution generated by this Hamiltonian is a probabilistic pro-
cess: after time ¢ there is some state-dependent probability of
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having lost the system entirely. Physically, quite analogously
to classical demonstrations of P7 -symmetric Hamiltonians,
this could describe a single photon in one of two coupled
waveguides, one of which is lossy. With some probability the
photon is absorbed in the lossy waveguide, but if it is not
absorbed, it undergoes nonunitary (but coherent) evolution
generated by H.

As an alternative to a coupled waveguide system, the
Hamiltonian H may be realized in an optical system with
polarization encoding. The loss may be achieved using fiber
with polarization-dependent loss. Indeed the first demonstra-
tion of unambiguous state discrimination used polarization
encoding and polarization-dependent lossy fibers [73]. We
also require coupling between orthogonal polarizations, to
realize the off-diagonal terms in H, which can be achieved
using birefringent material. Although it may be possible to
manufacture a fiber with both properties, this would require a
birefringent material with different optical axes for the real and
imaginary parts of the refractive index. An alternative, perhaps,
would be to alternate regions of polarization-dependent loss
with regions of lossless birefringence.

In a transformed frame, H can be interpreted as generating
evolution under the desired P7 -symmetric Hamiltonian H:
if state |{) evolves under the Schrodinger equation with
Hamiltonian H,

LI
lEIW)— 1Y),

then the transformed state defined via |¢) = eCn®|y)
evolves under

lihﬁ) _ l(S Sina)es(Sina)t|'(z> + ies(Sina)t3|1;)
at dt
= [i(s sina)] + H]|¥)
= H|y).

Performing calculations in a transformed frame is a common
technique in quantum optics and related fields, and usually
involves a unitary, time-dependent transformation from the
laboratory frame to some rotating frame. This corresponds to a
mathematical transformation to an interaction picture interme-
diately between the Schrodinger and Heisenberg pictures (see,
e.g., [74]). Here we have used a nonunitary transformation,
corresponding to uniform decay. We do not claim any partic-
ular physical significance of this transformation, we simply
use it here to give one possible physical situation in which
evolution is generated by the P7 -symmetric non-Hermitian
H . The problematic increase in norm under H for some states
is balanced by the exponential decay in transforming back from
the transformed frame to the physical frame, so that e ~#*|/)
has a physical interpretation at all times. Evolution under
H is referred to as passive P7 symmetry in the analogous
classical case in the experimental literature [47]. That this is
also readily applicable to quantum systems does not appear to
have been recognized to date in the literature.

We finally note that, as the entire procedure above is
described by standard quantum theory, by definition it does
not provide any additional capabilities compared to standard
quantum theory, when the fact that the processes are proba-
bilistic is properly taken into account. The probability that a
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system prepared in some initial state |1Z(O)) = |1¥(0)) has not
been lost at time 7 is simply given by the norm of the state
at time ¢, |(Y¥(#)|y¥(¢))]. Note that in the region of unbroken
‘PT symmetry, the (nonorthogonal) eigenstates of H are stable
under evolution generated by H. However, the transformation
to the physical frame means that even for eigenstates of H,
the probability that the evolution is successful is exponentially
small in (s sin «)z. This seems to be unavoidable.

B. Unitary evolution under a local P77 -symmetric Hamiltonian

In this case the non-Hermitian Hamiltonian H is considered
to generate unitary evolution in the region in which it acts. We
thus require a change of inner product at the boundary between
Hermitian and non-Hermitian regions. This corresponds to
a change in reference frame from one in which states are
described by vectors |1{) normalized according to the standard
inner product

(Uly) =1

and Hamiltonians by Hermitian operators H = H' to one
in which states are described by vectors |¢')) normalized
according to a modified inner product

((W'1Y") = W'y’
and Hamiltonians are described by operators satisfying H =
H*. The change from one frame to another can be either
passive—we simply relabel the states and operators repre-

senting physical quantities, or active—we perform a physical
operation from one frame to the other.

1. Passive transformation

We begin with the passive case. For concreteness let
us introduce an orthonormal basis {|a;)} for H, where by
orthonormal basis implicitly we mean that there exists some
physical measurement that can perfectly distinguish the states
of this basis. The state |1/) in the Hermitian region may be
written in this basis as

W) = cilai) (12)
1
for some ¢; € C satisfying |c;|*> = 1 and with the interpretation
that |c;|> is the probability of obtaining result a; in a
measurement in the basis {|a;)}. It is tempting to consider
the state vector |y) to be continuous across the boundary, and
thus retain the representation Eq. (12) in the non-Hermitian
region. Indeed, this has generally been the approach taken
in the literature [24,25,45,70]. In H’ however, the basis
{la;)} is nonorthogonal. Thus although the components c;
in this basis are continuous across the boundary with this
choice, the physical interpretation of these has been lost.
There is no measurement in " which distinguishes perfectly
the nonorthogonal basis {|a;)}, and thus |c;|> can no longer
be interpreted as a probability distribution associated with
this measurement. Since we are considering here a passive
transformation, we instead impose the physically reasonable
condition that the physical state be continuous across the
boundary.
To retain the physical interpretation of the state | ), we need
to identify the orthogonal basis {|a;))} in H' corresponding to
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{la;)}in 'H. The state |¢/’)) in H' representing the same physical
state Ay may then be written

W)y = cila])).

which is normalized in H’ since by assumption ((a;|nla’;)) =
(ai’ln|a;.) = §;;. Every such basis is related to a basis {|a;)} in
H by an invertible mapping p such that pfp = 5. Thus, using
notation now in H alone,

W) =Y ciplai)

=p 'Y).

Note that the form of this transformation follows from
assuming only that the physical state is continuous across the
boundary. To do otherwise is to introduce new physics at the
boundary, which has nothing to do with P7 symmetry, and
rather is due to assigning physical meaning to a particular
representation of the state.

The transformation at the boundary is passive, as it involves
simply a relabelling of the state vector. To now return to the
gedanken experiment, we start with an initial state |1), relabel
the state vector at the boundary, evolve under H, and relabel
again at the boundary. The net effect is as follows, where for
convenience, we express the state in H throughout:

ly) — ¥y = p~ ' y)
— e iyl = (p~le ™ p)p " |yr)
— pe MYy = e My).

Thus the whole experiment may be simulated by simply
evolving under the Hermitian Hamiltonian 4. This evolution is
clearly unitary, may be entirely described within standard, Her-
mitian quantum theory, and thus leads neither to applications
in quantum information nor to a violation of no signaling.

We note that time-dependent metrics have been considered
in the literature; in particular Gong and Wang [75] present a
Schrodinger-like equation for a theory in which the metric is
allowed to be time dependent. There seems to be an assumption
however that the metric is continuous, and they do not
explicitly address the discontinuous case. The discontinuous
change in the metric at the boundary has been addressed
for the quantum brachistochrone; we note that the argument
presented here is similar to that of both Mostafazadeh [33]
and Martin [34]. Both were subsequently criticized [37,38,59]
for assuming that the whole system could be described as
PT symmetric, while the original proposal assumed the
co-existence of a Hermitian region and a non-Hermitian,
PT -symmetric region. It seems that Refs. [37,38,59] were
advocating the co-existence of Hermitian and non-Hermitian
evolution in the same frame. In the passive transformation,
discussed so far, the physical state is continuous across
the boundary. The alternative is to keep the representation
continuous across the boundary but to perform an active
transformation to the physical state so that evolution in a
transformed frame may be simulated by evolution in the
original frame.

052113-8



PT-SYMMETRIC HAMILTONIANS AND THEIR ...

2. Active transformation

The alternative to simply relabelling the state is thus to
introduce an active transformation at the boundary. As before
the system at time ¢ < O is described by a state |) in H. At
t = 0 we retain |¢) as the description of the state in 7, but
we wish to simulate evolution in H’', through operations in H
alone.

For aninitial state [y), we apply the physical transformation
p, and then evolve under the Hermitian Hamiltonian /4. Note
that since the transformation between frames involves a change
in inner product, the physical operation p when considered as
an active transformation is nonunitary, and in general can only
be applied with some probability (discussed below). The state
conditional on the success of this first step is updated via

PlY)
(¥lptoly)

where we have defined |¢') = |¢)//(¥|n|¥), and interpret

this as the initial state normalized in H’. (Note that we have
chosen here to use the notation |v/’) rather than |')) as we are
working throughout in H, and simply simulating evolution in
H)

In the next step we evolve unitarily under &. To prove
that the resulting description is equivalent to evolving |) as
defined above in H’, we consider our ability to predict physical
quantities in 7{’. Suppose at time ¢t we perform a measurement
in basis |a;) of H. The probability of obtaining outcome i is
given by

V) — = ply’),

Pr(i) = [{a:|y ()
_ Kaile™™ ply) P
(Winly)
aile™™ ply")|?
ail(o™ ol pp~ e ™ ply') 2
allne M [y")?
|ai 1y OYI,

where as previously, |a)) = o~ Ya;), n = p'p and we have
used Eq. (4). Note that {|a])} defines an orthonormal basis in
‘H’, and indeed for each such basis there exists a measurement
in ‘H that reproduces the statistics of measurement in that basis.

We can thus consider the physical operation p to be a
transformation from H' to H. Although the mapping is unitary
when considered as a transformation in this way, as an operator
acting on H alone p is nonunitary. How can we apply this
physically?

Every physically allowed map in quantum theory is de-
scribed by a trace-preserving completely positive (TPCP) map.
Every such map has a Kraus representation (see, e.g., [76-78]):

VYW — Y Edy)(IE].
k

(
(
(
{

where ), E,iEk = I. We can interpret this as a statistical
mixture of evolutions

Ei|y)

VWIELEdy)

) —

PHYSICAL REVIEW A 91, 052113 (2015)

each occurring with probability Pr(k) = (1/f|E}:Ek|1/f). It is
further always possible to implement such a transformation in
a heralded way—that is, so that we know which one of the
operators Ej has been applied in a given run of an experiment.
To implement the transformation p we simply choose a
physical transformation with a Kraus operator Ey = cp for
some constant ¢, which may be chosen to be real. When this
transformation occurs we thus obtain

) — %
VWlotely)

as desired. In order that this describes a physically realizable
operation we require that there exists some FE; such that

E(T)Eo + EIE, = [. Since EIEI is a positive operator, we
therefore require / — EgEo >0, 1i.e.,

I—c2pip>o0.

The probability of success in implementing this transformation
is given by c*(¥|p'pl); this is maximized while still
satisfying the constraint above if we choose ¢ = (Apax) />
where Apgy is the largest eigenvalue of pfp = 5. Thus the
transformation from H’ to H is successful with probability

(Wlptply)

Pr(succ) < —.
)\max

This gives a tight upper bound on the probability of success
of such a transformation. A probability of success greater
than this is introducing new physics, and will lead to effects
such as faster than Hermitian evolution, single shot state
discrimination with a higher probability of success than
standard quantum theory, and violation of no signalling.
A probability of success less than this bound is entirely
implementable within standard quantum theory and thus offers
no new capabilities but similarly suffers no new pitfalls.

We return now to the gedanken experiment with Hamilto-
nian H given in Eq. (9). The corresponding metric operator
n is given in Eq. (10). A short calculation shows that this
has eigenvalues Ay = (1 £ sinw)/cosa, corresponding to
eigenvectors |y=+), the &1 eigenstates of o,. Thus choosing
o = n'/2, the desired transformation from H’ to H is given by

1
Eo= ——n'"

vV )‘max

1 —sina
= |y+H){y+l+ 1—.|y—)(y—|.
4+ sina

A physical implementation of the whole procedure in a
spin-1/2 system is thus as follows: the initial state passes
into a Stern-Gerlach device with an inhomogeneous magnetic
field in the y direction. The |y—) component passes through
an absorbing region, in which any given system is absorbed
with probability (1 — sina)/(1 + sin«). The |y+) beams are
recombined through the use of an inhomogeneous magnetic
field equal and opposite to the first. Finally the Hamiltonian
h = pHp~! may be implemented by applying a homogeneous
magnetic field in the x direction.

Alternatively, the transformation Ej is exactly that used
in unambiguous state discrimination, and an alternative real-
ization using polarization as our two-level system could be
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achieved using fiber with polarization-dependent loss [73], or
indeed an interferometer with polarizing beamsplitters [79].
On exiting the fiber or interferometer, we only need implement
the Hamiltonian 4 = p Hp~' using a birefringent material.

3. P7T -symmetric evolution of a subsystem

Glinther and Samsonov [39] suggested an embedding of the
two-dimensional P7 -symmetric brachistochrone into a four-
dimensional space, in an approach inspired by the Naimark
extension of a POVM, and later implemented experimentally
by Zheng et al. [52]. For a specified initial state of the P7 -
symmetric system, the scheme describes how to prepare an
appropriate initial state of the four-dimensional conventional
quantum system, evolve, and finally measure the extended
system in order to simulate P7 -symmetric evolution on a
two-dimensional subsystem. However the authors of [39] do
not address how to simulate P7 -symmetric evolution for
an arbitrary and unknown initial state |y), and thus do not
address the issue of the boundary between conventional and
‘P T -symmetric regions. Here we discuss where the subsystem
scheme fits into the alternatives described above.

The embedding of a two-dimensional P7 -symmetric
system into a four-dimensional unitary system proceeds as
follows: the initial state of the four-dimensional system is
given by

2
W), = 0)4®¥)s +11)a®(p |1//))B’ (13)
VI+ WIeeY)

where p = 1'/2, and |/) is the state in a P7 -symmetric region,
and thus is normalized according to the P7 -symmetric inner
product (Y|n|r) = 1. |W)4p then evolves unitarily under
a Hermitian Hamiltonian. Finally, system A is measured,
and conditional on being found in state |0),4, system B has
undergone P7 -symmetric, nonunitary evolution. Thus it is the
subspace spanned by [0)4 ® |0) s, |0)4 ® |1)p which evolves
under the P7 -symmetric Hamiltonian H.

Now suppose we start with an arbitrary but unknown state
[Y/) (in a conventional quantum system) and wish to simulate
PT -symmetric evolution. How do we achieve the embedding
of this initial state into a four-dimensional conventional
quantum-mechanical system? We first note that, as used in [39]
and may easily be verified using Eq. (10),

' +n=al,
where a = 2/cos «. Thus the operation

0)a ® 1) —

1
W)ap = ﬁﬂO)A ® (p~'1¥)8) + @) alpl¥) ).

which may be achieved by introducing an ancilla in state |0) 4,
and evolving under a suitably chosen joint operation V,p,
preserves inner products:

1
Am¢wn3=;ﬂmw”+pmwm=3wwm.

Vap thus may be chosen to be unitary. |W) 45 is however not
yet in the form given in Eq. (13). We now have a choice in
order to prepare the initial state of the extended system—
we either associate the initial state |{) in the conventional
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quantum system with a state p~'[y) in the 7 -symmetric
region (passive transformation), or we apply a transformation
I ® p to the joint system (active transformation), to recover
the desired initial state |W) 4 5.

In the remainder of the scheme the Hamiltonian applied
to the extended system is unitarily equivalent to evolution
under & (specifically, itis givenby Vap(I4 ® h B)V,I g)- Finally,
on exiting the P7 -symmetric region, we measure the ancilla
qubit, and if found in state |0) 4, the P7 symmetric evolution
is successful. This operation is always probabilistic, and
corresponds to an active transformation from the simulated
P T -symmetric region to the conventional quantum region.

Closer inspection of the subsystem scheme therefore reveals
that it is equivalent to either our passive or our active
transformation. The construction in [39] appears to be a purely
formal mathematical procedure inspired by the Naimark
extension of a positive operator-valued measure (or more
accurately, the Stinespring dilation of a C P map). This dilation
and postselection is just one possible implementation of the
Kraus operator transforming between frames. Although the
physical picture of a subspace evolving under a P7 -symmetric
Hamiltonian is not without appeal, the explicit introduction
of the ancilla system obscures the connection between the
transformed and untransformed systems. More importantly,
the problem of how to prepare the initial state in the extended
system seems to not have been addressed in the literature up
to now, seriously limiting the applicability and interpretation
of the subsystem scheme.

IV. DISCUSSION

In this paper our aim has been to clarify the requirements
for physical implementation of P7 -symmetric Hamiltonians
in quantum systems, and thereby evaluate the prospects
for applications of P7 -symmetric Hamiltonians in quantum
information science. We have presented three physically
inequivalent proposed experimental implementations of P7 -
symmetric Hamiltonians, and have discussed how to treat the
boundary between Hermitian and non-Hermitian regions in
each case. Note that the only option not requiring external
intervention is the passive transformation case. In the absence
of intervention the only physically reasonable boundary theory
is to impose continuity of the physical state across the
boundary. Changing mathematical description requires us to
update the representation of the physical state accordingly.
Failure to do so amounts to introducing new physics, which
has nothing to do with P7 symmetry, but rather is due
to erroneously assigning physical meaning to a particular
representation of the state. It seems there has been considerable
confusion in the literature caused by the assumption that it is
the representation of the state rather than the physical state
which is continuous across the boundary.

The other implementations suggested both involve simu-
lation of a PT-symmetric Hamiltonian, and are presented
in order to clarify some remaining points of disagreement
in the literature regarding the co-existence of Hermitian and
non-Hermitian regions, as well as the conflation of unitary
evolution under a non-Hermitian H with nonunitary evolution
under an effective Hamiltonian. We have outlined how to
calculate the probability of success of various simulation
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schemes. By providing experimental implementations we
pinpoint exactly where assumptions can enter which represent
a departure from standard quantum theory. In light of this,
the mounting list of strange effects suggested in the literature
ranging from vanishingly small evolution times, to searching
a database exponentially fast, to violation of no signaling and
of invariance of measures of entanglement are, of course,
excluded.

Although P7-symmetric quantum theory as a unitary
theory has long been known to be exactly equivalent to
conventional quantum theory, Lee er al. [45] have recently
questioned the validity of P7 symmetry as a local theory,
suggesting three alternative possibilities regarding its viability.
These are as follows: P7 symmetry is not a valid local theory;
‘PT -symmetric quantum theory may be applied consistently
locally, but the boundary must be treated in a way to avoid
superluminal signaling; or P7 symmetry is a valid local
theory which allows violation of no signaling. We find that
the violation of no signaling is unrelated to P7 symmetry,
and have shown that the second option is the only physically
reasonable one.

Finally we return to the question of an exponentially fast
database search—or more precisely, a polynomial time search
of an exponentially large database. Since any simulation of
PT -symmetric schemes may be performed entirely within
quantum theory, by definition any scheme proposed thus far
cannot out-perform existing techniques. The scheme suggested
in [25] (referring to [80]) is based on the ability to distinguish
unambiguously between exponentially close states. Even
assuming perfect noiseless operations, unambiguous discrim-
ination between exponentially close states may be achieved
in quantum theory, but only with an exponentially small
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probability of success. Thus a polynomial time database search
is achieved only with an exponentially small probability of
success. To achieve any given constant probability of success
we must repeat the attempted search exponentially many times,
and thus the promise of an “exponentially fast” search is
something of a red herring. Indeed, there exists a simple
classical algorithm that searches a database in polynomial time
with exponentially small probability of success—pick an entry
atrandom from the database and check whether it is the marked
item. Repeat a polynomial number of times.

More generally, the simulation of P7 -symmetric Hamil-
tonians is either trivial (the passive transformation case)
or involves postselection, a probabilistic element. Although
generically quantum algorithms are probabilistic, this usually
enters at the readout stage. Probabilistic quantum gates are to
be avoided wherever possible, as the probability of success
of a circuit composed of such gates falls exponentially with
the number of gates. Moreover postselection is known to be
suboptimal for estimation tasks [81], and phase estimation
is an important subroutine for several quantum algorithms,
including Shor’s famous factoring algorithm [82,83]. Finally,
any P7 -symmetric implementation can, by definition, per-
form at best only as well as existing techniques, in terms of
the probability of success of a given evolution. Thus it seems
unlikely that P7 -symmetric Hamiltonians will find a use in
quantum information science.
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