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Direct measurement of general quantum states using strong measurement
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The direct state measurement (DSM) based on the weak measurement has the advantage of simplicity,
versatility, and directness. However, the weak measurement will introduce an unavoidable error in the
reconstructed quantum state. We modify the DSM by replacing the weak coupling between the system and
the pointer by a strong one, and present two procedures for measuring quantum states, one of which can give
the wave function or the density matrix directly. We can also measure the Dirac distribution of a discrete system
directly. Furthermore, we propose quantum circuits for realizing these procedures, and the main body of the
circuits consists of Toffoli gates. By numerical simulation, we find that our scheme can eliminate the biased error
effectively.
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I. INTRODUCTION

The quantum state is described by the wave function
for pure states and the density operator for both pure and
mixed states. If we know the wave function or the density
matrix of a quantum system, then measurement outcomes
can be predicted. Conversely, the quantum state information
can also be extracted with appropriate measurements. The
experiment method to reconstruct the wave function or the
density matrix of an unknown quantum state by measurement
is called quantum state tomography (QST). The ability of
high-fidelity QST is demanded in many areas of technology
such as quantum computing, quantum cryptography, and
quantum communications. In the past decades, different
QST schemes have been presented [1–5]. The standard QST
techniques require designing processes to measure a complete
set of noncommutating observables of the system and then
determine the quantum state that is most compatible with the
measurement results. The requirement may be very demanding
for the systems with a large number of degrees of freedom.
The direct state measurement (DSM) using weak measurement
proposed by Lundeen et al. [6,7] takes a different approach,
in which a value proportional to the amplitude of the wave
function can be measured directly. The DSM using weak
measurement is very simple in the experiment realization: it
only consist of a weak coupling of the system with an external
pointer, a postselection of the final state of the system, and a
projective measurement of two complementary observables
of the pointer. However, The essential weak coupling in
the experiment makes the DSM a biased procedure, which
introduces an unavoidable error in the reconstructed quantum
state [8].

Alternatively, Di Lorenzo [9,10] demonstrates that an exact
quantum state tomography can be accomplished efficiently
by making a sequential measurement of two pointers. The
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procedure relies on the quasicharacteristic function, i.e., the
Fourier transform of the Wigner function.

In this paper, we make an improvement over the state
reconstruction protocol in [7]. We focus on the quantum state
measurement in discrete systems (spins or qubits), and we use
one qubit as the ancillary pointer. The pointer in the DSM can
be continuous [11,12] or discrete [7,8], and a qubit pointer
is as efficient as an infinite-dimensional continuous-variable
pointer system [8]. We modify the DSM scheme by replacing
the weak coupling between the system and the pointer by
a strong one, and this can also eliminate the biased error
as in [9,10]. The main differences of our schemes with that
of [9,10] are as follows. (i) We use only one pointer, and this
pointer is simply a qubit. (ii) Our schemes directly measure
the wave function or the Dirac distribution [13], while [9,10]
measure the Fourier transform of the Wigner function. We
present two measurement procedures for reconstructing the
state of a quantum system. In experiments, the coupling can
be implemented by n-qubit Toffoli gates and local rotations on
individual qubits.

II. WEAK VALUE AND DIRECT STATE MEASUREMENT

We first briefly introduce the weak values and direct state
measurement. The formalism of weak values was introduced
by Aharonov and co-workers [14]. For an observable Â, the
expression

〈A〉W = 〈ψf |Â|ψi〉
〈ψf |ψi〉 (1)

is called the weak value of observable Â for a quantum
system preselected in state |ψi〉 and postselected in state
|ψf 〉. Weak values characterize the relative correction to a
detection probability |〈ψf |ψi〉|2 due to a small intermediate
perturbation Û (ε) = exp(−iεÂ) that results in a modified
detection probability |〈ψf |Û (ε)ψi〉|2 [15]. The weak value
can be determined by weak measurements [7,14,16]. In
the standard von Neumann model, an ancillary pointer is
introduced to interact with the system upon which we want
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to measure Â. The interaction Hamiltonian is

Hint = gÂp̂, (2)

where p̂ is the momentum operator of the pointer. Assuming
that initially the system is prepared in the state |ψi〉 and the
pointer is in the state |φ〉, then after interaction time t , the
system and pointer will be in state exp(−igtÂp̂)|ψi〉 |φ〉. By
postselecting the system in the state |ψf 〉, the pointer state
(subnormalized) will be

|φf 〉 = 〈ψf | exp(−igtÂp̂)|ψi〉 |φ〉 . (3)

If the interaction is weak enough such that the first-order
approximation is satisfactory, we have

|φf 〉 � 〈ψf |I − igtÂp̂|ψi〉 |φ〉
= 〈ψf |ψi〉(I − igt〈A〉W p̂) |φ〉
� 〈ψf |ψi〉 exp(−igt〈A〉W p̂) |φ〉 , (4)

where I is the identity operator. The subsequent measurement
results on the pointer will depend on 〈A〉W , and we can
measure 〈A〉W in this way. The procedure is similar for discrete
pointer [7,8].

One of the applications of weak values is that they can
be used to directly determine a quantum state. Considering
an N -dimensional discrete Hilbert space. We choose an
orthonormal basis {|ak〉(k = 0,1, . . . ,N − 1)} in which wave
function will be measured. There exists a complementary ba-
sis {|cα〉(α = 0,1, . . . ,N − 1)} such that 〈ak|cα〉 = ωαk/

√
N ,

where ω = ei2π/N . {|cα〉} is the Fourier transform of {|ak〉};
|cα〉 = 1/

√
N

∑k=N−1
k=0 exp (i2παk/N )|ak〉. {|ak〉} and {|cα〉}

are the so-called mutually unbiased bases (MUB) [17]. For
pure state, we just need state |c0〉 such that 〈c0|ak〉 = 1/

√
N

for all k. The wave function |ψ〉 is expanded in the basis
{|ak〉} as

|ψ〉 =
∑

k

〈ak|ψ〉 |ak〉 . (5)

By multiplying a constant ν = 〈c0|ak〉 / 〈c0|ψ〉 =
[
√

N 〈c0|ψ〉]−1 (which is independent of k) on both
sides, we obtain

ν |ψ〉 =
∑

k

〈	ak
〉W |ak〉 , (6)

where 〈	ak
〉W = 〈c0|	ak

|ψ〉
〈c0|ψ〉 is just the weak value of the project

operator 	ak
= |ak〉 〈ak|. So each complex amplitude of the

pure state |ψ〉 is proportional to the weak value 〈	a〉W . By
stepping through all the projector 	ak

= |ak〉 〈ak| in a series
of weak measurement experiments to measure 〈	ak

〉W , one
can directly measure |ψ〉 in the basis {|ak〉}.

III. STANDARD MEASUREMENT SCHEME

In the above weak value measurement procedures, the in-
teraction must be weak enough to fulfill the linear relationship
in Eq. (4), i.e., the high-order corrections can be neglected;
this will introduce an unavoidable error in the reconstructed
state [8]. Here we propose a modified scheme to eliminate this
error. We use the fact that the weak value of a projector can be
obtained by standard measurement.

A. Pure state measurement scheme

First we consider the situation of pure states. The bullet
point algorithm of the procedure is as follows.

(a) Implement the unitary coupling Uk = exp(−iπ/2 |ak〉
〈ak| ⊗ σy) between the system and the pointer qubit.

(b) Project the system in the basis {|ck〉} complementary to
{|ak〉}. If the result state is |c0〉, then measure the expectation
value 〈σx〉 (〈σy〉, 〈σz〉) of the pointer qubit; otherwise, discard
the result.

(c) Calculate the weak value 〈	ak
〉W from the data collected

in step (b).
(d) Repeat (a), (b), and (c) for other k till we get all weak

values 〈	ak
〉W (k = 1,2, . . . ,N ); then from Eq. (6), we get the

wave function.
Now we discuss the procedure in more details. First, let the

system interact with the pointer qubit though a unitary coupling
Uk = exp(−iθ	ak

⊗ σy) (here σy is the Pauli operator of the
pointer qubit). It should be pointed out that for a general
operator, to isolate the weak value, the coupling strength θ

must be small enough to make Eq. (4) hold. However, for the
projection operator 	ak

, this constraint can be released and
here we take θ = π/2. Assuming that initially the system is
prepared in the state |ψi〉 and the pointer qubit is in the state |0〉,
then after the interaction the state of the joint system will be

Uk|ψi〉|0〉 = (
I−	ak

)|ψi〉|0〉 + 	ak
|ψi〉 exp

(
− i

π

2
σy

)
|0〉.

(7)

When a postselection |c0〉 is performed on the system, the
pointer state (unnormalized) is collapsed to

|φf 〉 = 〈c0|ψi〉
((

1 − 〈
	ak

〉
W

)|0〉 + 〈
	ak

〉
W

|1〉). (8)

To obtain the weak value 〈	ak
〉W , we need to measure the

expectation values of the Pauli operators σx , σy , and σz of
the pointer qubit. Simple calculation gives the following
expression:

〈
	ak

〉
W

=
(

1

2
− 〈σz〉k

2(1 + 〈σx〉k)

)
+ i

〈σy〉k
2(〈σx〉k + 1)

. (9)

Again by stepping through all 	ak
we can obtain all

amplitudes of a pure state |ψ〉 in the basis {|ak〉}.

B. General state measurement scheme

Next we show how to determine the density matrix ρ for a
general quantum state of the system. The bullet point algorithm
of the procedures is as follows.

(a) Implement the unitary coupling Uk = exp(−iπ/2 |ak〉
〈ak| ⊗ σy) between the system and the pointer qubit.

(b) Project the system in the basis {|ck〉} complementary to
{|ak〉}. If the result state is |cα〉, measure the expectation value
of σx (σy , σz) of the pointer qubit, and value is denoted by
〈σx〉α,k (〈σy〉α,k , 〈σz〉α,k).

(c) Repeat (a) and (b) for all other k and α.
(d) Calculate density matrix of the unknown state from the

data collected in step (c).
As above, we also couple the system to the pointer

initialized in the state |0〉 with the unitary operation Uk .
Then we make a projective measurement on the system in the
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complementary basis {|cα〉}. If the result state of the system is
|cα〉, then the state of the pointer qubit will be

(α,k) =
(∑′

lm ρmlω
α(l−m) ∑′

l ρlkω
α(k−l)∑′

l ρklω
α(l−k) ρkk

) /
R(α,k),

(10)

where ρml = 〈am|ρ|al〉 is the matrix element in the basis {|ak〉}.
R(α,k) = ∑′

lm ρmlω
α(l−m) + ρkk is the normalized factor and

the prime means that l �= k, m �= k in the summations. The
expectation values of σx, σy , and σz of the pointer are

〈σx〉α,k = 2 Re
(∑′

l ρklω
α(l−k)

)
R(α,k)

, (11)

〈σy〉α,k = 2 Im
(∑′

l ρklω
α(l−k)

)
R(α,k)

, (12)

〈σz〉α,k = 1 − 2ρk,k

R(α,k)
, (13)

where the subscript α,k means that the expectation values are
measured under the situation of the unitary coupling Uk and
the system state |cα〉 after measurement. From the above three
equations, we have∑

l

ρklω
α(l−k) = R(α,k)

2
(〈σx〉α,k + i〈σy〉α,k − 〈σz〉α,k + 1).

(14)

The density matrix ρ can be recovered by inverting the above
equation,

ρkq = 1

2N

∑
α

ωα(k−q)R(α,k)(〈σx〉α,k + i〈σy〉α,k − 〈σz〉α,k + 1).

(15)

The value of R(α,k) can be determined from Eq. (11) and
Eq. (13), and the result is

R(α,k) = 2

(1 + 〈σx〉α,k)
∑

m
1−〈σz〉α,m

1+〈σx 〉α,m

. (16)

In writing the equation we have used the fact that R(α,k) +
2 Re(

∑′
l ρklω

α(l−k)) = ∑
l,m ρmlω

α(l−m) is independent of k

and
∑

k ρkk = 1. Repeating the experiment to collect the data
of 〈σx〉α,k , 〈σy〉α,k , and 〈σz〉α,k for all α and k, we can get the
whole density matrix from Eq. (15) and Eq. (16).

C. Quantum circuit and numerical simulation

The quantum circuit for realizing the above procedure is de-
picted in Fig. 1, which presents an incredible experimental sim-
plicity of the DSM scheme. In the circuit, we choose the com-
putational basis as {|cα〉}, that is |c0〉 = |0,0, . . . ,0〉, |cN−1〉 =
|1,1, . . . ,1〉, and so on. The complementary basis states |ak〉,
which are the Fourier transform of |cα〉, are product states
of the individual qubit [18]. By local rotations each |ak〉 can
be transformed to |1,1, . . . ,1〉. Thus the unitary coupling Uk

is transformed to exp(−iπ/2 |1,1, . . . ,1〉 〈1,1, . . . ,1| ⊗ σy),
the Toffoli gate. Therefore, Uk can be implemented by an
(n + 1)-qubit Toffoli gate (n is the number of the qubits

FIG. 1. Implementation of the coupling between the system
initialized in the state ρ (or the pure state |ψ〉) and the pointer
initialized in the state |0〉, followed by measurements on system and
then on pointer. We choose |cα〉 the usual computational basis; its
complementary basis |ak〉 is a product state, which can be transformed
to |cN−1〉 = |11 . . . 1〉 by local rotations. So the unitary coupling Uk

consists of local rotations Rm (R†
m) and an (n + 1)-qubit Toffoli gate.

A z direction projective measurement is performed on each qubit of
the system. For pure states, only |c0〉 is postselected; others will be
discarded. For general ρ, postselection is not needed; all the results
provide data that is employed in the reconstruction. On pointer qubit,
we need to measure the expectations of σx,σy,σz, respectively.

in the system, n = log2 N ) and local rotations. The n-qubit
Toffoli gate plays a key role in many quantum algorithms.
The common approach to implement it is to decompose the
gate into two-qubit gates and one-qubit rotations [19,20].
For example, a quadratic-size, linear-depth quantum circuit
for Toffoli gates is designed in [20], from which we need
2n2 + O(n) two-qubit gates and O(n) one-qubit rotations
to perform Uk . For different k, we just need to change the
local rotations before and after the Toffoli gate. Because the
postselection states |cα〉 are the computational basis states, in
the experiment we just need to make a projective measurement
on each qubit of the system along σz.

In [8], a comparison between the DSM and the standard
QST is carried out through accurate Monte Carlo techniques.
In the numerical simulation, only the statistical errors are
considered: in experiments one must estimate the expectation
values from a finite number Nc of copies of the system. The
trace distance D(ρt ,ρr ) = Tr(|ρt − ρr |)/2 between the true
state ρt and reconstructed one ρr is used to characterize
the experiment errors. They find that because of the bias,
the trace distance will saturate to a nonzero value, with no
long decrease when increasing the number of copies; thus an
error is introduced. In our measurement scheme, there is no
approximation, so there is no bias and relevant errors. Through
the same method as in [8], we also present a comparison
between our generalized DSM (gDSM) and the standard QST.
The simulation results are shown in Fig. 2. We can find that
the trace distance of DSM will not saturate to a nonzero value
now; it will continue to decrease when the number of copies of
the system increases as in the case of the QST. So this gDSM
has eliminated the biased error effectively.
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FIG. 2. (Color online) Comparison between the generalized
DSM (gDSM) and the standard tomography (QST) for both pure
and mixed states of one qubit. The trace distance is plotted as a
function of the total number of copies Nc of the system employed

in the reconstruction. The pure state is ρ = I+1/
√

3σx+1/
√

3σy+1/
√

3σz

2

and the mixed state is ρ = I+0.9/
√

3σx+0.9/
√

3σy+0.9/
√

3σz

2 . The details of
the gDSM are described in the text. The QST is just to measure the
expectation of σx,σy,σz of the unknown state, respectively. Because
of the removing of the bias, the trace distance of the gDSM continues
to decrease when Nc is increasing, as of the QST. For smaller Nc the
trace distance has large statistical fluctuation.

The DSM (include the generalized scheme here) seems
to be less efficient than the standard QST because of the
postselection. In some cases, this will not be a trouble.
For example, reconstruction of a pure state needs measure
3N observables for N -dimensional Hilbert space, while the
QST needs much more depending on detail schemes. For
an ensemble system such as a nuclear magnetic resonance
(NMR) [18] system, the DSM will be more handy, because an
observable such as σx can be measured using only one copy.

IV. DIRECT MEASUREMENT OF THE DIRAC
DISTRIBUTION AND THE DENSITY MATRIX

The above scheme is not direct for a density matrix, which
is determined after sweeping all the |ak〉 and |cα〉. If we only
want to know partial information of the density matrix, this
method is tedious and not necessary. We now propose a direct
measurement scheme for the density matrix, in which the
elements of the matrix can be directly determined one by one.
The scheme can also measure the Dirac distribution directly.
The quantum circuit of the experiment procedure is depicted in
Fig. 3. The pointer qubit is initialized in the state |+〉 = |0〉+|1〉√

2
,

and the system is in an unknown state ρ. The density matrix
will be reconstructed in the computational basis {|cα〉}. The
bullet point algorithm of the procedure is as follows.

(a) Implement the controlled-U1 gate and
controlled-U ′

1 gate on |+〉 〈+| ⊗ ρ separately, where
U1 = exp(−iπ |cα〉 〈cα|) and U ′

1 = exp(−iπ |ak〉 〈ak|). Then
measure the expectation value 〈σx〉 of the pointer qubit.

(b) Implement the controlled-U1 gate then the
controlled-U2 gate, where U1 = exp(−iπ |cα〉〈cα|) and U2 =

ρ

FIG. 3. Circuit for implementing a direct measurement of the
Dirac distribution and the density matrix. The top qubit is the ancillary
qubit initialized in state |0〉+|1〉√

2
, the bottom lines denote the system

with an unknown state ρ. One to three controlled-U gates may be
required depending on different purposes. If the expectations of σx

and σy of the pointer qubit are measured after the first controlled-U
gate, the population of the state ρ will be obtained. If the same is
performed after the second controlled-U gate, the Dirac distribution
of the state ρ will be obtained. By measuring the expectation of σx

and σy after the third controlled-U gate, we can obtain the elements
of the density matrix ρ.

exp(−iπ |ak〉〈ak|). Then measure the expectation values 〈σx〉
and 〈σy〉 of the pointer qubit.

(c) Implement the controlled-U1 gate, controlled-
U2 gate, and controlled-U3 gate sequentially, where
U1 = exp(−iπ |cα〉〈cα|), U2 = exp(−iπ |a0〉〈a0|), and U3 =
exp(−iπ |cβ〉〈cβ |). Then measure the expectation values 〈σx〉
and 〈σy〉 of the pointer qubit.

(d) Calculate the diagonal element of the density matrix
from the data collected in (a) and the nondiagonal element from
the data collected in (a)–(c). Calculate the Dirac distribution
from the data collected in (a) and (b).

Now we have more discussions about the procedure.
Depending on different purposes the procedure consists of one
to three controlled-U gates, with the control on the pointer
qubit and with unitary operation U acting on the system.
Measurements only performed on the pointer qubit. After
the action of a controlled-U , the expectations of σx and σy

of the pointer are the real and imaginary part of Tr(Uρ),
respectively [21]. That is

〈σx〉 + i〈σy〉 = Tr(Uρ). (17)

The first controlled-U operation is chosen as a controlled-
PHASE flip gate, U1 = exp(−iπ |cα〉 〈cα|) = I − 2 |cα〉 〈cα|
and Tr(U1ρ) = 1 − 2ρα,α . From Eq. (17), we have ραα = (1 −
〈σx〉)/2. If the expectation of σx of the pointer is measured,
the population of the state |cα〉 can be obtained. The whole
diagonal of the density matrix can be obtained by scanning
|cα〉.

In the second controlled-U operation, U2 =
exp(−iπ |ak〉 〈ak|) = I − 2 |ak〉 〈ak|, where basis {|ak〉}
is the Fourier transform of {|cα}〉. If the measurements of
the expectation values of σx and σy on the pointer qubit
are performed now, they will be the real and imaginary part
of Tr(U2U1ρ) = 1 − 2ρcα,cα

− 2ρak,ak
+ 4〈cα|ρ|ak〉〈ak|cα〉,

respectively. We thus directly obtained Sρ(α,k) =
〈cα|ρ|ak〉〈ak|cα〉 = Tr[ρSα,k] (here Sα,k = |ak〉 〈ak|cα〉 〈cα|),
which is just the Dirac distribution [13] in the discrete Hilbert
space [7,22,23].
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The Dirac distribution is a quasiprobability distribution
like the Wigner function, Husimi Q function, and Glauber-
Sudarshan P distribution. It is an underused but elegant way
to describe a general quantum state and it is also useful for
visualizing discrete systems [24]. The connection between
Dirac distribution, joint probabilities, and the weak value
was explored in [25]. The Dirac distribution is related to
the density operator by a discrete Fourier transform, ραβ =∑k=N−1

k=0 Sρ(α,k)ei2πk(α−β)/N . Furthermore, the distribution
has the classical-like feature that transforms according to
Bayes’ law [23,25]. Recent works have measured the Dirac
distribution of the pure state in one qubit system [24],
and of the quantum state corresponding to the transverse
position of a photon for mixed and pure states by weak
measurement [7,23]. Here we propose a standard direct
measurement scheme of the Dirac distribution in a discrete
system for a general state, and it is convenient for experiment
realization.

To determine an element of the density matrix from the
Dirac distribution, one needs to scan |ak〉. Although it is much
better than the first scheme, it is still tedious and not directly.
A third controlled-U operation, U3 = exp(−iπ |cβ〉〈cβ |) =
I − 2|cβ〉〈cβ |, will make the direct measurement possible.
Now U2 = exp(−iπ |a0〉〈a0|) is fixed, where 〈a0|cα〉 = 1/

√
N

for all |cα〉. By measuring the expectation values of σx and
σy on the pointer qubit, we can get 〈cα|ρ|cβ〉/N = ρα,β/N .
Scanning α and β will make one obtain the entire density
matrix. The measured value changes as 1/N . For large N ,
it will need high-fidelity gate operations and measurements.
We can choose different intermediate unitary operations U2

for different elements. For example, for ρα,β , we can take
U2 = exp(−iπ |ψ〉〈ψ |), where |ψ〉 = |cα〉+|cβ 〉√

2
.

The controlled phase flip gate in the circuit can be trans-
formed to an (n + 1)-qubit Toffoli gate by local rotations. Thus
it needs 4n2 + O(n) two-qubit gates for directly determining
the Dirac distribution and 6n2 + O(n) for the density matrix.
If U2 is not fixed, one needs more two-qubit gates for
reconstructing the density matrix.

V. CONCLUSION

Focusing on the discrete system, the weak value of a
projector can be determined by standard measurement. We
have generalized the direct state measurement scheme by
replacing the weak coupling between the system and the
pointer qubit by a strong one. We present two measurement
procedures for reconstructing the state of a quantum system,
one of which can give the wave function or the density matrix
directly. By numerical simulation, we find that this generalized
scheme can effectively eliminate the biased error introduced by
the weak measurement based DSM. We can also measure the
Dirac distribution of a discrete system in pure or mixed state
by standard measurement. We have also presented the concrete
quantum circuits for realizing the procedures experimentally.
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