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Reversal of relaxation due to a dephasing environment
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We show that any finite quantum system S can be coupled to a dephasing environment in such a way that
the internal mechanism responsible for relaxation of observables acting on S can be effectively canceled. By
adjusting this coupling, the difference between the initial and the long–time expectation values of any observable
on S can be tuned to an arbitrarily small, but nonzero, value. This statement is exemplified and visualized by
numerical studies of relaxation in a generic one-dimensional system of interacting fermions.
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I. INTRODUCTION

There is ever-growing research in the field of dynamics
of many-body quantum systems [1]. One of the central
and still unsolved problems is related to equilibration of
closed systems, with a particular emphasis on the relax-
ation of observables relevant for experimental verification
of various theoretical models. Moreover, in large-enough
generic quantum systems one expects that equilibration is
equivalent to thermalization. It is commonly accepted that the
long-time averages of local observables in generic systems
coincide with expectation values for the statistical Gibbs
ensemble [1–6]. However, our understanding of this process
and the condition for its occurrence are far from being
complete. For example, it is known that there is a relation
between equilibration and integrability of the system [7–10].
Generally, nonintegrable systems are expected to thermalize,
while integrable systems do not approach the Gibbs state
but rather the generalized Gibbs ensemble (GGE) [11–16].
However, there are quantum systems which do thermalize
despite being integrable, provided that they are prepared in
certain states [17]. On the other hand, there are nonintegrable
quantum systems which do not thermalize [5], and the role
of initial entanglement between subsystems seems to be
important.

According to common intuition, relaxation of observables
is a hallmark of irreversibility [18]. If one considers an
expectation value of an arbitrary observable O and takes
advantage of the spectral decomposition of the Hamiltonian
into its eigenstates H |n〉 = En|n〉, one obtains for an initial
state |ψ〉 = ∑

m Cm|m〉:

〈O〉(t) =
∑

En=Em

C∗
nCm〈n|O|m〉

+
∑

En �=Em

C∗
nCmei(En−Em)t 〈n|O|m〉. (1)

Invoking arguments adopted in the context of the eigenstate
thermalization hypothesis [3], one expects that after a suffi-
ciently long time, due to destructive interference of oscillating
terms in Eq. (1), the observable can relax to its steady-state

value,

lim
t→∞〈O〉(t) = lim

τ→∞
1

τ

∫ τ

0
dt〈O〉(t)

=
∑

En=Em

C∗
nCm〈n|O|m〉. (2)

Although finite closed quantum systems are, strictly
speaking, periodic or quasiperiodic, the irreversibility is still
manifested as the low (or vanishing) probability of a process
which reverses the relaxation. Moreover, if one attaches the
quantum system to an infinite environment, transforming a
closed system into an open system, one expects that the
relaxation becomes faster and “more irreversible” due to the
information loss or dissipation. This seems at least intuitively
indisputable. However, in this paper we present a counterex-
ample to this generally accepted mechanism. We demonstrate
that there exist environments which cancel internal relaxation
mechanisms of an arbitrary quantum system. More precisely,
we show that any finite quantum system can be linearly coupled
to a continuous set of harmonic oscillators in such a way that
evolution of an arbitrary observable O satisfies

| lim
t→∞〈O〉(t) − lim

t→0
〈O〉(t)| < ε (3)

for arbitrary ε > 0. In other words, the relaxation cannot be
completely eliminated but can be made arbitrarily inefficient.
This prediction is in direct contrast to Eq. (2). The main
idea behind this result is that a specially tailored environment
may cancel the (destructively interfering) oscillations of the
of-diagonal matrix elements in Eq. (1). Such environments
belong to the class of purely dephasing environments [18].
They preserve the internal conservation laws of the quantum
system; hence, they are not generic or even typical. The
applicability of the pure dephasing model has been dis-
cussed in various areas of quantum and mathematical physics
[19–22]. Surprisingly, there are also real systems which can
be effectively described by such a simple, highly symmetric
model [23]. However, let us stress that pure decoherence
remains credible only at time scales significantly smaller
than the time scale relevant for exchanging energy between
system and its environment [23]. Hence, the applicability of
the pure dephasing under experimentally accessible conditions
is usually at least disputable.
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This paper is organized as follows: In the next section
we formulate and prove (in Sec. II A) the central result of
our work concerning the reversal of relaxation in dephasing
environments. Further, in Sec II B, we provide a simple
example to illustrate reversal of relaxation in a generic
system of interacting fermions. In Sec. III we present certain
generalizations of the main result. Finally, we conclude our
work in last section.

II. MODEL AND MAIN RESULT

We consider a quantum system S described by the Hamil-
tonian

HS =
∑

n

En|n〉〈n|, (4)

with an arbitrary (possibly degenerate) energy spectrum. The
system is coupled to an environment B of noninteracting
bosons,

HB =
∫ ∞

0
dω ωa†(ω)a(ω), (5)

where the fields a(ω) satisfy [a(ω),a†(ω′)] = δ(ω − ω′) [24].
The details of the purely dephasing S-B coupling are given by
VS and VB such that the total Hamiltonian reads [18,25]

H = HS ⊗ IB + IS ⊗ HB + VS ⊗ VB, (6)

where

VB =
∫ ∞

0
dωg(ω)[a†(ω) + a(ω)], (7)

with a real-valued g(ω) and

VS =
∑

n

γn|n〉〈n|. (8)

Note that HS and VS commute. This particular property is a
hallmark of pure dephasing [18]. We assume also that, initially,
the system and its environment are prepared in a separable state

ρ(0) =
∑
n,m

pnm|m〉〈n| ⊗ |	〉〈	|, (9)

where |	〉 is the bosonic vacuum. Towards the end of this
paper we discuss a more general class of the initial states.

A. Proposition

We consider long-time expectation values of local operators
defined for the quantum system O = OS ⊗ IB . If the system-
environment coupling satisfies the proportionality relation

γ 2
m − γ 2

n ∝ Em − En, (10)

then the difference | limt→∞〈O〉(t) − 〈O〉(0)| can be tuned
to an arbitrary small value by an appropriate choice of the
coupling function g(ω). Most importantly, a single tuning of
g(ω) holds for all local operators O.

For the pure dephasing one easily finds the time-dependent
expectation value

〈O〉(t) =
∑
n,m

pnm〈n|O|m〉anm(t), (11)

where

anm(t) = 〈	| exp[it(En + γnVB + HB)]

× exp[−it(Em + γmVB + HB)]|	〉. (12)

Such a simple result occurs due to the block-diagonal structure
of the Hamiltonian, where each block describes a set of shifted
harmonic oscillators: Em + γmVB + HB . An explicit form of
anm(t) has been derived and used many times in different
contexts ranging from mathematical physics [26] to quantum
information [19]. An explicit form of the amplitude anm(t)
reads [25]

anm(t) = e−i(Em−En)t+i(γ 2
m−γ 2

n )E(t)−(γm−γn)2
(t), (13)

where

E(t) =
∫ ∞

0
dω

g2(ω)

ω2
[ωt − sin(ωt)], (14)


(t) =
∫ ∞

0
dω

g2(ω)

ω2
[1 − cos(ωt)]. (15)

Utilizing the square integrability of g(ω)/ω, one finds from
the Lebesgue-Riemann lemma [27] in the long-time regime
(t → ∞) that

E(t) → Ẽt, 
(t) → 
̃ = const, (16)

where

Ẽ =
∫ ∞

0
dωg2(ω)ω−1, (17)


̃ =
∫ ∞

0
dωg2(ω)ω−2. (18)

In order to reduce the effects of the internal relaxation one
should tune the system-environment coupling in such a way
that the oscillatory part in Eq. (13) drops out,

Em − En − Ẽ
(
γ 2

m − γ 2
n

) = 0, (19)

while the exponential term (γm − γn)2
̃ remains small. In
order to show that such a particular choice is indeed possible,
we introduce a cutoff frequency [18] ωc for the bosons in the
environment and redefine the coupling function

g(ω) = f (ω/ωc). (20)

Then, 
̃ ∝ ω−1
c while Ẽ ∝ ω−0

c . After eliminating the de-
structive interference of the off-diagonal matrix elements, the
exponential damping may become arbitrarily small, of the
order of 1/ωc,

log[amn(t → ∞)] ∝ − (γm − γn)2

ωc

. (21)

While our general scheme does not require any particular
form of g(ω), the results are most transparent for the standard
parametrization of the coupling function [18]:

g2(ω) = 1

�(μ + 1)

(
ω

ωc

)1+μ

exp(−ω/ωc), (22)

where μ > 0 corresponds to the (mathematically [26]) well-
behaving super-Ohmic environment. In the latter case Ẽ = 1,
while 
̃ = (μωc)−1.
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B. Example

In order to exemplify our result with the help of a simple
but generic case, we study a one-dimensional system of L sites
and L/2 spinless fermions with periodic boundary conditions
[28–31] (i.e., a ring) with a Hamiltonian given by

HS = −Jh

L∑
j=1

[exp(iφ)c†j+1cj + H.c.]

+U1

L∑
j=1

nj+1nj + U2

L∑
j=1

nj+2nj , (23)

where nj = c
†
j cj , Jh is the hopping integral, and U1 and

U2 describe first- and second-nearest–neighbor interactions,
respectively. We take Jh as the energy unit, Jh = 1, whereas
time is expressed in units of τh = �/Jh. We take also U1 = 1.4
and U2 = 1. For such parameters HS describes a generic metal
characterized by a featureless response to electromagnetic
field and a normal diffusive transport. Moreover, such a
system thermalizes even when being decoupled from its
surrounding [9]. Numerical studies have been carried out for
L � 18. The reason behind introducing U2 is to stay away
from the integrable case, which shows anomalous relaxation
[11,13,14,32] and charge transport [33–38].

The mechanism of the reversal of relaxation (RR) holds
either for all observables or for none. In the following, we
show numerical results for a particle current

OS =
L∑

j=1

i exp(iφ)c†j+1cj + H.c. (24)

since 〈OS〉 vanishes whenever S is in equilibrium; hence, large
or even nonzero values of this observable imply that the system
is in a nonthermal state. We consider a typical super-Ohmic
environment with μ = 1 [see Eq. (22)] when

E(t) = t
ω2

c t
2

1 + ω2
c t

2
, 
(t) = 1

ωc

ω2
c t

2

1 + ω2
c t

2
. (25)

While our qualitative conclusions do not depend on the
initial state, we assume that the system is initially in a pure
state pnm = CnCm [see Eq. (9)], where Cn = const > 0 if∑

m Re〈n|OS |m〉 > 0 and Cn = 0 otherwise. Such a state has
a large initial current and has nonzero projection on a large
number (approximately one half) of the energy eigenstates.
Consequently, it leads to very clear numerical results for the
relaxation of the particle current.

In Fig. 1 we present the relaxation of current flowing
in an isolated ring, i.e., in a closed system decoupled from
any environment. Numerical results show that the fermionic
system under consideration is generic and large enough that
it relaxes (close) to equilibrium due to internal scattering
processes even in the absence of any (dephasing) environment.
The corresponding relaxation time is not larger than a few
τh, and 〈Os〉(t) remains small for t � 10τh. In Fig. 1 we
also show relaxation in the presence of a typical dephasing
described by the choice γ 2

m = ξm [see Eq. (8)], where ξm is
a random variable with a uniform distribution in an interval
[0,ξ0]. This case is very different from the tuned coupling
described by Eq. (10). We notice that such a typical dephasing
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FIG. 1. (Color online) Time dependence of the particle current
normalized to its initial value o(t) = 〈Os 〉(t)

〈Os 〉(0) for closed generic system

(ξ0 = 0) and for generic (random) coupling γ 2
m = ξm. In the latter case

ξm is a random variable with flat distribution in [0,ξ0] and ωc = 1. For
times larger than 14τh the current remains approximately as small as
in the time window [10τh,14τh].

additionally accelerates the relaxation. Hence, the model under
consideration reproduces the expected and intuitive results.

The situation dramatically changes in the case of the fine-
tuned coupling between the ring and its bosonic environment,
satisfying Eq. (10). According to the proposition in Sec. II A,
we expect a reversal of the relaxation; that is, after sufficiently
long evolution time the expectation value of the current should
approach its initial value. However, the realistic systems are
never perfect, and one can expect that the condition in Eq. (10)
is satisfied at most approximately. Let us assume that the
optimal achievable tuning is given by

γ 2
m = Em − E0 + ξm, (26)

where ξm ∈ [0,ξ0] is again a uniformly distributed random
variable. It describes a degree of quenched or frozen disorder
present in our system due its imperfect preparation. The time
evolution of current flowing in the ring for different values
of ξ0 is presented in Fig. 2. In particular, for an ideal case
the ξm ≡ 0 condition in Eq. (10) is satisfied, and the RR
clearly occurs. For small but nonvanishing values of ξ0 there
is still a wide time window with a significant degree of RR,
as indicated in Fig. 2(a). Beyond this time window the current
decays towards a much smaller value, as shown in Fig. 2(b).
Such nonmonotonic behavior with a wide plateau represents
a hallmark of RR that could possibly be observed in simple
quantum systems provided their couplings to the environments
could be appropriately tuned.

Finally, we discuss the role of the bosonic characteristic
(cutoff) frequency ωc. When this quantity is too small, the
coupling to the environment is not beneficial any longer.
Although RR is still possible, the off-diagonal matrix elements
anm decay in time due to the exponential terms in Eq. (13).
Results shown in Fig. 3 for a perfectly tuned coupling γ 2

m =
Em − E0 indicate that a clear RR effect is observed already
when ωc is one order of magnitude smaller than the typical
energy scale of the quantum system, ∼Jh. If ωc is of the
same order of magnitude or even larger, then the exponential
damping becomes hardly visible.
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FIG. 2. (Color online) (a) Time dependence of the particle cur-
rent normalized to its initial value o(t) = 〈Os 〉(t)

〈Os 〉(0) for a partially tuned

coupling γ 2
m = Em − E0 + ξm. Here ξm is random variable with flat

distribution in [0,ξ0] and ωc = 0.1. The curves from top (green) to
bottom (black) are for ξ0 = 0, 0.01, 0.02, 0.03, 0.1, and 1, respectively.
(b) The same results but in a larger time window. In (b) the curves
from top (green) to bottom (blue) are for ξ0 = 0, 0.01, 0.02, and 0.03,
respectively.

III. GENERALIZATIONS

The assumptions behind the proposition in Sec. II A are
not very restrictive; nevertheless, they limit the applicability
of our main result to a certain class of problems. Here we
discuss which assumptions can be relaxed without a significant
modification of Eq. (3). First, one may consider a more general
class of initial separable states, Eq. (9), where the bosonic
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FIG. 3. (Color online) Time dependence of the particle current
normalized to its initial value o(t) = 〈Os 〉(t)

〈Os 〉(0) for a perfectly tuned

coupling γ 2
m = Em − E0 and various ωc.

subsystem is in the coherent state |�ζ 〉 = D(ζ )|	〉, where
D is the displacement operator [18,39] where ζ (ω) is square
integrable and the product ζ (ω)g(ω) satisfies the Lebesgue-
Riemann lemma. This condition is satisfied, e.g., for a non-
negative and square-integrable ζ (ω). Of course, for ζ (ω) ≡ 0
one arrives back at the proposition.

It is known that the initial system-environment entan-
glement can affect thermalization processes [5]. A simple
example of an entangled pure initial (not normalized) state
is given by |n〉 ⊗ |�ζ 〉 + |m〉 ⊗ |�χ 〉, where |�χ 〉 and |�ζ 〉
are noncolinear. Such a simple initial preparation of the
pure dephasing models still allows us to find the exact time
dependence of the total system plus environment composite
[40]. Again, the reversal of relaxation can occur provided that
both ζ (ω)g(ω) and χ (ω)g(ω) satisfy the Lebesgue-Riemann
lemma.

IV. CONCLUSIONS

The effect of an environment attached to a small system may
occasionally be counterintuitive or even unpredictable. Let
us mention only two notable examples: stochastic resonance
[41] (both classical and quantum) and environment-induced
entanglement [42]. In our work we present another example
of a counterintuitive effect, which is the reversal of relaxation
due to a coupling to the environment. We show that relaxation
of an arbitrary observable acting on a finite quantum system
can effectively be reversed by attaching the system to an infi-
nite super-Ohmic dephasing reservoir. Since this mechanism
requires fine-tuning the coupling between the energy levels
and the bosonic bath, we expect that it could possibly be
realized in simple quantum systems rather than in complex
generic cases. For the latter systems our finding will most
likely remain only a matter of principle, particularly since such
a coupling represents a nonlocal interaction. However, even for
an imperfect tuning of the interaction between the system and
the environment, one still finds a partial reversal of relaxation.
This mechanism may be realized in open quantum systems
when the time scale of energy exchange with the environment
is large when compared to other time scales of the system.
Such an approximation has been effectively applied to describe
quantum optical systems coupled to a single electromagnetic
mode [23]. The effect studied in our work shows up as a broad
time window in which the expectation values of observables
are close to the values in the initial state. Even though the
proposed mechanism for the reversal of relaxation is at this
stage rather theoretical, it may have an important impact on
the area of quantum computing, where one of the greatest
challenges is controlling or removing quantum decoherence
among interacting quantum systems.
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