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We study statistical properties of states of massive quantized charged Dirac and Klein-Gordon fields interacting
with a background that violates the vacuum stability, first in general terms and then for a special electromagnetic
background. As a starting point, we use a nonperturbative expression for the density operators of such fields
derived by Gavrilov et al. [Gavrilov, Gitman, and Tomazelli, Nucl. Phys. B 795, 645 (2008)]. We construct
the reduced density operators for electron and positron subsystems and discuss a decoherence that may occur
in the course of the evolution due to an intermediate measurement. By calculating the entropy we study the
loss of the information in QED states due to partial reductions and a possible decoherence. We consider the
so-called T -constant external electric field as an external background. This exactly solvable example allows us
to calculate explicitly all statistical properties of various quantum states of the massive charged fields under
consideration.
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I. INTRODUCTION

It is known that pure states of a quantum system provide
us with the maximum possible information about this system
in contrast with mixed states of the same quantum system.
A measure of the information loss of a quantum state can
be identified by the entropy of such a state. Any unitary
evolution does not change the entropy of a quantum state and
possible violations of the unitary evolution can be registered as
a change of the entropy. On the other hand, the entanglement is
an essentially quantum property associated with the quantum
nonseparability of parts of a composite system. It also can
be evaluated as a specific quantum entropy. Entangled states
became a powerful tool in studying principal questions in
quantum theory and in quantum computation and information
theories [1–4]. Despite a number of publications devoted
to the entropy and entanglement of quantum states, for the
related characteristics to be fully understood, more examples
of various special systems need to be considered not only
in nonrelativistic quantum mechanics, but in quantum field
theory (QFT) as well. This explains recent interest in studying
quantum entanglement and entropy of QFT systems with an
unstable vacuum, i.e., with strong external backgrounds that
may create particles from the vacuum (see, e.g., [5–8]). In this
article we would like to attract attention to the fact that by
studying QFT systems with an unstable vacuum we create the
possibility to approach problems characterized by the loss of
information, quantum entanglement, and the entropy change
in a very close relation. We present two points that explain
this assertion. Let a quantized charged Dirac or Klein-Gordon
(KG) field1 interact with a strong uniform external electric
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1As basic particles in both cases we consider electrons with the

charge q = −e, e > 0, whereas their antiparticles are positrons. In
the KG case both electrons and positrons are spinless.

field. Such a system is a QFT with an unstable vacuum,
which means that the electric field creates electron-positron
pairs from the vacuum. Particle creation from the vacuum by
strong electromagnetic, Yang-Mills, and gravitational fields is
a well-known nonlinear quantum phenomenon that has many
applications in modern high-energy physics. Its theoretical
study has a long story that is described in numerous works (see,
for example, Refs. [9–15]). The creation of charged particles
from the vacuum by strong electriclike fields needs super-
strong field magnitudes compared with the Schwinger critical
field Ec = m2c3/e� � 1.3 × 1016 V cm−1 [16]. Nevertheless,
recent progress in laser physics allows one to hope that this
effect will be experimentally observed in the near future
even in laboratory conditions (see Ref. [17] for a review).
Electron-hole pair creation from the vacuum (which is an
analog of the electron-positron pair creation from the vacuum)
was recently observed in graphene by its indirect influence on
the graphene conductivity [18] (the conductivity of graphene
modified by the particle creation was calculated in Ref. [19];
some other relevant effects may be found in Ref. [20]). The
particle creation effect in a strong uniform external electric
field has an additional important feature. The external field
not only creates the pairs from the vacuum, but produces two
subsystems, well separated in space: the created electrons and
the created positrons. States of each subsystem are described
by the corresponding density matrices. Such density matrices
originally were derived in Refs. [15,21]. Here it is interesting
to study the quantum entanglement of both subsystems and its
measure by calculating the corresponding entropy. A change
of the entropy of QFT systems with an unstable vacuum and
a quantum entanglement of the above-mentioned subsystems
can occur also due to some decoherence processes. In the
case under our consideration these might be intermediate
measurements or collisions with some semiclassical objects
(e.g., with well-known impurities in the graphene).

In the present article we study the above-mentioned
characteristics, that is, statistical properties of states of massive
quantized charged Dirac or KG fields with a background that
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violates the vacuum stability, first in general terms and then
considering a specific external electromagnetic background.
As a starting point, we use a general nonperturbative ex-
pression for the density operators of such fields derived in
Ref. [15]. In Sec. II we discuss such operators with different
initial conditions. Reduced density operators for electron
and positron subsystems are derived in Sec. III. In Sec. IV
we study a decoherence that may occur in the course of
the evolution due to an intermediate measurement and the
corresponding modifications of the complete and the reduced
density operators. In Sec. V, when calculating the entropy, we
study the loss of information in the QED states due to partial
reductions and possible decoherence. In Sec. VI we consider
quantized Dirac or KG fields with the so-called T -constant

external electric field. This exactly solvable example allows
us to calculate explicitly all statistical properties of different
quantum states of the latter massive fields. In the Appendix
we briefly recall a nonperturbative formulation of QED with
strong time-dependent electriclike background that is used in
our calculations.

II. GENERAL DENSITY OPERATOR

It is convenient to introduce a generating operator Ř(J ) that
allows one to construct density operators ρ̌ with different initial
conditions (different initial states at the initial time instant tin).
This generating operator has the following form:

Ř(J ) = Z−1(J )Ř(J ), trŘ(J ) = 1, Z(J ) = trŘ(J ),
(1)

Ř(J ) =: exp

[∑
n

[a†
n(in)(Jn,+ − 1)an(in) + b†n(in)(Jn,− − 1)bn(in)]

]
:,

where the variables Jn,ζ are sources for the electron (ζ = +) or positron (ζ = −) in operators, Z is a normalization factor (the
partition function), and : · · · : here and in what follows means the normal form with respect to those creation and annihilation
operators that are situated inside the colons.

Using the canonical transformation (A6), found in the Appendix, we can express the in-operators in terms of the out operators
and obtain Ř(J ) (and the corresponding ρ̌) in terms of the out operators [15]. Thus,

Ř(J ) = Z−1(J )|cv|2 det(1 + κAB)κ Ř(J ),

Ř(J ) = : exp[−a†(out)(1 − D+)a(out) − b†(out)(1 − D−)b(out) − a†(out)C†b†(out) − b(out)Ca(out)]:,

D+ = w(+|+)(1 + κAB)−1J+w(+|+)†, DT
− = w(−|−)†J−(1 + κBA)−1w(−|−), A(J ) = J+B†J−,

C = w(−|−)†J−B(1 + κAB)−1J+w(+|+)† + κw(+ − |0)†, B = κw(0| − +), Jmn,ζ = δmnJn,ζ ,

where κ = +1 for the Fermi case and κ = −1 for the Bose
case. The normalization factor Z has the form

Z(J ) = exp

⎧⎨
⎩κ
∑
n,ζ

[ln(1 + κJn,ζ )]

⎫⎬
⎭ =

∏
n,ζ

[1 + κJn,ζ ]κ .

(2)
In what follows, we work with two important cases of the

general density operator that correspond to the initial vacuum
state and to the initial thermal state.

(a) Setting J = 0 and using the well-known formula [22],
we obtain the density operator ρ̌(0) that corresponds to the
initial vacuum state

ρ̌(0) = : exp

{
−
∑

n

[a†
n(in)an(in) + b†n(in)bn(in)]

}
:

= |0,in〉〈0,in|. (3)

From Eqs. (1) we obtain this operator in terms of the out
operators

ρ̌(0) = |cv|2 : exp

{
−
∑

n

[a†
n(out)an(out) + b†n(out)bn(out)

+ κa†
n(out)w(+ − |0)nnb

†
n(out)

+ κbn(out)w(+ − |0)†nnan(out)]

}
: . (4)

Differential mean numbers Nn,ζ (0|in) of in electrons and
positrons in the state ρ̌(0) are zero,

Nn,+(0|in) = trρ̌(0)a†
n(in)an(in) = 0,

Nn,−(0|in) = trρ̌(0)b†n(in)bn(in) = 0,

whereas differential mean numbers Nn,ζ (0|out) of out elec-
trons and positrons in the state ρ̌(0),

Nn,+(0|out) = trρ̌(0)a†
n(out)an(out),

Nn,−(0|out) = trρ̌(0)b†n(out)bn(out),

are equal and have the form

Nn,+(0|out) = Nn,−(0|out) = Nn(0|out),
(5)

Nn(0|out) = |w(+ − |0)nn|2
1 + κ|w(+ − |0)nn|2 .

(b) To obtain the density operator ρ̌(β) that corresponds to
the thermal initial state, one has to set Jn,ζ = Jn,ζ (β),

Jn,ζ (β) = e−En,ζ , En,ζ = β(εn,ζ − μζ ), (6)

where εn,ζ are energies of electrons (ζ = +) or positrons
(ζ = −) with quantum numbers n, μζ are the corresponding
chemical potentials, and β = �−1, where � is the absolute
temperature [15]. It can be checked that an explicit expression
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for ρ̌(β) in terms of the in operators is

ρ̌(β) = Z−1
gr exp

⎡
⎣−β

⎛
⎝Ȟ −

∑
ζ

μζ Ňζ

⎞
⎠
⎤
⎦ ,

(7)

Zgr = exp

⎡
⎣κ
∑
nζ

ln(1 + κe−En,ζ )

⎤
⎦ .

The quantity Zgr is the partition function of the grand canonical
ensemble, Ȟ is the Hamiltonian of the system (written in terms
of in operators)

Ȟ =
∑

n

[a†
n(in)εn,+an(in) + b†n(in)εn,−bn(in)],

and

Ň+ =
∑

n

a†
n(in)an(in), Ň− =

∑
n

b†n(in)bn(in)

are operators of numbers of in electrons and in positrons,
respectively.

Let ρ̌ be the general density matrix for an arbitrary initial
state, Nn,ζ (· · · |in) be differential mean numbers of in electrons
or positrons in the state ρ̌, and Nn,ζ (· · · |out) be differential
mean numbers of out electrons or positrons in the state ρ̌,

Nn,+(· · · |in) = trρ̌a†
n(in)an(in),

Nn,−(· · · |in) = trρ̌b†n(in)bn(in),
(8)

Nn,+(· · · |out) = trρ̌a†
n(out)an(out),

Nn,−(· · · |out) = trρ̌b†n(out)bn(out).

Calculating the traces in the in basis, one can see [15] that

Nn,ζ (· · · |out) = Nn,ζ (· · · |in)+Nn(0|out){1−κ[Nn,+(· · · |in)

+Nn,−(· · · |in)]}. (9)

In particular, differential mean numbers Nn,ζ (β|in) of in
electrons or positrons in the state ρ̌(β) are the well-known
Fermi-Dirac (κ = +1) or Bose-Einstein (κ = −1) distribu-
tions

Nn,+(β|in) = trρ̌(β)a†
n(in)an(in) = (eEn,+ + κ)−1,

(10)
Nn,−(β|in) = trρ̌(β)b†n(in)bn(in) = (eEn,− + κ)−1.

Differential mean numbers Nn,ζ (β|out) of out electrons or
positrons in the state ρ̌(β) follow immediately from (9).

III. REDUCED DENSITY OPERATORS FOR ELECTRON
AND POSITRON SUBSYSTEMS

At any fixed time instant, the complete system of quantum
electrons and positrons can be conditionally divided into two
subsystems: a system of electrons and a system of positrons.
Let us suppose that the external electric field is switched off
at some sufficiently long time instant t2 in such a way that at
tout > t2 no particle creation occurs and both subsystems are
spatially separated. Thus, the particle creation effect by the
time-dependent uniform electric field provides a real division
of the complete quantum field system into the two subsystems.
We can introduce the so-called reduced density operators ρ̌±
of the electron subsystem and of the positron subsystem. These
operators are defined as follows:

ρ̌+ = tr−ρ̌ =
∞∑

M=0

∑
{m}

(M!)−1
b〈0,out|bmM

(out) · · · bm1 (out)|ρ̌|b†m1
(out) · · · b†mM

(out)|0,out〉b,
(11)

ρ̌− = tr+ρ̌ =
∞∑

M=0

∑
{m}

(M!)−1
a〈0,out|amM

(out) · · · am1 (out)|ρ̌|a†
m1

(out) · · · a†
mM

(out)|0,out〉a,

where ρ̌ is the density operator of the complete system, |0,out〉a and |0,out〉b are electron and positron vacua, respectively
[am(out)|0,out〉a = 0, bm(out)|0,out〉b = 0, and |0,out〉 = |0,out〉a ⊗ |0,out〉b], and tr± are the so-called reduced traces.
Obviously, the reduced density operators ρ̌± describe mixed states.

The reduced density operators ρ̌± can be obtained from the reduced generating operators Ř±(J ), which are defined as

Ř±(J ) = tr∓Ř(J ). (12)

In terms of the out operators these have the form

Ř+(J ) = Z−1
+ (J ) : exp

{
−
∑

n

a†
n(out)[1 − K+(J )]nnan(out)

}
:,

Ř−(J ) = Z−1
− (J ) : exp

{
−
∑

n

b†n(out)[1 − K−(J )]nnbn(out)

}
:,

(13)
K±(J ) = D± + C†(1 + κDT

∓)−κC,

Z−1
± (J ) = Z−1(J )|cv|2 det(1 + κAB)κ det(1 + κD∓)κ .

The reduced generating operators Ř±(J ) allow one to obtain the reduced density operators ρ̌± for different initial states of the
system. Consider as before two important cases.
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(a) By setting J = 0 in Eq. (13) we obtain the reduced density operators ρ̌ζ (0) = Řζ (0) for both subsystems in the case when
the complete system was in the vacuum state at the initial time instant. Taking into account that

K±(0) = |w(+ − |0)|2 = P (+ − |0)P −1
v ,

Z−1
± (0) = |cv|2 = Pv, P (+ − |0) = |〈0,out|an(out)bn(out)|0,in〉|2,

where P (+ − |0) and Pv are probabilities of pair creation and the vacuum-to-vacuum transition, respectively, we obtain explicit
expressions for ρ̌ζ (0),

ρ̌+(0) = Ř+(0) = |cv|2 : exp

{
−
∑

n

a†
n(out)

[
1 − P (+ − |0)P −1

v

]
nn

an(out)

}
:,

(14)

ρ̌−(0) = Ř−(0) = |cv|2 : exp

{
−
∑

n

b†n(out)
[
1 − P (+ − |0)P −1

v

]
nn

bn(out)

}
:.

It should be noted that reduced density operators (14) were
originally obtained in Ref. [21].

(b) By setting the sources J in expression (13) equal to
Jn,ζ (β) according to Eqs. (6), we see that the reduced generat-
ing operators (13) become the reduced density operators ρ̌ζ (β)
of the system that was in thermal equilibrium at the initial time
instant Ř+(J ) = ρ̌+(β) and Ř−(J ) = ρ̌−(β).

IV. DECOHERENCE IN THE COURSE OF EVOLUTION

A. General

In the previous sections we considered the case where the
information loss was due to the averaging over one of the
subsystems of electrons or positrons. However, information
loss can also occur due to the interaction of the quantum system
with classical (or semiclassical) objects or, in other words, due
to decoherence. One can imagine two possible scenarios for
this: It can happen first during intermediate measurements by
a classical tool and second as a result of collisions of particles
with some semiclassical objects (for example, well-known
impurities in the graphene). For us, there is no difference which
of the mechanisms is implemented, so in what follows we talk
about an intermediate measurement by a classical tool as a
source of the decoherence.

Consider the case when the unitary evolution of the system
is interrupted by a single intermediate measurement. The
external field starts to act at the time instant tin, the system
is evolving in a unitary way from tin to t1, during time T1,
then at t1 a decoherence takes place, and then again the unitary
evolution proceeds from t1 to tout during time T2. In this case,
if we consider the Heisenberg picture, the out set of creation
and annihilation operators for electrons and positrons of the
interval T1 is the in set of the interval T2.

Suppose that during the time interval T1 the system is
described by the density operator ρ̌(0), i.e., the system is in the
vacuum state at the initial time instant tin. Differential mean
numbers of electrons and positrons at the time instant t1 are the
numbers of electrons or positrons created by the external field
from the vacuum Nn(0|out) (5). The electrons and positrons
created in pairs by the external field are entangled.

During the time interval T2 the system is described by the
density operator, which we denote by ρ̌ ′. The latter in terms
of the in set of creation-annihilation operators for electrons

and positrons must describe the system without quantum
correlations between the electrons and positrons created (i.e.,
new “initial” state of the system in the time interval T2 is the
state without any entanglement).

Such an operator can be obtained by using the von Neumann
reduction principle [23]. Let a system be in a pure state
that is described by a state vector |ψ〉 or equivalently by a
density operator ρ̂ that is, in such a case, the projector ρ̂ =
P̂ψ = |ψ〉〈ψ |. In addition, let R̂ be a self-adjoint observable
of the system. In the simplest case, when this observable
has a nondegenerate discrete spectrum the following spectral
decomposition holds: R̂ =∑α rαPϕα

, where rα are possible
eigenvalues of the observable and Pϕα

are projectors onto
the corresponding eigenvectors |ϕα〉, P̂ϕα

= |ϕα〉〈ϕα|. When
measuring the observable R̂, we obtain the eigenvalues rα

with the probabilities |〈ϕα|ψ〉|2 = 〈ϕα|P̂ψ |ϕα〉 = 〈ϕα|ρ̂|ϕα〉
and just after the measurement the state vector |ψ〉 is reduced
to the vector |ϕα〉 or the density operator ρ̂ is reduced to the
operator ρ̂ ′ = P̂ϕα

. A more general case, where the system is
in a mixed state, is described by the density operator ρ̂ with a
simple discrete spectrum ρ̂ =∑n λnPψn

, Pψn
= |ψn〉〈ψn|, λn

being statistical weights of the corresponding states Pψn
and R̂

being the above-mentioned observable. Then the measurement
is presented as follows. The eigenvalues rα are measured with
the probabilities∑

n

λn|〈ϕα|ψn〉|2 = 〈ϕα|ρ̂|ϕα〉

and just after the measurement the density operator ρ̂ is
reduced to the operator ρ̂ ′,

ρ̂ ′ =
∑

α

〈ϕα|ρ̂|ϕα〉P̂ϕα
.

The density operator ρ̌(0) is

ρ̌(0) = |0,in〉〈0,in|. (15)

The in vacuum |0,in〉 is connected to the out vacuum |0,out〉
by relation (A7). Then density operator ρ̌(0) can be presented
as

ρ̌(0) = V |0,out〉〈0,out|V †. (16)

We are interested in the case of a uniform external field, which
does not mix different quantum modes. Then amplitudes (A5)
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are diagonal. Thus, it is possible to factorize V defined by (A7) as

V =
∏
n

Vn, Vn = v4nv3nv2nv1n, (17)

where

v1n = exp{−κbn(out)w(0| − +)nnan(out)}, v2n = exp{a†
n(out)[ln w(+|+)]nnan(out)},

v3n = exp{−κbn(out)[ln w(−|−)]nnb
†
n(out)}, v4n = exp{−κa†

n(out)w(+ − |0)nnb
†
n(out)}.

Making use of the explicit form of Vn and definition (A7) we can write

|0,in〉 = cv

∏
n

∑
m=0

(−1)m

m!
[κw(+ − |0)nna

†
n(out)b†n(out)]m|0,out〉 (18)

and then we can easily calculate cv ,

cv =
∏
n

[w(−|−)nn]−κ . (19)

Thus, density operators ρ̌(0) (16) can be represented as

ρ̌(0) = |cv|2
∏
n

( ∞∑
m=0

[−κw(+ − |0)nna
†
n(out)b†n(out)]m

m!

)
P̌0

∏
n′

( ∞∑
m′=0

[−κw(+−|0)†n′n′bn′ (out)an′ (out)]m
′

m′!

)
, (20)

where P̌0 = |0,out〉〈0,out|.

B. Measurement of differential mean numbers in the system

Suppose that we are going to measure the physical quantity, which is the number of particles, in the state ρ̌(0) of the system
under consideration. The operator corresponding to such a physical quantity is Ň (out),

Ň (out) =
∑
n,ζ

Ňn,ζ (out) =
∑

n

[a†
n(out)an(out) + b†n(out)bn(out)]. (21)

Its eigenstates are mutually orthonormal vectors of the form

|s,out〉 = |{i,l}LP ,out〉a ⊗ |{j,k}KQ,out〉b,

|{i,l}LP ,out〉a = [a†
i1

(out)]l1√
l1!

· · · [a†
iP

(out)]lP√
lP !

|0,out〉a,

|{j,k}KQ,out〉b = [b†j1
(out)]k1

√
k1!

· · ·
[b†jQ

(out)]kQ√
kQ!

|0,out〉b,

L = 0,1,2, . . . , P = 1,2, . . . L, i = i1, . . . ,iP , l1 + l2 + · · · + lP = L,

K = 0,1,2, . . . , Q = 1,2, . . . K, j = j1, . . . ,jQ, k1 + k2 + · · · + kQ = K

such that its eigenvalues are

N̂ (out)|s,out〉 = (L + K)|s,out〉,
where s is the full set of quantum numbers K , L, {i}, {j}, P , and Q and |{i,l}LP ,out〉a is a state with L electrons distributed in P

groups i1, . . . ,iP , with l1 electrons in the group i1, l2 electrons in the group i2, and so on. Analogously, |{j,k}KQ,out〉b is a state
with K positrons distributed in Q groups j1, . . . ,jQ, with k1 positrons in group j1, k2 positrons in group j2, and so on.

According to von Neumann [23], the density operator ρ̌(0) is, after such measurement, reduced to the operator ρ̌N of the form

ρ̌N =
∑

s

〈s,out|ρ̌(0)|s,out〉P̌s, P̌s = |s,out〉〈s,out|. (22)

Due to the structure of the density operator ρ̌(0) given by Eq. (20), the weights 〈s,out|ρ̌(0)|s,out〉 are nonzero only when the
states |s,out〉 are states with an integer number of pairs. Thus, we obtain

ρ̌N = |cv|2
∑
f

Wf P̌f ,
∑
f

=
∞∑

M=0

M∑
Z=1

∑
{m,n}

, P̌f = |f,out〉〈f,out|,

Wf = |w(+ − |0)n1n1 |2m1 · · · |w(+ − |0)nZnZ
|2mZ , m1 + m2 + · · · + mz = M, (23)

|f,out〉 =
[
a
†
n1 (out)b†n1 (out)

]m1

m1!
· · ·
[
a
†
nZ

(out)b†nZ
(out)

]mZ

mZ!
|0,out〉,
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where f is a complete set of quantum numbers M , Z, {m}, and {n} and |f,out〉 is a state with the total number of pairs M

distributed in Z groups, m1 pairs being in the group n1, m2 pairs being in the group n2, and so on. Unlike (20), the latter expression
contains only terms diagonal in f . Thus, the measurement destroys nondiagonal terms of the density operator (20).

Let us now calculate the reduced (in the sense of Sec. III) operators [ρ̌N ]ζ ,

[ρ̌N ]ζ = tr−ζ ρ̌N = |cv|2
∑
f

Wf tr−ζ P̌f ,

tr−P̌f =
[
a
†
n1 (out)

]m1

√
m1!

· · ·
[
a
†
nZ

(out)
]mZ

√
mZ!

|0,out〉aa〈0,out|
[
anZ

(out)
]mZ

√
mZ!

· · ·
[
an1 (out)

]m1

√
m1!

, (24)

tr+Pf =
[
b
†
n1 (out)

]m1

√
m1!

· · ·
[
b
†
nZ

(out)
]mZ

√
mZ!

|0,out〉bb〈0,out|
[
bnZ

(out)
]mZ

√
mZ!

· · ·
[
bn1 (out)

]m1

√
m1!

.

On the other hand, one can calculate the reduced density operators ρ̌ζ (0) by taking reduced traces (11) of the operator (20) to
verify that they have exactly the same form

[ρ̌N ]ζ = ρ̌ζ (0).

C. Measurements of differential mean numbers in the subsystems

Suppose now that we measure the number of either electrons or positrons. The corresponding operators of these physical
quantities are

Ň+(out) =
∑

n

Ňn,+(out) =
∑

n

a†
n(out)an(out),

(25)
Ň−(out) =

∑
n

Ňn,−(out) =
∑

n

b†n(out)bn(out).

The spectra of the operators (25) are

|s+,out〉a = |{i,l}LP ,out〉a =
[
a
†
i1

(out)
]l1

√
l1!

· · ·
[
a
†
iP

(out)
]lP

√
lP !

|0,out〉a,

L = 0,1,2, . . . , P = 1,2, . . . L, i = i1, . . . ,iP , l1 + l2 + · · · + lP = L,

|s−,out〉b = |{j,k}KQ,out〉b =
[
b
†
j1

(out)
]k1

√
k1!

· · ·
[
b
†
jQ

(out)
]kQ√

kQ!
|0,out〉b,

K = 0,1,2, . . . , Q = 1,2, . . . K, j = j1, . . . ,jQ, k1 + k2 + · · · + kQ = K,

N̂+(out)|s+,out〉a = L|s+,out〉a, N̂−(out)|s−,out〉b = K|s−,out〉b.
The states |{i,l}LP ,out〉a and |{j,k}KQ,out〉b are defined in the same way as in the previous section.

The density operators after such measurements, which we denote by ρ̌N+ and ρ̌N− , respectively, have the form

ρ̌N+ =
∑
s+

a〈s+,out|ρ̌(0)|s+,out〉aPs+, Ps+ = |s+,out〉aa〈s+,out|,
∑
s+

=
∞∑

L=0

L∑
P=1

∑
{i,l}

,

(26)

ρ̌N− =
∑
s−

b〈s−,out|ρ̌(0)|s−,out〉bPs−, Ps− = |s−,out〉bb〈s−,out|,
∑
s−

=
∞∑

K=0

K∑
Q=1

∑
{j,k}

.

Let us now calculate the quantities a〈s+,out|ρ̌(0)|s+,out〉aPs+ and b〈s−,out|ρ̌(0)|s−,out〉bPs−. Due to the structure of ρ̌(0) they
are equal and have the form

a〈s+,out|ρ̌(0)|s+,out〉aPs+ = b〈s−,out|ρ̌(0)|s−,out〉bPs−

= |cv|2
[− κw(+ − |0)i1i1a

†
i1

(out)b†i1
(out)

]l1
l1!

· · ·
[− κw(+ − |0)ipipa

†
ip

(out)b†ip (out)
]lp

lp!
|0,out〉

× 〈0,out|
[− κw(+ − |0)†ipip

bip (out)aip (out)
]lp

lp!
· · ·
[− κw(+ − |0)†i1i1

bi1 (out)ai1 (out)
]l1

l1!
. (27)

052106-6



STATISTICAL PROPERTIES OF STATES IN QED WITH . . . PHYSICAL REVIEW A 91, 052106 (2015)

It is not difficult to see that density operators ρ̌N+ and ρ̌N− have
exactly the same form as in Eq. (23), namely, they are sums
over all possible projectors on states with an integer number
of pairs

ρ̌N+ = ρ̌N− = ρ̌N . (28)

Thus, we stress that measurements of N , N+, and N− produce
the same reductions. The reduced density operators [ρ̌N+]ζ =
tr−ζ ρ̌N+ and [ρ̌N−]ζ = tr−ζ ρ̌N+ are equal to the reduced
density operators ρ̌ζ (0) given in Eq. (14).

It is also an interesting task to consider the case when the
unitary evolution of the system is interrupted by multiple mea-
surements. However, because there are significant technical
difficulties, this problem is not considered in this paper.

V. ENTROPY AND ENTANGLEMENT OF ELECTRON AND
POSITRON SUBSYSTEMS

As already said in the Introduction, the measure of the
information loss in a quantum state ρ̌ can be identified with
the entropy of such a state, namely, with the von Neumann
information entropy S [23],

S(ρ̌) = −kB trρ̌ ln ρ̌. (29)

Let ρ̂(tin) = ρ̌(β), where ρ̌ (β) is given by (7); then

S(ρ̌(β)) = kB

⎡
⎣ln Zgr +

∑
nζ

En,ζ Nn,ζ (β|in)

⎤
⎦ . (30)

The corresponding differential mean numbers Nn,ζ (β|in) are
Fermi-Dirac or Bose-Einstein distributions, given by (10). The
entropy (30) can be written in terms of the Bose (Fermi)
occupation number alone if we take into account that

e−En,ζ = Nn,ζ (β|in)

1 − κNn,ζ (β|in)
. (31)

Then

S(ρ̌(β)) = −kB

∑
nζ

{κ[1 − κNn,ζ (β|in)] ln[1 − κNn,ζ (β|in)]

+Nn,ζ (β|in) ln Nn,ζ (β|in)}. (32)

This expression has a form similar to expressions for entropy
of the grand canonical ensemble for Fermi and Bose particles
[24].

Especially interesting information is obtained by calcu-
lating the von Neumann information entropy of the reduced
density operators of both the electron and positron subsystems
S(ρ̂±),

S(ρ̂±) = −kB tr±(ρ̂± ln ρ̂±). (33)

According to the general theory they coincide S(ρ̂+) = S(ρ̂−)
and can be treated as a measure of the quantum entanglement
of these subsystems.

It is also known that one can recognize entanglement by
evaluating the so-called Schmidt measure, which is the trace
of the squared reduced density operators [25]

S̃(ρ̂±) = −tr[(ρ̂±)2]. (34)

Let us calculate the entropy for both the electron and positron
subsystems in two important cases of the vacuum initial state
and the thermal initial state that are described by the reduced
density operators ρ̌ζ (0) and ρ̌ζ (β).

A. Vacuum initial state

The entropy for the reduced density operator of the system
with an initial vacuum state has the form

S(ρ̌ζ (0)) = −kB trζ [ρ̌ζ (0) ln ρ̌ζ (0)]. (35)

The term ln ρ̌ζ (0) on the right-hand side of (35) can be written
as

ln ρ̌+(0) = ln

[
|cv|2 : exp

{
−
∑

n

a†
n(out)

(
1 − P (+ − |0)P −1

v

)
nn

an(out)

}
:

]
,

(36)

ln ρ̌−(0) = ln

[
|cv|2 : exp

{
−
∑

n

b†n(out)
(
1 − P (+ − |0)P −1

v

)
nn

bn(out)

}
:

]
.

Transforming the normal-form exponents into ordinary exponents (see, for example, Ref. [15]) and recalling that |cv|2 = Pv , we
obtain

ln ρ̌+(0) = ln Pv +
∑

n

a†
n(out) ln

[
P (+ − |0)P −1

v

]
nn

an(out),

(37)
ln ρ̌−(0) = ln Pv +

∑
n

b†n(out) ln
[
P (+ − |0)P −1

v

]
nn

bn(out).

Taking into account that the matrices P (+ − |0)P −1
v are diagonal, one can rewrite (35) as

S(ρ̌+(0)) = −kB

{
ln Pv +

∑
n

tr+[ρ̌+(0)a†
n(out)an(out)] ln[P (+ − |0)P −1

v ]nn

}
,

(38)

S(ρ̌−(0)) = −kB

{
ln Pv +

∑
n

tr−[ρ̌−(0)b†n(out)bn(out)] ln[P (+ − |0)P −1
v ]nn

}
,
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where tr+ρ̌+(0)a†
n(out)an(out) = Nn(0|out) and tr−ρ̌−(0)b†n(out)bn(out) = Nn(0|out) are differential mean numbers of out

electrons and out positrons, respectively. They obviously coincide. Thus, the entropy takes the form

S(ρ̌ζ (0)) = −kB

{
ln Pv +

∑
n

Nn(0|out)
[

ln P (+ − |0)P −1
v

]
nn

}
. (39)

One can use the pair-creation probability and the vacuum-to-vacuum probability written in terms of differential mean numbers
(see, for example, [14])

P (− + |0)n,n′ = δn,n′
PvNn(0|out)

1 − κNn(0|out)
, Pv = exp

{
κ
∑

n

ln[1 − κNn(0|out)]

}
(40)

to obtain

S(ρ̌ζ (0)) =
∑

n

S(ρ̌n,ζ (0)), S(ρ̌n,ζ (0)) = −kB{κ[1 − κNn(0|out)] ln[1 − κNn(0|out)] + Nn(0|out) ln Nn(0|out)}. (41)

Let us consider the Schmidt entanglement measure (34),

S̃(ρ̌ζ (0)) = −tr[ρ̌ζ (0)]2. (42)

Here

[ρ̌+(0)]2 = P 2
v

{
: exp

[
−
∑

n

a†
n(out)

(
1 − P (+ − |0)P −1

v

)
nn

an(out)

]
:

}2

,

(43)

[ρ̌−(0)]2 = P 2
v

{
: exp

[
−
∑

n

b†n(out)
(
1 − P (+ − |0)P −1

v

)
nn

bn(out)

]
:

}2

.

Using the relation (here D and D̃ are matrices)

: exp[−a†(out)Da(out)] :: exp[−a†(out)D̃a(out)] :=: exp[−a†(out)(D + D̃ − DD̃)a(out)] : , (44)

we obtain

[ρ̌+(0)]2 = P 2
v : exp

{∑
n

a†
n(out)

{[
P (+ − |0)P −1

v

]2 − 1
}

nn
an(out)

}
:,

(45)

[ρ̌−(0)]2 = P 2
v : exp

{∑
n

b†n(out)
{[

P (+ − |0)P −1
v

]2 − 1
}

nn
bn(out)

}
:.

Calculating the traces in Eq. (42) taking into account (40), we finally obtain

S̃(ρ̌ζ (0)) = −P 2
v det

{
1 + κ

[
P (+ − |0)P −1

v

]2}κ = −
∏
n

{1 − 2κNn(0|out) + (1 + κ)[Nn(0|out)]2}κ . (46)

B. Thermal initial state

The entropy for the operators ρ̌ζ (β), which describe the
system that has been in thermal equilibrium at the initial time
instant, has the form

S(ρ̌β,ζ ) = −kB trζ ρ̌ζ (β) ln ρ̌ζ (β). (47)

Transforming the expression ln ρ̌ζ (β) as

ln ρ̌+(β) = ln Zζ (Jβ) +
∑

n

a†
n(out) ln[K+(Jβ)]nnan(out),

ln ρ̌−(β) = ln Zζ (Jβ) +
∑

n

b†n(out) ln[K−(Jβ)]nnbn(out),

(48)

one can write

S(ρ̌β,ζ ) = kB

{
ln Zζ (Jβ) −

∑
n

Nn,ζ (β|out)[ln Kζ (Jβ)]nn

}
,

(49)
where Nn,ζ (β|out) are given by (9) with Nn,ζ (· · · |in) =
Nn,ζ (β|in). One can express diagonal elements of Kζ (Jβ) in
terms of the corresponding occupation numbers Nn,ζ (β|out),

[Kζ (Jβ)]nn = Nn,ζ (β|out)

1 − κNn,ζ (β|out)
, (50)

and do the same to Zζ (Jβ) by means of the normalization
condition (trζ ρ̌β,ζ = 1)

Zζ (Jβ) = exp

{
−κ
∑

n

ln[1 − κNn,ζ (β|out)]

}
(51)
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to rewrite the expression (49) for the entropy in the form

S(ρ̌ζ (β)) =
∑

n

S(ρ̌n,ζ (β)),

S(ρ̌n,ζ (β)) = −kB{κ[1 − κNn,ζ (β|out)] ln[1 − κNn,ζ (β|out)]

+Nn,ζ (β|out) ln Nn,ζ (β|out)}. (52)

Considering expressions (52), (41), and (32), one can see that
they all have similar forms.
Next let us find the Schmidt measure for subsystems of
positrons and electrons for the system with a thermal state as
the initial time instant; subsystems of such a state are described
by the reduced density operator ρ̌ζ (β). The entanglement
measure of the electron and positron subsystems is given by

S̃(ρ̌ζ (β)) = −tr[ρ̌ζ (β)]2, (53)

where the squares of the operators ρ̌ζ (β) are

[ρ̌+(β)]2 = Z−2
+ (Jβ) : exp

[∑
n

a†
n(out)[K2

+(Jβ) − 1]nnan(out)

]
:,

(54)

[ρ̌−(β)]2 = Z−2
− (Jβ) : exp

[∑
n

b†n(out)[K2
−(Jβ) − 1]nnbn(out)

]
:

such that

S̃(ρ̌ζ (β)) = −
∏
n

{1 − 2κNn,ζ (β|out) + (1 + κ)[Nn,ζ (β|out)]2}κ . (55)

C. Entropy of measurement-reduced density operators

The entropy of a density operator ρ̌N (22) has the form

S(ρ̌N ) = −kB trρ̌N ln ρ̌N . (56)

The representation (3) allows one to factorize the complete
vacuum into the product of single-mode vacua

|0,out〉〈0,out| =∏n |0,out〉nn〈0,out|,
(57)

an(out)|0,out〉n = 0,bn(out)|0,out〉n = 0.

Using this fact and the representation for |cv|2 from (19), one
can rewrite the density operator (22) as a product of single-
mode density operators

ρ̌N =
∏
n

ρ̌N,n, trρ̌N,n = 1,

ρ̌N,n = |cv|2n
∑
f =0

Wf,n|f,out〉nn〈f,out|,
(58)|cv|2n = |w(−|−)nn|−2κ , Wf,n = |w(+ − |0)nn|2f ,

|f,out〉n = [a†
n(out)b†n(out)]f

f !
|0,out〉n.

The quantities |cv|2n and |w(+ − |0)nn|2 can be expressed via
differential numbers Nn(0|out) as

|cv|2n = [1 − κNn(0|out)]κ ,
(59)

|w(+ − |0)nn|2 = Nn(0|out)

1 − κNn(0|out)
.

Due to expression (58), the entropy (56) can be written as

S(ρ̌N ) = −kB

∑
n

trρ̌N,n ln ρ̌N,n. (60)

To calculate the trace of the operator ρ̌N,n ln ρ̌N,n, one can use
the formal decomposition

ρ̌N,n ln ρ̌N,n = ρ̌N,n

∞∑
k=1

k−1(ρ̌N,n − 1)k

=
∞∑

k=1

k−1
k∑

l=0

Cl
k(ρ̌N,n)l+1(−1)k−l , (61)

where Cl
k are binomial coefficients. Due to the orthonormality

of the states |f,out〉n, the density operators (ρ̌N,n)l+1 have the
form

(ρ̌N,n)l+1 = |cv|2(l+1)
n

∞∑
f =0

(Wf,n)l+1|f,out〉nn〈f,out|. (62)

Substituting (62) into (61), we obtain

ρ̌N,n ln ρ̌N,n = |cv|2n
∞∑

f =0

Wf,n ln
(|cv|2nWf,n

)|f,out〉nn〈f,out|.

(63)
Then

trρ̌N,n ln ρ̌N,n = Nn(0|out) ln Nn(0|out)

+ κ[1 − κNn(0|out)] ln[1 − κNn(0|out)].

(64)

Thus, the entropy of the density operator (22) reads

S(ρ̌N ) = −kB

∑
n

{κ[1 − κNn(0|out)] ln[1 − κNn(0|out)]

+Nn(0|out) ln Nn(0|out)}. (65)

The result has the same form as the entropy S(ρ̌ζ (0)) given
by (41). Thus, we can say that the measurement of N , N+,
or N− leads to the same information loss as a reduction over
electrons or positrons.
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It was shown in the Sec. IV that reduction of the density op-
erator ρ̌N over electrons and positrons transforms it in [ρ̌N ]ζ =
ρ̌ζ (0). This means that if one calculates the entropy of the
density operator [ρ̌N ]ζ , one obtains the same expression (65)
again. The conditional entropy [3] Scond = S(ρ̌N ) − S([ρ̌N ]ζ ),
which is used as a measure of correlations between subsystems,
is zero. This fact means that all quantum correlations between
the electrons and positrons are lost due to decoherence and
there is no entanglement left after the measurement.

VI. THE T -CONSTANT EXTERNAL ELECTRIC FIELD

To illustrate some of the above general formulas we
consider the so-called T -constant electric field as an external
background. Such a field acts only during a finite time T and it
is constant within this time interval. Using this field allows one
to avoid troubles with the definition of in and out states inherent
to external fields nonswitched at t → ±∞. Another important
point is that this field produces a finite work in a finite space
volume. Let us consider d = (D + 1)-dimensional space; then
the T -constant electric field E is acting during the time interval
T = tout − tin,

E = [0,E(t),0, . . . ,0], E(t) =
⎧⎨
⎩

0, −∞ < t � tin
E > 0, tin < t < tout

0, tout � t < ∞.

(66)

Processes of pair creation in such a field were studied
in Refs. [14,26–28]. Similar to these works, we consider
sufficiently large T .

Since there is no particle production after the time instant
tout, differential mean numbers of particles Nn,ζ (· · · |out)
created in a given state n = p,r (p is a D-dimensional vector of
momentum and r is spin) depend only on the time interval. The
electric field acting during the sufficiently long time T creates
a considerable number of pairs only in a finite region in the
momentum space. Since we suppose T � max{1,Ec/E}, we
need to consider only the range

|p⊥| �
√

eE[
√

eET ]1/2, − T/2 � p1/eE � T/2 (67)

in the momentum space (see [14] for details). Note that for the
case d = 2 there are no transversal components of momentum.

A. Vacuum initial state

First let us consider the case when the system initially was
in the vacuum state. For this case the differential mean numbers

in the momentum range (67) are

Nn(0|out) = e−πλ, λ = (p2
⊥ + m2)/eE. (68)

They have the same form as in the case of the constant uniform
electric field [11,21] and are the same for bosons and fermions.
The entropy (41) is expressed in terms of Nn(0|out) and does
not depend on the spin quantum number r , thus the summation
over the latter results in the factor γ(d) = 2[d/2]−1.

First we consider the Dirac case with κ = +1:

S(ρ̌n,ζ (0)) = −kB{[1 − Nn(0|out)] ln[1 − Nn(0|out)]

+Nn(0|out) ln Nn(0|out)}. (69)

For the case of electric field the mean number of particles
created Nn(0|out) can vary only within the range (0,1) and
depends only on the strength of the external field. Expression
(69) is symmetric with respect to Nn(0|out). It reaches a
maximum at Nn(0|out) = 1/2 and turns to zero at Nn(0|out) =
1 and Nn(0|out) = 0. This fact can be interpreted as follows.
In the case of Nn(0|out) = 0 there are no particles created by
the external field and the initial vacuum state in the mode
remains unchanged. The case Nn(0|out) = 1 corresponds
to the situation when a particle is created with certainty.
The maximum of (69), corresponding to Nn(0|out) = 1/2,
is associated with the state with the maximum amount of
uncertainty.

Representing the logarithm in the first term of expression
(69) as the Taylor series in powers of Nn(0|out), we see that
S(ρ̌n,ζ (0)) is proportional to Nn(0|out). The latter plays the
role of the cutoff parameter for the integral over p1 [14]. Thus,
the summation over the quantum numbers can be reduced to
an integration over momenta that satisfy restrictions (67),∑

n

→ γ(d)V

(2π )d−1

∫
dp,

where V is the D-dimensional spatial volume. The mean
numbers (68) do not depend on the longitudinal component
of momentum. Outside of the range (67), the contribution to
the integral is very small and this allows us to extend the inte-
gration limits of p⊥ to infinity. Integration over p⊥ can be per-
formed using the Taylor series. The result of the integration is

S(ρ̌ζ (0)) = γ(d)kB

(eE)d/2T V

(2π )d−1
ADirac(d,Ec/E), (70)

where the factor T V can be considered as the d-dimensional
volume. To get finite and correct expressions, one should use
the volume normalization. The factor ADirac(d,Ec/E) has the
form

ADirac(d,Ec/E) =
∞∑
l=1

l−d/2 exp[−πlEc/E] −
∞∑
l=1

l−1(l+1)(2−d)/2 exp[−π (l+1)Ec/E]+
(

π
Ec

E
+ d − 2

2

)
exp(−πEc/E).

It is possible to estimate the entropy in strong-field Ec/E 
 1, critical-field Ec/E = 1, and weak-field Ec/E � 1 limits.
For example, for a strong field with d = 4 we have ADirac(4,0) = π2/6; for the critical field, we have ADirac(4,1) ≈ 0,22. In the
case of a weak field the entropy has a small value of the order of (πEc/E) exp(−πEc/E) for any d. For d = 3 the following
estimations hold: ADirac(3,0) ≈ 0,93 and ADirac(3,1) ≈ 0,2; for d = 2 the factor A(2,0) is a value of order of 1 and A(2,1) = e−π .

Let us consider the KG case (κ = −1)

S(ρ̌n,ζ (0)) = kB{[1 + Nn(0|out)] ln[1 + Nn(0|out)] − Nn(0|out) ln Nn(0|out)}. (71)
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Expression (71) just increases with Nn(0|out). After summation over the quantum numbers, the entropy (39) takes the form

S(ρ̌ζ (0)) = kB

(eE)d/2T V

(2π )d−1
AKG(d,Ec/E), (72)

where

AKG(d,Ec/E) =
∞∑
l=1

l−d/2(−1)l−1 exp[−πlEc/E] +
∞∑
l=1

l−1(l + 1)(2−d)/2(−1)l−1 exp[−π (l + 1)Ec/E]

+
(

π
Ec

E
+ d − 2

2

)
exp(−πEc/E).

The following are estimations for different field strengths:
AKG(4,0) ≈ 2,21 and AKG(4,1) ≈ 0,22; AKG(3,0) ≈ 1,78
and AKG(3,1) ≈ 0,2; and AKG(2,0) ≈ 1 and AKG(2,1) ≈ e−π .
In the case of a weak field the entropy is a small value of the
order of (πEc/E) exp(−πEc/E) for any d again.

We have mentioned before that the entropy of the density
operator ρ̌N , given by (65), is exactly of the same form as the
entropy of ρ̌ζ (0), given by (41); hence all the considerations
for the case with the intermediate measurement are the same.

B. Mixed initial state

We note that the entropy (52) of the system that has
been in thermal equilibrium at the initial time instant is
expressed in terms of differential mean numbers Nn,ζ (β|out)
(9) of particles created by the external field, whereas initial
differential numbers of particles are

Nn,ζ (β|in) = [exp β(εn − μ) + κ]−1,
(73)

εn =
√

m2 + p2
⊥ + (p1 + eET/2)2.

Let us discuss two cases, the first one being the case of low
temperature

β(ε⊥ − μ) � 1, ε⊥ =
√

m2 + p2
⊥

when all the energies of the particles created with a given p⊥
are considerably higher than the temperature and the second
being the case of high temperature βeET 
 1 when all the
energies of the created particles are much lower than the
temperature. We assume for simplicity that eET � μ and
that T is sufficiently large to provide (eET )2 � m2 + p2

⊥.
In the low-temperature case, the number of particles created

does not depend on the longitudinal momenta:

Nn,ζ (β|in) ≈ exp(−βεn) → 0, Nn,ζ (β|out) → Nn,ζ (0|out).

In this limit entropy S(ρ̌n,ζ (β)) tends to that of the zero-
temperature case (initial vacuum state). Then integration over
transversal momenta can be done exactly as in the initial
vacuum case.

Formal calculations of Nn,ζ (β|out) and of the entropy in
the case of high temperature βeET 
 1 are also quite simple.
However, it was shown in Ref. [26] that in the Dirac case under
such a condition the current density is much greater than the
current density of particles created from the vacuum, due to the
work of the external field performed over the particles [which
was denoted by Re〈jμ(t)〉cθ in Ref. [26]] already existing in

the initial state. Therefore, in such a case the particle-creation
effect may be disregarded.

We note that the general form of the reduced density
operators ρ̌±, given by Eq. (13), allows one to study the change
of the entropy and the corresponding entanglement during
many consecutive measurements. In this case the density
operator ρ̌N (23) has to be considered as the initial state for
the second stage of the evolution and so on. In the general case
it is not simple to describe such a decoherence procedure for
an arbitrary stage. However, as was mentioned above, if the
mean numbers Nn(0|out) are not small within a sufficiently
large range of momenta, already on the second stage the
particle-creation effect may be disregarded and the subsequent
decoherence is described in the usual terms.

VII. SUMMARY

Using a general nonperturbative expression for the density
operators (of quantized Dirac or KG fields), we derived their
specific forms corresponding to different initial conditions.
Applying a reduction procedure to specific density operators,
we constructed mixed states of both electron and positron sub-
systems. Calculating the entropy of such states, we obtained
the loss of information due to the reduction and, at the same
time, the entanglement of electron and positron subsystems.
We paid attention to the fact that any measurement in the
system under consideration implies a decoherence and the
corresponding modifications of the complete and the reduced
density operators. We studied the results of such a decoherence
and we related to it the loss of information by calculating the
information entropy. To illustrate some of the obtained general
results, we considered the slowly varying T -constant electric
field as an external background. We derived the following
conclusions. The entropy of any subsystem (of electrons or
positrons) with the vacuum as the initial state is proportional
to the factor (eE)d/2 and to the number of spin degrees of
freedom γ(d). It grows linearly with the time of the field action
T . The above behavior remains in the thermal case at low
temperatures; in fact, here the entropy does not depend on the
temperature.
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APPENDIX: QED WITH STRONG ELECTRICLIKE
BACKGROUND

In this Appendix we consider briefly a special case of QFT
with an unstable vacuum of the quantized Dirac or KG field
with a time-dependent electriclike background that is switched
on and off at t → ±∞. Quantization of this theory in terms of
in and out electrons and positrons was elaborated in Ref. [13].
Some results of this quantization necessary for us here are
presented below.

We denote operators in the Schrödinger representation by a
caret, e.g., Â, while operators in the Heisenberg representation
are denoted by an inverted caret, e.g., Ǎ. In the Schrödinger
picture one can define the following: at the initial time instant
tin, a set of creation and annihilation operators a

†
n(tin) and

an(tin) of electrons and similar operators b
†
n(tin) and bn(tin)

of positrons such that the corresponding vacuum at tin is
|0,tin〉 and at the final time instant tout, a set of creation and
annihilation operators a

†
n(tout) and an(tout) of electrons and

similar operators b
†
n(tout) and bn(tout) of positrons such that the

corresponding vacuum at tout is |0,tout〉,
an(tin)|0,tin〉 = bn(tin)|0,tin〉 = 0,

an(tout)|0,tout〉 = bn(tout)|0,tout〉 = 0 ∀n.

The probability amplitude for the transition from an initial
state to a final state Min→out has the following form in the
Schrödinger picture:

Min→out = 〈tout|U (tout,tin)|tin〉,
where U (t,t ′) is a unitary evolution operator of the system. The
density operator of an initial state ρ̂(tin) is given as an operator-
valued function of the creation and annihilation operators of
electrons (positrons) at the initial time instant

ρ̂(tin) = ρin(a†(tin),a(tin),b†(tin),b(tin)).

The mean value of a physical quantity F at the final time
instant reads

〈F (tout)〉 = trρ̂(tout)F̂ (tout), (A1)

where ρ̂(t) is the density operator in the Schrödinger repre-
sentation at time instant t and the designation tr stands for the
complete trace

ρ̂(tout) = U (tout,tin)ρ̂(tin)U †(tout,tin). (A2)

In order to pass to the Heisenberg picture we define the finite-
time evolution operators �(±),

�(+) = U (0,tin), �(−) = U (0,tout),

U (tout,tin) = �
†
(−)�(+), (A3)

ρ̌ = ρ̂(0) = �(+)ρ̂(tin)�†
(+) = �(−)ρ̂(tout)�

†
(−);

a set of creation and annihilation operators a
†
n(in) and an(in) of

in electrons, similar operators b
†
n(in) and bn(in) of in positrons,

and the corresponding in vacuum |0,in〉; and a set of creation
and annihilation operators a

†
n(out) and an(out) of out electrons,

similar operators b
†
n(out) and bn(out) of out positrons, and the

corresponding out vacuum |0,out〉,
{a(in), . . .} = �(+){a(tin), . . .}�†

(+), |0,in〉 = �(+)|0,tin〉,
{a(out), . . .} = �(−){a(tout), . . .}�†

(−), |0,out〉=�(−)|0,tout〉,
Min→out = 〈0,tout| · · · a(tin)�†

(−)�(+)a
†
n(tin) · · · |0,tin〉 (A4)

= 〈0,out| · · · a(out)a†
n(in) · · · |0,in〉,

cv = 〈0,tout|U (tout,tin)|0,tin〉 = 〈0,out|0,in〉.
All the information concerning the processes of particle

creation, annihilation, and scattering is contained in the
elementary probability amplitudes

w(+|+)mn = c−1
v 〈0,out|am(out)a†

n(in)|0,in〉,
w(−|−)nm = c−1

v 〈0,out|bm(out)b†n(in)|0,in〉,
(A5)

w(0| − +)nm = c−1
v 〈0,out|b†n(in)a†

m(in)|0,in〉,
w(+ − |0)mn = c−1

v 〈0,out|am(out)bn(out)|0,in〉.
The amplitudes (A5) can be calculated with the help of certain
appropriate sets of solutions of the corresponding relativistic
wave equation with an external field (Klein-Gordon, Dirac,
and so on) (see [13]). We are interested in the case of a
uniform external field, which does not mix different quantum
modes. Thus, in this paper the amplitudes (A5) are diagonal
in quantum numbers

w(ζ |ζ )mn = δmnw(ζ |ζ )nn,

w(0| − +)nm = δmnw(0| − +)nn,

w(+ − |0)nm = δmnw(+ − |0)nn.

The sets of in and out operators are related to each other by
a linear canonical transformation [22], which can be written
in terms of the amplitudes (A5),2

a(out) = [w(+|+)†]−1a(in)−κw(+ − |0)[w(−|−)]−1b†(in),

b†(out) = [w(+|+)†]−1w(+ − |0)†a(in)+[w(−|−)]−1b†(in),

(A6)

and by its Hermitian conjugate. As it has been demonstrated
[13], such a relation is given by a unitary operator V ,

V {a(out), . . .}V † = {a(in), . . .}, |0,in〉 = V |0,out〉, (A7)

which has the form V = v4v3v2v1,

v1 = exp{−κb(out)w(0| − +)a(out)},
v2 = exp{a†(out) ln w(+|+)a(out)},

(A8)
v3 = exp{−κb(out) ln w(−|−)b†(out)},
v4 = exp{−κa†(out)w(+ − |0)b†(out)}.

Using this expression for V , one can find

cv = 〈0,out|V |0,out〉 = exp{−κtr ln w(−|−)}. (A9)

2We use condensed notation, for example, bw(0| − +)a =∑
n,m bnw(0| − +)nmam.
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