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We introduce two families of sum-of-squares (SOS) decompositions for the Bell operators associated with
the tilted Clauser-Horne-Shimony-Holt (CHSH) expressions introduced in Acı́n et al. [Phys. Rev. Lett. 108,
100402 (2012)]. These SOS decompositions provide tight upper bounds on the maximal quantum value of these
Bell expressions. Moreover, they establish algebraic relations that are necessarily satisfied by any quantum state
and observables yielding the optimal quantum value. These algebraic relations are then used to show that the
tilted CHSH expressions provide robust self-tests for any partially entangled two-qubit state. This application to
self-testing follows closely the approach of Yang and Navascués [Phys. Rev. A 87, 050102(R) (2013)], where we
identify and correct two nontrivial flaws.
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I. INTRODUCTION

We consider a bipartite Bell scenario [1] with two binary
observables A0, A1 for Alice and two binary observables
B0, B1 for Bob, such that A2

x = I, B2
y = I, and [Ax,By] = 0

for all x,y = 0,1.1 The following family of tilted Clauser-
Horne-Shimony-Holt (CHSH) operators for this scenario was
introduced in [2]:

Iα = αA0 + A0B0 + A0B1 + A1B0 − A1B1, (1)

where α ∈ [0,2[ is a parameter and α = 0 corresponds to the
CHSH operator. One of our objectives in this article is to
derive an upper bound ηα on the maximal quantum expectation
value of Iα , that is to show that 〈Iα〉 � ηα for all possible
quantum states and measurement operators Ax and By . This
is equivalent to showing that the operator Iα = ηαI − Iα

is positive semidefinite, i.e., Iα � 0, for any measurement
operators Ax and By . This in turn can be proven by providing
a set of operators {Pi} which are polynomial functions of Ax

and By such that

Iα =
∑

i

P
†
i Pi (2)

holds for any set of measurement operators satisfying the al-
gebraic properties A2

x = I, B2
y = I, and [Ax,By] = 0. Indeed,

if Iα is of this form, it is obviously positive semidefinite. A
decomposition of the form (2) is called a sum of squares and
can be defined in full generality for other Bell operators than
the ones considered here.

Though it may be difficult to find a sum-of-squares (SOS)
decomposition for an arbitrary Bell operator, especially one
yielding a tight bound ηα on the maximal quantum violation,
once one has been found, verifying that (2) holds, and thus that
〈Iα〉 � ηα , usually involves only a few simple computations.
That is, a SOS provides a simple certificate that 〈Iα〉 � ηα .
Furthermore, the search for optimal SOS can be cast as a series
of semidefinite programs (SDP) that turns out to be simply the

1We assume implicitly that Alice’s observables are of the form
Ax ⊗ I and those of Bob of the form I ⊗ By .

dual formulation [3] of the SDP hierarchy introduced in [4,5].
Finally, as shown in [6], an optimal SOS, i.e., one for which
〈Iα〉 � ηα is a tight bound, provides useful information about
the optimal quantum strategy and can find an application in
robust self-testing.

Self-testing is the process through which one can guarantee
that two devices satisfy certain properties, e.g., that they
implement measurements on a quantum state which is close, up
to a local isometry, to a given reference state, only by observing
the correlations in a Bell experiment [7]. The possibility of
self-testing means that the interaction on a classical level with
quantum devices can be sufficient to assure users that they
indeed hold devices that conform to an ideal specification: as
long as the self-testing criteria are satisfied, it is guaranteed
that the devices have not malfunctioned or been tampered
with. Effectively, this allows the users to treat their devices
as black boxes. This is the core idea of device-independent
quantum information processing, where self-testing has been
used as a primitive to establish schemes for verified quantum
computing [8] and cryptographic tasks such as randomness
expansion [7,9].

Despite their interest, very few examples of explicit SOS
decompositions for Bell operators have been given in the
literature. One example is a SOS for the family of “guess your
neighbor’s input” inequalities introduced in [10]. A second
example is a SOS for the CHSH operator appearing in [8],
which we recover in this article. Finally, SOS decompositions
for the entire family of tilted CHSH operators (1) were
proposed in [6]. However, as we point out here, these SOS
only hold in the range α ∈ [0.156,1.955]; outside that range
they are not valid SOS due to a sign error that cannot be
simply fixed. Furthermore, even within the validity range,
these SOS decompositions are not sufficient for the self-testing
application proposed in [6] (see Appendix C).

In this article, we introduce two different simple SOS
decompositions for the tilted CHSH operators (1) that are valid
for the entire range α ∈ [0,2[, including the CHSH case α = 0.
Our systematic approach to this problem is of independent
interest as it can probably be adapted to other Bell operators.
We then show, following [11] and [6], how to apply these SOS
decompositions to robust self-testing of any partially entangled
state. Moreover, we take the self-testing analysis further by
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showing that the isometry providing a robust self-test for the
state also provides a self-test for the action of the measurement
operators. Incidentally, we point out and fix a small mistake
in [11] concerning the regularization procedure used to define
the local isometry used for self-testing.

This article is organized as follows. We first present our
SOS decompositions and detail the approach we used to obtain
them. We then sketch their application to self-testing, which is
comprehensively discussed in Appendix A. The flaws that we
identified in [6] and [11] and how our work resolves them is
presented in Appendix C.

II. SOS DECOMPOSITIONS FOR TILTED
CHSH INEQUALITIES

We first start by reviewing some of the properties of the
tilted CHSH expressions Iα . We then introduce the concept of
SOS decompositions and derive such decompositions for the
tilted CHSH operators.

A. Optimal quantum strategies for Iα

The optimal quantum value for the Bell expressions (1)
was computed in [2] by optimizing explicitly over all quan-
tum states and measurements. The optimal value is Imax

α =√
8 + 2α2, to be compared to the classical bound 2 + α. An

interesting property of this class of Bell operators is that for
all values of α ∈ [0,2[, the maximal quantum value can be
achieved by a partially entangled qubit pair

|ψ〉 = cos θ |00〉 + sin θ |11〉 (3)

with α ≡ α(θ ) = 2/
√

1 + 2 tan2 2θ , effectively covering the
full range of partial entanglement in two-qubit states, θ ∈
]0,π/4]. The operators used to achieve this maximal quantum
violation are

A0 = σz, A1 = σx, (4a)

B0 = cos μ σz + sin μ σx, B1 = cos μ σz − sin μ σx, (4b)

where tan μ = sin 2θ and σx,z are the x, z Pauli operators.

B. SOS decompositions for Bell operators

Our goal is to find a decomposition as in (2) in terms of a set
of polynomials {Pi} when the constant term in Iα is the max-
imal quantum value of the tilted CHSH operator, ηα = Imax

α .
For simplicity, we restrict our search space to the span of a
small canonical basis of nine monomials of degree 2,

S1+AB = {I,A0,A1} ⊗ {I,B0,B1} . (5)

To simplify the search, we will later pick a different basis of
this vector space of polynomials, {Ri}i . Thus, the operators Pi

are decomposed as Pi = q
μ

i Rμ (using implicit summation on
repeated indices). The expression of Iα as an SOS (2) then
becomes

Iα = R†
μq

μ

i

∗
qν

i Rν ≡ R†
μMμνRν . (6)

If qν
i is now seen as the ith component of a vector qν , the

Hermitian matrix M is then the Gram matrix of this set
of nine vectors and is therefore positive semidefinite. The
converse is also true: if M is positive semidefinite, there exists a

(nonunique) set of vectors {qν} such that the components Mμν

are the Hermitian products (qμ,qν) = q
μ

i

∗
qν

i , and therefore
any operator of the form of the right-hand side of (6) with
M � 0 is a sum of squares. A set of such vectors {qν} is given
by the columns of any matrix square root of M , such as its
Cholesky decomposition if it is nonsingular.

We are now looking for a positive semidefinite matrix M

such that (6) holds. This equation imposes linear constraints
on M . Indeed, we can decompose both sides of the equality
Iα = MμνR†

μRν in a basis of the quadratic products of all
elements in S1+AB , which is of size 25 rather than 81 due to
the algebraic relations satisfied by the measurement operators.
A canonical basis for these products is

S2
1+AB = {I,A0,A1,A0A1,A1A0} ⊗ {I,B0,B1,B0B1,B1B0} .

(7)

Writing R†
μRν = F i

μνEi where Ei runs through S2
1+AB and

each F i is a matrix of complex coefficients, and likewise
Iα = siEi , the SOS condition (6) reduces to

si = Tr(M†F i) (i = 1, . . . ,25) . (8)

We are thus left with a set of 25 linear equality constraints on
M as well as the positive semidefiniteness constraint M � 0.
This is a semidefinite programming feasibility problem, which
can be approached with numerical tools such as SeDuMi [12].

However, while we could attempt to recover the exact
analytical expression that the numerical solution approxi-
mates, this will not be a good approach for a continuous
class of Bell operators. We will thus tackle this problem
analytically, and this requires that we simplify the problem
as much as possible. One first simplification comes from our
knowledge of a state and measurements which achieve the
quantum bound. One such system is specified in Eqs. (3)
and (4a), consisting in the partially entangled qubit pair
|ψ〉 = cos θ |00〉 + sin θ |11〉 with spin measurements along
given axes. Because this strategy achieves the quantum bound
Imax
α , the expectation value of Iα vanishes. As a consequence,

any SOS decomposition for Iα of the form (2) must have each
of its terms vanish in expectation as well. Hence, a valid SOS
decomposition for Iα must be made up of terms for which
Pi |ψ〉 = 0 in this maximally violating quantum system. This
last equation defines four constraints that all Pi must obey, one
per basis vector of the Hilbert space. Indeed, writing the most
general P in our search space as r · V where

V = (I,A0,A1,B0,B1,A0B0,A0B1,A1B0,A1B1) (9)

and demanding that the four components of P |ψ〉 =
P (cos θ |00〉 + sin θ |11〉) [with the observables specified
in (4a)] vanish, we find four independent linear constraints
on the vector r. We thus find that the space of candidates Pi is
spanned by the following five operators:

ZA − ZB, (10a)

I − ZAZB, (10b)

cXA − sZAXB − XAZB, (10c)

cXB − sXAZB − ZAXB, (10d)

sXAXB − ZAZB + cZA, (10e)
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where c = cos 2θ , s = sin 2θ , and the Z and X operators are
defined as

ZA = A0, XA = A1, (11a)

ZB = B0 + B1

2 cos μ
, XB = B0 − B1

2 sin μ
. (11b)

It is easily verified that these five operators indeed vanish in
the explicit two-qubit system we considered, as Z and X are
then the Pauli operators.

This first step lets us write the Pi polynomials as linear
combinations of five operators instead of nine, hence the M

matrix in our SDP feasibility problem is now 5×5.
One further simplification comes from exploiting the

symmetry of the tilted CHSH operator to impose a similar sym-
metry on its SOS decompositions. The effect of symmetries
on SOS decompositions has been studied in the case of poly-
nomials of commutative variables in [13], and the following
takes inspiration from those results. We observe that changing
the sign of A1 → −A1 and swapping B0 ↔ B1 leaves Iα

(and therefore Iα) invariant. This transformation induces a
representation of the cyclic group C2 on the vector space
of operators span(S1+AB). Let σ ∈ End (span(S1+AB)) be the
endomorphism representing the transformation. Due to the
invariance of the tilted CHSH operator, the five-dimensional
subspace spanned by operators (10) is itself invariant under σ

by definition. Therefore, we separate this subspace as a direct
sum of irreducible representation subspaces, all of dimension
1 according to the representation theory of cyclic groups. We
then choose our basis operators {Ri}5

i=1 to be the basis elements

associated with such a decomposition. This means that σ acts
on this basis as σ (Ri) = ±Ri , depending on i.

We now apply this symmetry transformation to both sides
of (2):

Iα = σ (Iα) = σ (Rμ)†Mμνσ (Rν) = R†
μM ′μνRν , (12)

where M ′μν = ±Mμν depending on the sign brought by
the transformation of the basis operators. This means that
M ′ represents a new SOS decomposition for Iα . Moreover,
because convex combinations of SOS decompositions are
also valid SOS decompositions of the same operator, a third
SOS decomposition is found: M (S) = (M + M ′)/2. This last
SOS has the property of being invariant under the symmetry
transformation.

While asymmetric SOS may still exist, this result is
useful because it lets us focus on symmetric decompositions,
which have a smaller number of degrees of freedom. Indeed,
because elements in M ′ and M only differ by their sign, the
symmetrization of M to M (S) will take to zero the elements that
change sign. The elements in question correspond to indices
(μ,ν) such that Rμ and Rν span representation subspaces of
different irreducible representations of C2. As a result, the
symmetrized SOS matrix M (S) is block-diagonal, with one
block associated to each of the two irreducible representations.

Considering the discussion thus far, we now choose a basis
for the subspace containing the SOS polynomials. The basis
we choose is {Ri ≡ ri · V} where the ri vectors are defined as
such (we label the columns with the operators defining V for
convenience):

I A0 A1 B0 B1 A0B0 A0B1 A1B0 A1B1

r1 =
(

0 −2√
1+s2 0 1 1 0 0 0 0

)
,

r2 =
(

−2√
1+s2 0 0 0 0 1 1 0 0

)
,

r3 =
(

−2√
1+s2 0 0 c c 0 0 1 −1

)
,

r4 =
(

0 0 −2√
1+s2 1 −1 0 0 c c

)
,

r5 =
(

0 0 −2c√
1+s2 0 0 1 −1 1 1

)
.

(13)

It is easily checked that these basis operators separate the space
in two isotypical subspaces, i.e., subspaces that fall under the
same irreducible representation of the cyclic group: R1,2,3 are
invariant under the symmetry transformation of Iα , while R4,5

change sign. The block structure of symmetric SOS matrices is
therefore 3 ⊕ 2, where the first block corresponds to the trivial
representation and the second to the parity representation
where the group generator is represented by −1: we have
σ (Ri) = Ri for i = 1,2,3 and σ (Ri) = −Ri for i = 4,5.

We now examine the problem of finding SOS decomposi-
tions with α = 0, where I0 is the CHSH operator, and with
α = α(π/8).

1. CHSH case: α = 0

We first look at the determination of SOS decompositions in
the simplest case, where α = 0. Without yet taking symmetry
into account, the linear constraints imposed on M by Eq. (8)
imply (omitting the lower triangular part given by hermiticity)

M = 1

2
√

2

⎛
⎜⎜⎜⎝

λ 0 0 δ 0
γ q 0 −δ/2

t 0 −δ/2
μ 0

q

⎞
⎟⎟⎟⎠ (14)
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with q = 1 − λ − γ and t = λ + γ − μ. Thus, M depends on
four parameters, three of which are real due to hermiticity.
The fourth parameter, δ, can be taken to 0 by the sym-
metry argument given above. We see that, in this specific
case, the 1 ⊕ 2 ⊕ 1 ⊕ 1 block structure of a symmetric M

goes further than what is imposed by the symmetry of
Iα . This is not surprising, as the CHSH operator, lacking
a marginal term, is more symmetric than the general Iα

operator. This makes it straightforward to impose positive
semidefiniteness: a necessary and sufficient condition is
the positive semidefiniteness of the blocks. We find the
conditions

λ,μ,q,t � 0 , (15)

λt − q2 � 0 . (16)

We therefore end up with a simple description of the full
solution set of symmetric SOS decompositions of I0 inS1+AB ,
up to the computation of a square root for M to get the actual
polynomials Pi in (2). We represent this solution set in terms
of λ, μ and q in Fig. 1.

In this solution set, the extremal points are the most inter-
esting as they generate the entire set by convex combinations.
Here, the extremal points are the five vertices of the set and
the smooth quadratic surface resulting from inequality (16).
Because of their situation at the intersection of inequality
constraints, the M matrices at the five vertices are of low
rank, which eases the determination of a square root. Those
distinguished extremal points are listed in Table I. We note
that the first four vertex SOS in the table are equivalent up to
multiplication on the left by a dichotomic operator on one or
two of the operators that are squared in the sum. For instance,
the identity R2 = A0R1 implies that R2

2 = R2
1, which means

that the SOS C1 and C2 are equivalent.

FIG. 1. (Color online) Solution set for symmetric SOS decom-
positions for the CHSH operator in S1+AB .

We reproduce here two SOS decompositions of I0 resulting
from those extremal points:

I0 = 1

4
√

2

[
I2

0 + 2(ZAXB + XAZB)2
]

(17)

I0 = 1√
2

[(−ZA + ZB)2 + (−XA + XB)2], (18)

where ZA = A0, XA = A1, ZB = (B0 + B1)/
√

2, and XB =
(B0 − B1)/

√
2. We note that the decomposition (18), which

we denote as C4 in Table I, also appears in [8].
Two additional SOS decompositions for CHSH are also

given in Appendix B.

2. θ = π/8 case

Next, we choose the (arbitrary) value of θ = π/8. The
equality constraints (8) give to the SOS matrix the following
form:

M =
√

3

8
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β −1√
2

3√
2
γ 3δ 0

5
3 − β + 1

2γ 1
3 − 2γ −√

2δ −δ

2 + 3γ − λ
√

2δ −2δ

λ −√
2

3 − √
2γ

2
3 − γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where, again, δ can be set to zero by symmetry to give M a
block-diagonal structure.

Contrary to the CHSH matrix, the block structure in this
case is coarser with fewer, larger blocks, which results in more
nonlinear positive semidefiniteness constraints. The positive
semidefiniteness of M is checked by using a generalized
form of Sylvester’s criterion, namely that a matrix is positive
semidefinite if and only if all of its principal minors (sub-
matrices obtained by jointly eliminating lines and columns
of the same indices), including the matrix itself, have a
nonnegative determinant [14]. The solution set is visualized
as a three-dimensional convex region in Fig. 2, delimited by a
quadratic surface and a cubic surface.

We identify on Fig. 2 two points that stand out, namely the
two cusps at the intersection of the two surfaces delimiting
the region. Their coordinates are found to be (β,γ,λ) =
(1/2,−1/3,0) and (3/2,1/3,8/3). Both blocks of M have rank
1 at these points, which eases the computation of square roots
N that describe the SOS polynomials. We find respectively

N1 =
√ √

3

8
√

2

(
1/

√
2 −1 −1 0 0

0 0 0 0 −1

)
, (20)

N2 =
√ √

3

8
√

2

⎛
⎝−

√
3
2

1√
3

− 1√
3

0 0

0 0 0 −2
√

2
3

1√
3

⎞
⎠ . (21)
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FIG. 2. (Color online) Solution set for symmetric SOS decom-
positions for Iα(π/8) in S1+AB . This set is delimited by a quadratic
surface (invariant along β) and a cubic surface. Yang and Navascués’
SOS [6] is represented as a red dot.

The rows in these matrices give us the coefficient vectors qi

for two explicit SOS decompositions of Iα(π/8).

3. General tilted CHSH

The general approach is the same as above: first, the linear
constraints (8) are imposed, and imposing symmetry leaves us
with three real degrees of freedom. The positive semidefinite-
ness of the blocks of M is then enforced by applying the gen-
eralized Sylvester’s criterion [14]. This amounts to one cubic,
four quadratic, and five linear inequalities. For a given value of
α, the solution set is readily visualized as a convex set in R3.

In the previous section, we examined the case of
α = α(π/8) and identified two extremal points in the solution
set where each block of the SOS matrix M is of rank 1. When
we carry out the explicit expansion of the sums of squares,
these decompositions hint at an easy generalization to all
values of α for both points. This leads us to the two SOS
decompositions that follow. Let us first define the following
permutations of the CHSH operator:

S ′ = A0(B0 − B1) + A1(B0 + B1) , (22)

S ′′ = A0(B0 + B1) − A1(B0 − B1) , (23)

S ′′′ = A0(B0 − B1) − A1(B0 + B1) . (24)

The two decompositions we find are the following:

Iα = 1

2Imax
α

[
I2

α + (αA1 − S ′)2
]

(25)

and

Iα = 1

2Imax
α

[(
2A0 − Imax

α

B0 + B1

2
+ α

2
S ′′

)2

+
(

2A1 − Imax
α

B0 − B1

2
+ α

2
S ′′′

)2]
. (26)

The two SOS decompositions given in the CHSH case (17),
(18) are limiting cases of (25) and (26). Independently of the
way we arrived at (25) and (26), it is readily verified that they
correspond to valid SOS.

III. APPLICATION TO SELF-TESTING

We conclude by discussing the application of the above
results to self-testing. We know that measuring the state
|ψ〉 = cos θ |00〉 + sin θ |11〉 with the observables (4a) leads
to the maximal value Imax

α of the Bell expression Iα . We
say that this Bell expression provides a robust self-test for
this particular reference state and reference observables if the
converse also holds, in a noise-tolerant way—that is, if an
expected value of Iα close to the maximum Imax

α necessarily
corresponds to measurements involving a state and observables
that are close to the reference, up to a local isometry. More
precisely, we show, following the framework of [11] and [6],
the following. Let 〈Ĩα〉 be the expectation value of the Bell
expression Iα obtained by measuring a physical state |ψ̃〉 with
physical observables Ãx and B̃y . Let |ψ〉 and Ax and By be the
reference state and reference observables corresponding to the
optimal quantum strategies for Iα defined in Sec. II A. Then if
〈Ĩα〉 � Imax

α − ε, there exists a local isometry � = �A ⊗ �B

and a state |junk〉 such that

‖�(Ãx ⊗ B̃y |ψ̃〉) − |junk〉 ⊗ (Ax ⊗ By) |ψ〉‖ � ε′ (27)

for x,y ∈ {−1,0,1}, where the subscript −1 refers to the
identity operator and where ε′ = O(

√
ε). The precise relation

between ε and ε′ is given in Appendix A.
The case of the CHSH inequality (α = 0) was already

considered in [11], where Eq. (27) was obtained but with a
weaker ε′ = O(ε1/4) robustness. Equation (27) in the case
x,y = −1 for arbitrary values of α ∈ [0,2[, corresponding
to a self-test of any partially entangled state (but not of
the associated observables), was considered in [6], where
the authors showed that the use of SOS decompositions
could in principle lead to an optimal ε′ = O(

√
ε) robustness.

This conclusion, however, does not follow from the analysis
presented in [6] due to different shortcomings in the derivation
of intermediate results (see Appendix C for details). Here we
resolve these shortcomings, thanks in particular to the two
SOS decompositions (25) and (26), and establish the robust
self-testing conditions (27), thus further extending the analysis
in [6] to the self-testing of the observables (4a) in addition to
the state (3).

Following closely [6], we now sketch the proof of the robust
self-testing result (27) and refer to Appendix A for details. The
proof proceeds in three steps. First, we define as in [11] the
isometry appearing in (27) as the successive action of a set of
gates, represented as a circuit in Fig. 3, acting on the initial state
|00〉 ⊗ |ψ̃〉. The gates are defined in terms of the measurement
operators Ãx and B̃y as an inversion of (4a) in an attempt to
recover the behavior of the Pauli operators. Specifically, we
define as in (11a)

Z̃A = Ã0, X̃A = Ã1, (28a)

Z̃B = B̃0 + B̃1

2 cos μ
, X̃B = B̃0 − B̃1

2 sin μ
. (28b)
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FIG. 3. The local isometry used to locate the partially entangled
qubit pair in the physical system. The dashed line shows the physical
separation between Alice (top) and Bob (bottom).

Because we need unitary gates in the isometry, a regularization
procedure is applied to normalize the eigenvalues of the
operators: we define Z′

B = Z̃∗
B|Z̃∗

B|−1 where Z̃∗
B is Z̃B with its

zero eigenvalues changed to 1. The same procedure is applied
to define X′

B. Alice’s operators are unchanged because they
are already unitary: Z′

A = Z̃A and X′
A = X̃A. As a side note,

we point out a slight mistake in [11] concerning the above
regularization procedure; see Appendix C.

Second, we observe, as mentioned earlier and as pointed
out in [6], that the existence of a SOS decomposition for
Iα of the form (2) implies that any state |ψ̃〉 and operators
Ãx and B̃y achieving the quantum bound Imax

α must obey
the relations P̃i |ψ̃〉 = 0. Moreover, this property is robust:
if instead the expectation value is 〈Ĩα〉 = Imax

α − ε, then we
have ‖P̃i |ψ̃〉‖ � √

ε. This observation applied to the two SOS
(25) and (26) implies the following identities up to robust error
terms:

(Z̃A − Z̃B) |ψ̃〉 = 0 , (29a)

(sin θX̃A(I + Z̃B) − cos θX̃B(I − Z̃A)) |ψ̃〉 = 0 , (29b)

(Z̃AX̃A − X̃AZ̃A) |ψ̃〉 = 0 . (29c)

For instance, identity (29a) in the case α = 0 is easily seen to
follow from the term P1 = (−ZA + ZB) present in the SOS
decomposition (18). The three identities (29) for arbitrary α

follow in a similar, though more involved, manner from the
two SOS (25) and (26); see Appendix A.

The third step of the proof then examines the action
of the isometry on a state and observables satisfying the
algebraic relations (29). It establishes that in this case the
relations (27) necessarily hold between the inputs and outputs
of the isometry. As in [6], a lengthy series of triangle
inequalities is needed to go from the SOS bounds on ‖Pi |ψ̃〉‖
to the robustness bounds for (29) and finally to (27). We refer
to Appendix A for the derivation, where explicit bounds in
O(

√
ε) for all the identities in (27) are determined.

IV. DISCUSSION

In this work, we provided tools to simplify the search for
sums-of-squares decompositions for Bell operators, exploiting
their symmetries and the knowledge of systems that maximally
violate the associated Bell inequalities. We applied this
approach to find two SOS decompositions for the family
of tilted CHSH inequalities of [2] (as well as some extra
decompositions in the special case of the CHSH inequality).
We made use of these new SOS decompositions to complete
and extend the proof of Yang and Navascués [6] by showing

that a close-to-maximal quantum violation of a tilted CHSH
inequality provides a robust self-test for the reference state and
measurement operators associated with the inequality.

The general form C
√

ε of our distance bounds is optimal
in the noise parameter ε in the sense that a larger exponent for
ε would contradict the hypothesis 〈Iα〉 � ε. These distance
bounds, though, become very sensitive to noise as the
entanglement diminishes. This is not surprising, as taking the
entanglement parameter θ close to zero takes the extremal
quantum behavior for the Iα inequality closer to the local set.

The reference systems for the tilted CHSH inequalities are
particularly relevant to randomness generation, as explained
in [2]. Our self-testing statement may therefore be useful
in establishing device-independent protocols using partially
entangled states as a resource for randomness expansion.

We hope that a similar approach to finding SOS decom-
positions for Bell inequalities will find further applications in
robust property testing in different systems, for instance with
higher-dimensional reference Hilbert spaces.
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APPENDIX A: ROBUST SELF-TEST

1. Introduction

In this section, we show how our SOS results can be used
to provide a robust self-test of the systems that maximally
violate the Iα inequalities. We work in the following setting:
two isolated parties, Alice and Bob, hold black boxes that
each take one of two inputs, respectively x and y, in {0,1},
and each return one of two outputs, a and b, in {+1,−1}.
They wish to make sure that their boxes share the partially
entangled qubit pair |ψ〉 = cos θ |00〉 + sin θ |11〉 and that the
observables characterizing their measurements on their share
of the state are given in terms of the Pauli operators as

A0 = σz, A1 = σx, (A1a)

B0 = cos μ σz + sin μ σx, B1 = cos μ σz − sin μ σx

(A1b)

with tan μ = sin 2θ . In reality, the boxes hold the physical
state |ψ̃〉 and the observables are the Hermitian and dichotomic
(i.e., of eigenvalues ±1) operators Ãx and B̃y—this is general
because there is no assumption made on the dimensionality of
the Hilbert space, which can thus be extended to purify the
state and make the measurements projective.

We follow the framework of McKague et al. [11] and
say that a Bell expression provides a robust self-test for a
reference system if, for a violation of the corresponding Bell
inequality that is ε-close to the quantum maximum (we say
that the system satisfies the self-testing criterion), the state
and measurements that give rise to this violation are close
to the reference, with the error vanishing as ε goes to zero.
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Formally, this is stated as the existence of a local isometry
with respect to Alice and Bob that takes |ψ̃〉 and the action
of their observables Ãx and B̃y to a system close to the
reference |ψ〉 and Ax , By , in tensor product with uncorrelated
degrees of freedom. The precise mathematical statement is the
following: assuming that the self-testing criterion holds, there
exists a local isometry � = �A ⊗ �B and a state |junk〉 such
that

‖�(Ãx ⊗ B̃y |ψ̃〉) − |junk〉 ⊗ (Ax ⊗ By) |ψ〉‖ � exy(ε) (A2)

for all x,y ∈ {−1,0,1} (where operators with subscript −1
refer to the identity), and limε→0 exy(ε) = 0. This is understood
as meaning that there exists a procedure (that need not be
accessible experimentally) that Alice and Bob can follow
locally to perform a change of basis after which the reference
state and operators (or something close) are found in a
four-dimensional subspace of the global Hilbert space.

We show in this section a robust self-test for the ideal
reference system highlighted above for Iα for any α ∈ [0,2[,
with self-testing criterion 〈ψ̃ | Iα |ψ̃〉 = Imax − ε (with Iα ex-
pressed in terms of Ãx and B̃y), leading to explicit self-testing
bounds exy ∈ O(

√
ε). This result uses the same techniques

as [6] to achieve the self-test of the state [statement (A2)
for x = y = −1] and extends the reasoning to the self-test of
operators.

Following [6,11], we define the following operators, essen-
tially an inversion of (A1) for the physical operators:

Z̃A = Ã0, X̃A = Ã1, (A3a)

Z̃B = B̃0 + B̃1

2 cos μ
, X̃B = B̃0 − B̃1

2 sin μ
. (A3b)

We regularize these operators into unitaries to use them in the
isometry. The procedure is as follows: start from the physical
observable, for example Z̃B, and change all 0 eigenvalues to 1,
resulting in a new Hermitian operator Z∗

B. Then, normalize the
eigenvalues by defining Z′

B = Z̃∗
B|Z̃∗

B|−1. This last operator
is by construction unitary, self-adjoint, commutes with Z̃B,
and has the property that Z′

BZ̃B = |Z̃B|. Similarly, we define
X′

B, Z′
A and X′

A, noting that Alice’s regularized X′
A and Z′

A
operators actually coincide with the physical operators X̃A

and X̃B.
We now define the self-testing isometry by representing it

in circuit form in Fig. 3. In general, the action of the isometry
on the physical state |ψ̃〉 is

�(|ψ̃〉) = 1
4 [(I + Z′

A)(I + Z′
B) |ψ̃〉 |00〉

+X′
A(I − Z′

A)(I + Z′
B) |ψ̃〉 |10〉

+X′
B(I + Z′

A)(I − Z′
B) |ψ̃〉 |01〉

+X′
AX′

B(I − Z′
A)(I − Z′

B) |ψ̃〉 |11〉] . (A4)

In this form, the motivation for this isometry is readily
understood. In the reference system with state |ψ〉 and
operators (A1), the X̃ and Z̃ operators above (and their
regularizations) are the Pauli operators σx and σz. Then,
�(|ψ〉) is easily seen to be |00〉 |ψ〉, where the partially
entangled qubit pair |ψ〉 has been extracted onto the ancilla
qubits, leaving behind the state |00〉 in the physical register,
unentangled with the ancilla. Moreover, by manipulating (A4)

using the operators’ properties, it is easily seen in this ideal
setting that acting on the input with the measurement operators
is equivalent to acting on the corresponding ancillae with the
reference operators.

Our goal is to extend this statement to all other systems that
maximally violate the Iα inequality, and show its robustness
to noise by deriving (A2). To do this, we need to show that
the self-testing criterion implies some robust properties on the
action of the physical operators on the state.

2. Application of our SOS decompositions to robust self-testing

We first start by reformulating our two SOS decompo-
sitions and show that, even though they contain only four
independent terms, they still provide a way to test the entire
five-dimensional space of relations that we defined as we
identified candidates for SOS decompositions in Eqs. (10).
Defining the following polynomials in Ax,By :

S1 = Iα, (A5a)

S2 = αA1 − S ′, (A5b)

S3 = 2A0 − Imax
α

B0 + B1

2
+ α

2
S ′′, (A5c)

S4 = 2A1 − Imax
α

B0 − B1

2
+ α

2
S ′′′, (A5d)

with

S ′ = A0(B0 − B1) + A1(B0 + B1) , (A6)

S ′′ = A0(B0 + B1) − A1(B0 − B1) , (A7)

S ′′′ = A0(B0 − B1) − A1(B0 + B1) , (A8)

the two SOS decompositions of Iα are then

Iα = 1

2Imax
α

(
S2

1 + S2
2

) = 1

2Imax
α

(
S2

3 + S2
4

)
. (A9)

We can also express the Si polynomials as si · V with V defined
in (9) and si expressed in terms of the basis vectors (13):

s1 = c r1 − r2 − r3, (A10a)

s2 = −r5 , (A10b)

s3 = −
√

1 + s2 r1 + c√
1 + s2

(r2 − r3) , (A10c)

s4 = −2√
1 + s2

r4 + c√
1 + s2

r5 . (A10d)

The four Si polynomials above do not span the entire
candidate subspace span({Ri}) that we identified in Eqs. (10).
Indeed, while s2 and s4 generate the parity isotypical subspace
spanned by r4 and r5, the other isotypical subspace is not
spanned by the other two vectors. For example, r3 cannot be
decomposed in terms of s1 and s3 alone. We note however that
left multiplication by A1 takes an operator from the parity to
the identity representation subspaces and vice versa. In fact,
the simple relation R3 = A1R4 holds. Because R3 is not a
linear combination of the Si operators while R4 is, we define
S5 = R3 (and s5 = r3), which is then expressed in terms of the
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other four Si as

S5 = A1

(−c

2
S2 −

√
1 + s2

2
S4

)
. (A11)

Suppose now that the physical state |ψ̃〉 and observables
Ãx,B̃y satisfy the self-testing criterion with error ε, i.e.,
the expectation value 〈Ĩα〉 for the Iα Bell expression is
such that 〈Ĩα〉 = Imax

α − ε. Denote as Iα the Bell operator
defined in terms of the observables Ãx and B̃y , and let
{Pi} be a set of polynomials in these observables such
that Imax

α I − Iα ≡ Iα = ∑
i P

†
i Pi . Then, the self-testing

criterion directly implies the bounds 〈ψ̃ | P †
i Pi |ψ̃〉 � ε or,

equivalently, ‖Pi |ψ̃〉‖ � √
ε. Hence, given a sum-of-squares

decomposition of Iα , the action of the observables on the state
is constrained for any state satisfying the self-testing criterion.

The SOS decompositions found in this article are valid for
any Ax and By that are Hermitian and dichotomic, where Ax

and By commute. By their definition and the assumption that
Alice and Bob are separate, the physical observables Ãx and
B̃y match these properties. Hence, we can derive from our two
SOS decompositions some useful bounds on the action of the
observables on the state.

In our SOS decompositions (A9), the Pi operators are
(2Imax

α )−1/2Si . We thus let δ = √
2Imax

α

√
ε so that the self-

testing criterion implies ‖Si |ψ̃〉‖ � δ for i = 1,2,3,4. From
this, we deduce a similar bound that we will need for the action
of S5. Because Ã1 is unitary and appears as a left multiplier in
S5, we can drop it from the norm ‖S5 |ψ̃〉‖ to find the norm of
a linear combination of S2 and S4 acting on |ψ̃〉. We then use
the triangle inequality to bound this by O(

√
ε):

‖S5 |ψ̃〉‖ =
∥∥∥∥−c

2
S2 |ψ̃〉 −

√
1 + s2

2
S4 |ψ̃〉

∥∥∥∥ (A12)

� c

2
‖S2 |ψ̃〉‖ +

√
1 + s2

2
‖S4 |ψ̃〉‖ (A13)

� c + √
1 + s2

2
δ . (A14)

Now that we have O(δ) = O(
√

ε) bounds on ‖Si |ψ̃〉‖ for
all i, by using the triangle inequality we can robustly certify
the action of the entire subspace of operators in S1+AB that
vanish in the ideal setting, which proves to be very useful
in showing the effectiveness and robustness of the self-testing
isometry. Furthermore, we can extend this space beyondS1+AB

by left-multiplication by bounded operators as was done for
S5, which we will use in the self-test of measurements.

Recalling our general SOS decompositions, we notice that
the four Si polynomials in addition to the S5 polynomial (all
formulated in terms of Ãx and B̃y) can be linearly combined to
form the following operators, used in [6] to prove the self-test:

Z̃A − Z̃B = −c

2s2
S1 −

√
1 + s2

2s2
S3 − c

s2
S5 (A15)

sin θX̃A(I + Z̃B) − cos θX̃B(I − Z̃A),

=
√

1 + s2

8 sin θ
((c − 2)S2 +

√
1 + s2S4) . (A16)

In anticipation to the measurement self-test, we add to this
list the anticommutator between Alice’s two observables. This
polynomial is not in S1+AB , but we can use left-multiplication
to decompose it in terms of Si :

Z̃AX̃A + X̃AZ̃A =
√

1 + s2

4s2
[−2S2 + A0(−cS2 +

√
1 + s2S4)

+A1(cS1 +
√

1 + s2S3)] . (A17)

We note that the anticommutator {Z̃B,X̃B} is 0 from definition
(A3b). We will also need the following, which we write in
terms of S5 for the sake of briefness:

X̃B − 1

s
X̃A(I − cZ̃B) =

√
1 + s2

2s
A1S5 . (A18)

We now write down the explicit robustness bounds derived
from the relations above in the same fashion as (A14):

‖(Z̃A − Z̃B) |ψ̃〉‖ � δ1, (A19)

‖[sin θX̃A(I + Z̃B) − cos θX̃B(I − Z̃A)] |ψ̃〉‖ � δ2, (A20)

‖[X̃B − s−1X̃A(I − cZ̃B)] |ψ̃〉‖ � δ5, (A21)

‖(Z̃AX̃A + X̃AZ̃A) |ψ̃〉‖ � δA
a , (A22)

with

δ1 = (1 + c)
c + √

1 + s2

2s2
δ, (A23)

δ2 =
√

1 + s2

8 sin θ
((2 − c) +

√
1 + s2)δ, (A24)

δ5 =
√

1 + s2(c + √
1 + s2)

4s
δ, (A25)

δA
a =

√
1 + s2

2s2
(1 + c +

√
1 + s2)δ. (A26)

We now prove that the isometry defined earlier provides
a robust self-test for our reference system. This consists in
applying a series of transformations on bounds (A19)–(A22)
in order to reach bounds (A2). Concretely, in order to prove
the self-testing bounds, the action of the unitary operators that
constitute the isometry must be shown to be restricted by the
self-testing criterion. If there were no need for regularization,
bounds (A19)–(A22) would directly apply to the isometry. As
we will show, the regularization procedure applied to define
the unitaries in the isometry only introduces new error terms of
the same order of O(

√
ε) as the bounds for the unregularized

operators.

a. Self-testing the state

We focus in this section on the claim of [6], that is, the
self-testing bound (A2) for the state (i.e., x = y = −1).

We start by showing an analog of inequality (A19) for the
regularized operators. To do so, we use the triangle inequality
to separate ‖(Z′

B − Z′
A) |ψ̃〉‖ into two terms. The first one is

052111-8



SUM-OF-SQUARES DECOMPOSITIONS FOR A FAMILY OF . . . PHYSICAL REVIEW A 91, 052111 (2015)

bounded as follows:

‖(Z′
B − Z̃B) |ψ̃〉‖ = ‖Z′

B(I − |Z̃B|) |ψ̃〉‖ (A27)

= ‖(I − |Z̃AZ̃B|) |ψ̃〉‖ (A28)

� ‖(I − Z̃AZ̃B) |ψ̃〉‖ (A29)

� δ1. (A30)

In the first equality, we used the identity Z′
B|Z̃B| = Z̃B that

we highlighted when defining the regularized operators. In the
second equality, we use the unitarity of Z′

B and the fact that
the absolute value of an operator is unchanged by acting on
the left with a unitary operator, here Z̃A. The last inequality
uses the unitarity of Z̃A again to recover (A19). Recalling that
Z′

A = Z̃A, we thus have

‖(Z′
B − Z′

A) |ψ̃〉‖
� ‖(Z′

B − Z̃B) |ψ̃〉‖ + ‖(Z̃B − Z′
A) |ψ̃〉‖ (A31)

� 2δ1. (A32)

We then prove a bound for X′
B similar to (A30), which

requires a different approach. We note that

cos2 μ Z̃2
B + sin2 μ X̃2

B = I , (A33)

and use it in the following chain:

‖(X′
B − X̃B) |ψ̃〉‖ = ‖(I − |X̃B|) |ψ̃〉‖ (A34)

� ‖(I + |X̃B|)(I − |X̃B|) |ψ̃〉‖ (A35)

= cot2(μ)‖(I − Z̃2
B) |ψ̃〉‖ (A36)

= cot2(μ)‖(I + Z̃AZ̃B)(I − Z̃AZ̃B) |ψ̃〉‖
(A37)

� cot2(μ)(1 + (cos μ)−1)δ1 ≡ δ4. (A38)

The first equality uses unitarity and the property X′
B|X̃B|=X̃B.

The first inequality uses the operator inequality I + |X̃B| � I.
The second equality uses (A33). The last inequality uses (A33)
again to put a bound on ‖Z̃B‖∞.

We now turn to the self-testing statement. In the isometry
output (A4), because Z′

A and Z′
B have near-identical action

over the state by bound (A32), the dichotomicity of the regu-
larized operators makes the two middle terms approximately
vanish. In the first and last terms, for the same reason, the
projectors (I ± Z′

A)/2 and (I ± Z′
B)/2 are nearly identical, and

idempotence can be used. In the first term, the error introduced
by this approximation is bounded as follows:∥∥∥∥

(
I + Z′

A

2

I + Z′
B

2
− I + Z′

A

2

)
|ψ̃〉

∥∥∥∥
= 1

4
‖(I + Z′

A)((I + Z′
B) − (I + Z′

A)) |ψ̃〉‖ (A39)

� 1

2
‖Z′

B − Z′
A‖ � δ1. (A40)

We used the fact that (I + Z′
A)2 = 2(I + Z′

A) in the first
equality, and the operator bound ‖I + Z′

A‖∞ � 2 in the first
inequality. By the same reasoning, and using the fact that X′

A
and X′

B are unitary to discard them from the norm, the fourth

term leads to the same bound:∥∥∥∥X′
AX′

B

(
I − Z′

A

2

I − Z′
B

2
− I − Z′

A

2

)
|ψ̃〉

∥∥∥∥ � δ1 . (A41)

The two middle terms are similarly bounded using the
orthogonality of complementary projectors:∥∥∥∥I ∓ Z′

A

2

I ± Z′
B

2
|ψ̃〉 − 0

∥∥∥∥
� 1

4
‖(I ∓ Z′

A)((I ± Z′
B) − (I ± Z′

A)) |ψ̃〉‖ (A42)

� δ1. (A43)

Putting these bounds together, we deduce that replacing the
isometry output with the state

I + Z′
A

2
|ψ̃〉 |00〉 + X′

AX′
B
I − Z′

A

2
|ψ̃〉 |11〉 (A44)

yields error terms bounded by 4δ1. We note that this state is
only approximately normalized.

We now take this approximation further to show that, as
in the ideal case, the physical registers in the two terms are
(approximately) proportional to the same state, which we call
|junk〉 and define as

|junk〉 = β−1 I + Z′
A

2 cos θ
|ψ̃〉 , (A45)

where β � 0 is such that ‖|junk〉‖ = 1. We will later show that
β � 1. The first term in (A44) is therefore β cos θ |junk〉 |00〉.
We show proportionality for the second term:∥∥∥∥X′

AX′
B
I − Z′

A

2
|ψ̃〉 − β sin θ |junk〉

∥∥∥∥
=

∥∥∥∥
(

X′
AX′

B
I − Z′

A

2
− tan θ

I + Z′
A

2

)
|ψ̃〉

∥∥∥∥ (A46)

�
∥∥∥∥

(
X′

B
I − Z′

A

2
− X′

A tan θ
I + Z′

B

2

)
|ψ̃〉

∥∥∥∥
+

∥∥∥∥ tan θ

(
Z′

B − Z′
A

2

)
|ψ̃〉

∥∥∥∥ . (A47)

The first equality uses the definition of |junk〉. The inequality
uses the triangle inequality and the unitarity of X′

A on the first
term. The second term can be bounded by (A32). We can see
that the first term is similar to bound (A20), from which we
now derive an equivalent for the regularized operators:

‖(cos θX′
B(I − Z′

A) − sin θX′
A(I + Z′

B)) |ψ̃〉‖
� ‖(cos θX̃B(I − Z̃A) − X̃A sin θ (I + Z̃B)) |ψ̃〉‖

+‖cos θ (I − Z′
A)(X′

B − X̃B) |ψ̃〉‖
+‖sin θX′

A(Z̃B − Z′
B) |ψ̃〉‖ (A48)

� δ2 + 2δ4 cos θ + δ1 sin θ ≡ δ′
2. (A49)

The first inequality uses two triangle inequalities, the identities
Z′

A = Z̃A and X′
A = X̃A and the commutation of these

operators with Bob’s.
All in all, (A47) is thus bounded by tan θδ1 + δ′

2/ cos θ , and
we end up with the following bound showing an approximate
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tensor product structure on the output state:

‖�(|ψ̃〉) − β |junk〉 |ψ〉‖ � (4 + tan θ )δ1 + δ′
2

2 cos θ
≡ δ̄ .

(A50)
The last error term to recover the state self-testing statement
(A2) is to show that β � 1. To do so, we bound 1 − β from
above and below. First, using the property that the isometry
preserves the norm, we find

1 = ‖�(|ψ̃〉)‖ (A51)

� ‖�(|ψ̃〉) − β |junk〉 |ψ〉‖ + β‖|junk〉 |ψ〉‖ (A52)

� δ̄ + β. (A53)

Similarly, we have

β = ‖β |junk〉 |ψ〉‖ (A54)

� ‖β |junk〉 |ψ〉 − �(|ψ̃〉)‖ + ‖�(|ψ̃〉)‖ (A55)

� δ̄ + 1. (A56)

Put together, β is constrained as |1 − β| � δ̄. Using this
and (A50), we finally complete the proof for the self-testing
statement on the state

‖�(|ψ̃〉) − |junk〉 |ψ〉‖ � 2δ̄ . (A57)

b. Self-testing the measurements

The proof for the self-testing statements involving operator
actions in (A2) builds on the previous section. As a first step, we
give approximations on the output of the isometry when acting
on the input with the regularized operators, and then further
approximate by substituting them with the nonregularized
operators.

This is where we need the approximate anticommutation
of X′

A and Z′
A when acting on the state, given by inequality

(A22). We will also need to prove a similar anticommutation
bound for X′

B and Z′
B. As we noted earlier, the nonregularized

X̃B and Z̃B anticommute by definition, but the regularization
procedure breaks this. As a result, we can only prove that
{X̃B,Z̃B} |ψ̃〉 � 0, which will require a number of successive
approximations.

The use of anticommutation is made clear when looking
at the action of the isometry (A4) on X′

A |ψ̃〉 or X′
B |ψ̃〉. For

example (the reasoning for the other operator is the same),

�(X′
A |ψ̃〉) = 1

4 [(I + Z′
B)(I − X′

AZ′
AX′

A) |ψ̃〉 |10〉
+ X′

A(I + Z′
B)(I + X′

AZ′
AX′

A) |ψ̃〉 |00〉
+ X′

B(I − Z′
B)(I − X′

AZ′
AX′

A) |ψ̃〉 |11〉
+ X′

AX′
B(I − Z′

B)(I + X′
AZ′

AX′
A) |ψ̃〉 |01〉] .

(A58)

The approximate anticommutation of X′
A and Z′

A means that
X′

AZ′
AX′

A |ψ̃〉 � −Z′
A |ψ̃〉, and this output only differs from

�(|ψ̃〉) by the action of σx on the first ancilla qubit, and a
small error term. On the other hand, it is easily seen that the
isometry applied on Z′

A |ψ̃〉 or Z′
B |ψ̃〉 yields exactly the output

�(|ψ̃〉) with the σz Pauli operator acting on the corresponding
ancilla.

We now prove the anticommutation bound for Bob’s
operators. Compared to the other bounds we have derived

so far, this is not as immediate as it might seem; indeed, while
we know by (A30) and (A38) that the nonregularized and
regularized X and Z operators on Bob’s side are approximately
interchangeable, this is only the case when they act on the
physical state |ψ̃〉. Thus, we cannot deduce from this alone that
{X′

B,Z′
B} |ψ̃〉 � {X̃B,Z̃B} |ψ̃〉 = 0 because not all unitaries in

the anticommutator act directly on the state. Instead, what we
do is to approximate the rightmost operator in each term of
the anticommutator by its unnormalized counterpart by using
(A30) and (A38), and translate the action of Z̃B and X̃B into one
that commutes with the leftmost operators using respectively
(A19) and (A21). Then, the leftmost operators can in turn be
approximated because they now act on the state directly.

The steps outlined above are carried out as follows:

‖{X′
B,Z′

B} |ψ̃〉‖
� 2δ1 + ‖(Z̃A + Z′

B)X′
B |ψ̃〉‖ (A59)

� 2δ1 + 2δ4 + 2δ5

+ s−1‖(Z̃A + Z′
B)X̃A(I − cZ̃B) |ψ̃〉‖ (A60)

= 2δ1 + 2δ4 + 2δ5

+s−1‖(I − cZ̃B)(Z̃A + Z′
B)X̃A |ψ̃〉‖ (A61)

� 2δ1 + 2δ4 + 2δ5

+ 1 + c/cos μ

s
‖Z̃AX̃A + X̃AZ′

B |ψ̃〉‖ (A62)

� 2δ1 + 2δ4 + 2δ5 + 1 + c/cos μ

s

(
2δ1 + δA

a

)
(A63)

≡ δB
a . (A64)

In the first inequality, we used (A32). The second inequality
uses (A38) followed by (A21), which lets us commute this
approximation of X′

B to the left of the operator product in the
first equality. Next, in the third inequality, the operator bound
‖Z̃B‖∞ � (cos μ)−1 that we used to derive (A38) is used again.
Finally, we use (A32) followed by Alice’s anticommutation
bound (A22) to reach the last inequality.

Thus, combining the anticommutation bounds with the
regularization approximations for Bob’s operators (A30) and
(A38), we find

‖�(Z̃A |ψ̃〉) − σ A
z �(|ψ̃〉)‖ = 0, (A65)

‖�(X̃A |ψ̃〉) − σ A
x �(|ψ̃〉)‖ � 2δA

a , (A66)

‖�(Z̃B |ψ̃〉) − σ B
z �(|ψ̃〉)‖ � δ1, (A67)

‖�(X̃B |ψ̃〉) − σ B
x �(|ψ̃〉)‖ � δ4 + 2δB

a . (A68)

In the last two bounds, we have also used the fact that �

preserves the norms and is linear, such that for example
‖�(Z̃B |ψ̃〉) − �(Z′

B |ψ̃〉)‖ = ‖(Z̃B − Z′
B) |ψ̃〉‖.

Our goal is to reach bounds from the joint action of
the observables Ãx and B̃y . So far, we can only compute
bounds for the action of one party at a time. Indeed, to bound
‖�(B̃y |ψ̃〉) − By�(|ψ̃〉)‖ we can use definition (A1a) for By ,
the triangle inequality, and the bounds above for the action of
Z̃B and X̃B.

We now show that with joint action of both parties, Alice’s
operator is easily dealt with. First, consider �(Ã0B̃y |ψ̃〉).
As with (A65), this is exactly the same as A0�(B̃y |ψ̃〉)
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because Ã0 = Z′
A and A0 = σ A

z . Next is �(Ã1B̃y |ψ̃〉), for
which it is easily seen that the reasoning that we used to
reach (A66) is unchanged. Indeed A1 = X′

A, and this state
is identical to (A58) with |ψ̃〉 replaced with B̃y |ψ̃〉. We use
commutation between Alice and Bob to move B̃y to the left of
(I ± X′

AZ′
AX′

A) and, because ‖B̃y‖∞ = 1, we find

‖�(Ã1B̃y |ψ̃〉) − A1�(B̃y |ψ̃〉)‖ � 2δA
a . (A69)

We have thus showed that (A65) and (A66) are unchanged if
we replace |ψ̃〉 with B̃y |ψ̃〉 in both terms.

In addition to the above, we will use one last approximation
to replace the isometry output �(|ψ̃〉) with |junk〉 |ψ〉, at the
cost of the additional error term of 2δ̄ from (A57). We finally
find the following bounds exy(ε) in the self-testing statement
(A2), where we define exy = e′

xy + 2δ̄:

e′
−1,−1 = e′

0,−1 = 0 , (A70)

e′
1,−1 = 2δA

a , (A71)

e′
−1,0 = e′

−1,1 = e′
0,0 = e′

0,1

= δ1 cos μ + (δ4 + 2δB
a ) sin μ , (A72)

e′
1,0 = e′

1,1 = 2δA
a + e′

−1,0 . (A73)

APPENDIX B: ADDITIONAL SOS FOR CHSH

By guessing values for the parameters in (14), other
nontrivial SOS decompositions than (17) and (18) can be
found.

We report here a combination that leads to a SOS matrix
of rank 4 which is extremal in the set represented in Fig. 3,
i.e., it cannot be decomposed as a convex combination of SOS
matrices of the same form as (14). With the values q = 1/4,
μ = 5/8, λ = 1/4, the square root of M is rather well-behaved,
and leads to the following SOS decomposition:

I0 = 1

8
√

2
[2(ZA − ZB)2 + 5(XA − XB)2

+ 2(ZAXB + XAZB)2

+ (3 − 2ZAZB − XAXB)2] . (B1)

An additional symmetry of the CHSH inequality can be
exploited to reach an additional SOS decomposition: swapping
X and Z (i.e., swapping the observables A0 and A1 and
changing B1 to −B1) leaves I0 invariant, and therefore

I0 = 1

8
√

2
[2(XA − XB)2 + 5(ZA − ZB)2

+ 2(ZAXB + XAZB)2

+ (3 − 2XAXB − ZAZB)2] , (B2)

for which the parameter values are q=1/4, μ=1/4, λ=5/8.
It is not clear whether either of these decompositions yields

an easy generalization to the whole Iα family.

APPENDIX C: SHORTCOMINGS IN PREVIOUS RESULTS

1. CHSH self-test

In their robust self-test proof for the maximal CHSH
violation, McKague et al. [11] introduce the isometry used

in [6] and in the present article, with the same regularization
construct we used on operators (A3) to build the unitaries
that make up the isometry. The proof technique is the same
as in this article: they identify from the self-testing criterion
a series of constraints on the action of the observables in
the system, that are then combined to form the self-testing
statement. However, in their self-test of the observables, the
authors rely on the anticommutation relation {X′

B,Z′
B} = 0 on

Bob’s regularized operators. As we noted, although X̃B and
Z̃B (in our notation) anticommute by definition, this property
is lost to regularization. Indeed, the nonzero eigenvalues of
anticommuting operators come in pairs of opposite sign,
which means that nonsingular anticommuting operators do
not exist in odd-dimensional Hilbert spaces. In fact, if B0 and
B1 do not each have as many +1 as −1 eigenvalues, their
eigenspaces must share a nontrivial intersection, which will be
an eigenspace for both X′

B and Z′
B (with nonzero eigenvalue

because of regularization) where these two operators can
therefore not anticommute. Hence, in their proof in Appendix
B of [11], while B ′

0 ± B ′
1 anticommute, it is not true anymore

when their zero eigenvalues are replaced with 1.
However, this oversight only affects the final result by error

terms of the same robustness order as they claim. Indeed, as
they show in the proof for their second self-testing criterion
based on Mayers and Yao’s work, the anticommutation of
X′

B and Z′
B in front of the physical state |ψ ′〉 can still be

given a robustness bound. This follows from the O(
√

ε) bound
on the anticommutation of Alice’s X′

A and Z′
A operators and

the O(ε1/4) bounds on the replacement of Bob’s X′ and Z′
operators by Alice’s, which can be combined to transform
Alice’s anticommutation bound to one for Bob with O(ε1/4)
order. Although this is worse than the ε2 ∈ O(

√
ε) that they

use in their Theorem 1, the final order in the self-testing bounds
is unchanged by this correction because they already contain
O(ε1/4) terms from Alice’s anticommutation bound.

2. Partially entangled state self-test

In their proof for the self-test statement (A2) on the state
(i.e., x = y = −1), Yang and Navascués introduce a SOS
decomposition for Iα different from ours [6]. They write the
SOS polynomials Pi as products qi · V with V defined as in (9),
and qi decomposed in terms of five nine-dimensional vectors
ri different from the ones we defined in (13). We reproduce
here the qi they list in their article, with a change in q2 which
originally contained a typo that was communicated to us [15]:

q1 = γ

20
√

2
(r5 − r4) − 2

5
r1, (C1)

q2 =
√

25
√

1 + s2 − 9 − γ 2/8

10s
(r1 + cr2 − cr3) (C2)

q3 = 2γ − 25c
√

3 − c

30
√

2
r1 + 3

10
(r5 − r4) , (C3)

q4 = 35

100
(r3 + r2) − 5c

√
3 − c

14
√

2
r1 , (C4)

q5 =
√

49γ 2 + 9800cγ
√

3 − c + ω

420
r1 , (C5)
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with c = cos(4θ ); γ =
√

(75 + 25c)
√

6 − 2c − 72; and
ω = 18 125 cos(8θ ) − 72 500 cos(4θ ) − 108 706. Their SOS
is then defined as

Iα =
5∑

i=1

(qi · V)†(qi · V) . (C6)

This decomposition is problematic. Indeed, the vector q5

is real only in the interval in θ (or equivalently in α) where
the expression inside the square root in (C5) is positive. This
corresponds approximately to θ ∈ [0.075 74,0.730 14], which
is not the full interval ]0,π/4] = ]0,0.785 40]. Outside of that
interval, a change of sign of the fifth term in (C6) is actually
required to recover the left-hand side. However, this change
means that the decomposition ofIα , while valid, is not a sum of
squares anymore, and therefore it does not have the properties
required for the self-test proof. The value θ = π/8 is within
the validity interval; we represent the SOS in Fig. 2 as a red dot.

Another issue with this decomposition is that the qi vectors
have a linear dependency that went unnoticed in the original
article. This can be seen in the fact that all five qi only depend
on r4 and r5 through their difference r5 − r4, which means
that the qi only span a four-dimensional subspace. Hence, this
is insufficient to certify the five operator identities in S1+AB .
Notably, forming the operator on the left hand side of (A16)
in the present article from their polynomials qi · V requires a
decomposition of r5 + r4 in terms of the qi vectors as noted
in the supplemental information to their article, which is not
possible.

The linear dependency between the qi is also visible in
Fig. 2. Indeed, the points on the boundary of this set correspond
to singular SOS matrices M , as the nonsingular matrices, being
strictly positive definite, do not saturate the inequalities that
define the boundary. Therefore, for this SOS decomposition,
M is singular (i.e., of rank at most 4 here) and the qi can
therefore not be linearly independent.

TABLE I. Vertex SOS decompositions for CHSH.

C1 λ = 0, μ = 0, q = 0

M = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C7)

I0 = 1
2
√

2

[
R2

2 + R2
3

] = 1√
2
[(−I + ZAZB)2 + (−I + XAXB)2] ; (C8)

C2 λ = 1, μ = 0, q = 0

M = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C9)

I0 = 1
2
√

2

[
R2

1 + R2
3

] = 1√
2
[(−ZA + ZB)2 + (−I + XAXB)2] ; (C10)

C3 λ = 0, μ = 1, q = 0

M = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C11)

I0 = 1
2
√

2

[
R2

2 + R2
4

] = 1√
2
[(−I + ZAZB)2 + (−XA + XB)2] ; (C12)

C4 λ = 1, μ = 1, q = 0,

M = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , (C13)

I0 = 1
2
√

2

[
R2

1 + R2
4

] = 1√
2
[(−ZA + ZB)2 + (−XA + XB)2] ; (C14)

C5 λ = 0, μ = 0, q = 1/2

M = 1
2
√

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 1/2 1/2 0 0
0 1/2 1/2 0 0
0 0 0 0 0
0 0 0 0 1/2

⎞
⎟⎟⎟⎟⎠ , (C15)

I0 = 1
4
√

2

[
(R2 + R3)2 + R2

5

]
= 1

4
√

2
[(−2

√
2 I + I0)2 + 2(ZAXB + XAZB)2] = 1

4
√

2

[
I2

0 + S ′2] , (C16)
where S ′ = A0(B0 − B1) + A1(B0 + B1).
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