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Interference effects in tunneling of Schrödinger cat wave-packet states
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We analyze tunneling of a single particle, whose initial state is given by a superposition of spatially separated
wave-packet modes. It is shown that “pile up” of different components in the scatterer may change the tunneling
probabilities, making such states a convenient tool for probing the barrier’s scattering times. Interference effects
arising in resonance tunneling are studied in detail. The analysis allows us to gain further insight into the origin
of interference effects in scattering of several identical particles.
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I. INTRODUCTION

Currently, there is considerable interest in the interference
effects accompanying scattering of several noninteracting
identical particles (see, for example, [1–5]). In the celebrated
Hong-Ou-Mandel setup [3,4], effects of this kind are observed
if the particles, incident from opposite sides, coincide in
the scatterer. Recently it was shown that a different kind
of interference effect may arise in the case where identical
particles, incident from the same side, and detained in the
scatterer, coincide there due to a kind of “pile-up” effect
[6,7]. As a result, in resonance tunneling, the transmission
probability was shown to oscillate as a function of the temporal
delay between the arriving particles, provided two or more
metastable states in the barrier can be accessed [6].

In this paper, we discuss a closely related case, where the
state of a single particle, incident on a barrier, consists of
several spatially separated wave-packet modes. Such an exotic
“cat” state can be created, for example, by splitting the original
wave packet into parts, which experience different time delays
before being recombined [8] or, in the case of cold atoms, by
using techniques similar to those described in Ref. [9]. We will
show that the “pile up” of the modes, caused by a delay in the
barrier region, can cause observable changes in the tunneling
probability. One purpose of this paper is to analyze the use of
such systems as an alternative tool for probing the barrier’s
scattering times (for a tunneling time review see [10–12]). Its
other purpose is to use the analysis in order to gain further
insight into the nature of interference effects in scattering of
several identical particles.

The rest of the paper is organized as follows. In Sec. I
we consider transmission of a multicomponent initial state. In
Sec. II we analyze its transmission across a rectangular barrier.
In Sec. III we study the case of resonance tunneling, and
analyze the interference patterns occurring in the transmission
probability. In Sec. IV we discuss the interference mechanism,
and its similarity with that in the case of several identical
particles. Section V considers transmission of a mixed “cat”
state, and Sec. VI contains our conclusions.

II. A MULTICOMPONENT INITIAL STATE

Consider, in one dimension, a particle whose wave
function is given by a superposition of N wave packets,

ψn(x),

�0(x,t) = K−1/2
N∑

n=1

ψn(x,t). (1)

Such states can be constructed in different ways. For example,
ψn(x,t) could be copies of the same wave packet separated in
space, or the copies of the same wave packet, created at the
same place at different times [13]. In the following we will
consider the latter choice, in order to simplify the comparison
with the multiparticle case analyzed in Ref. [6]. We, therefore,
have

ψn(x,t) = (2π )−1/2
∫

An(p) exp[ipx − iE(p)(t + tn)]dp,

(2)

where 0 = t1 < t2 < · · · < tN .
For a particle of mass μ, e.g., for cold atoms [6] or photons

in a waveguide [14], the energy is quadratic in the momentum,
E(p) = p2/2μ. For massless particles, e.g., free photons, or
electrons in graphene [15], this relation is linear, E(p) = cp.
The constituent wave packets may, or may not overlap, and for
the normalization constant K in Eq. (1) we have

K =
∑
mn

〈ψm|ψn〉 =
∫

dpA∗
m(p)An(p) exp[iE(p)τmn]

≡
∑
m,n

Imn, (3)

where τmn = tm − tn. The particle is incident on a finite width
potential barrier with a transmission amplitude T (p) (see
Fig. 1) and, as t → ∞, its transmitted part takes the form,

�T (x,t) ≡
∑

n

ψT
n (x,t) = (2πK)−1/2

∑
n

∫
T (p)An(p)

× exp[ipx − iE(p)(t + tn)]dp. (4)

We are interested in times sufficiently large for the particle to
have left the barrier region. The tunneling probability P T is
then given by the integral of |�(x,t)|2 from the right edge of
the barrier to infinity. Replacing the lower integration limit by
−∞, from Eq. (4) we have

P T =
∑
m,n

Tmn

/ ∑
m,n

Imn, (5)
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FIG. 1. (Color online) Schematic diagram showing a “cat” state,
consisting of N nonoverlapping components, incident on a resonance
barrier supporting two metastable states.

where

Tmn=
〈
ψT

m

∣∣ψT
n

〉= ∫
dp|T (p)|2A∗

m(p)An(p) exp[iE(p)τmn],

(6)

is the matrix of the overlaps between the transmitted modes
ψT

n .
If the delays are large, |tm − tn| → ∞, rapid oscillations

of the exponentials in Eqs. (3) and (6), cause the off-diagonal
elements of the overlap matrix vanish, Imn = anδmn and Tmn =∫ |T (p)2|An(p)|2dp × δmn ≡ wnδmn. If so, all components of
�0 are transmitted independently, and we have

P T =
∑

n

wn ≡ P T
ind. (7)

As in Ref. [6], we are interested in the case where Imn =
anδmn, and Tmn �= wnδmn. This would indicate that the initially
nonoverlapping components of �0 “pile up” in the barrier
region, and the interference between them affects the outcome
of the tunneling process. A deviation of P T from P T

ind may,
therefore, serve as a crude indicator that a scattered particle
spends in the barrier a duration comparable to at least some of
|tm − tn|. Next we apply this test to the case of a rectangular
barrier.

III. A RECTANGULAR BARRIER

For a rectangular barrier, V (x) = V for a � x �< b, and 0
otherwise, the transmission coefficient in the tunneling regime
E(p) < V is given by the well-known expression,

|T (p)|2 = 1/{1 + V 2 sinh2[q(b − a)]/4V (V − E(p)}, (8)

where q(p) = [2μ(V − E)]1/2 for a massive particle. Hence-
forth, we will consider Gaussian wave packets with identical
momentum distributions, separated by equal time delays,

An(P ) = Am(p) ≡ A(p), tn+1 − tn ≡ τ,
(9)

|A(p)|2 = (2π )−1/2σ exp[−(p − p0)2σ 2/2].

In the deep tunneling regime, |T (p)|2 ∼ exp[−2q(b − a)]
rapidly grows as E increases, but contains no sharp features.
As a result, the momentum distribution of each ψT

n is shifted
towards higher p’s, but not modified sufficiently to prevent
integrals in Eq. (6) from being destroyed by the oscillations
(see inset in Fig. 2). There is, therefore, no evidence that
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FIG. 2. (Color online) Tunneling probabilities for the rectangular
barrier (8) vs τ/t0, t0 ≡ 1/2μ(b − a)2, with 2μV (b − a)2 = 4.
Shown are the cases of N = 2 (solid) and N = 5 (dashed) Gaussian
components (9) with p0(b − a) = 1.41, and σ/(b − a) = 4.47. To the
right the vertical dashed line the overlap between the components,∑N

i �=j |Iij |, is less than 0.005. Also shown in the inset are |A(p)|2
(solid) and |T (p)|2|A(p)|2 (dashed), both renormalized to unit
heights, as well as |T (p)| (thick solid).

different components of the wave function, which did not
overlap initially, may be delayed, and eventually “meet” in the
barrier region. The transmission probability for an two- and
five-component states is shown in Fig. 2. As expected, as soon
as the overlap between different ψn vanishes, different modes
in Eq. (1) tunnel independently, and we have P T = P T

ind. The
absence of the said pile-up effect is consistent with the original
McColl’s suggestion that “there is no appreciable delay in the
transmission of the packet through the barrier.” [16]. It is also
consistent with the finding of Ref. [6], where tunneling of two
identical particles was studied in a similar context.

IV. RESONANCE TUNNELLING

The situation is different in resonance tunneling across a
symmetrical barrier. The transmission coefficient of such a
barrier typically exhibits well-separated sharp narrow peaks
which, in the Breit-Wigner approximation, have Lorentzian
shapes,

|T (p)|2 ≈
∑

j

�2
j(

p2/2μ − Er
j

)2 + �2
j

. (10)

Thus, Er
j = E(pr

j ) gives the position of the j th resonance
peak, and �j is its width. Now the transmitted momentum
distribution, |T (p)|2|A(p)|2|, can be made much narrower than
the incident one, |A(p)|2|. Approximating both |A(p)|2 and
∂pE constant for E(p) ≈ Er

j , and evaluating the remaining
integrals in Eq. (6), then yields

Tmn =
∑

j

Cj exp(−�j |m − n|τ ) exp
[
iEr

j (m − n)τ
]
, (11)

where Cj = 2π�j |A(pr
j )|2/∂pE(pr

j ). Equation (11) shows
that Tmn(τ ) oscillates with the internal frequencies of the
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FIG. 3. (Color online) Probability to tunnel with one resonance
level accessible to a particle in two-component initial state (9) vs
the time lag τ = t2 − t1, for p0σ = 6, Er

1/E0 = 1, �1/E0 = 0.014,
and E0 ≡ E(p0). A horizontal dashed line marks P T

ind in Eq. (7); ψ1

and ψ2 can be considered nonoverlapping to the right of the vertical
dashed line. The inset shows |A(p)|2 and |T (p)|2.

resonance barrier, ωj = Er
j , j = 0,1,2,.... In particular, for

N = 2, and just one resonance state at Er
1, we have the

interference correction δP T (τ ) ≡ P T (τ ) − P T
ind(τ ) given by

(τ ≡ τ12),

δP T (τ ) = 2μπ�1

∂pE
(
pr

1

) ∣∣A(
pr

1

)∣∣2
exp(−�1τ ) cos

(
Er

1τ
)
. (12)

For a narrow resonance, δP T (τ ) in Eq. (12) oscillates with a
frequency Er

1, persists even for the delays at which ψ1 and
ψ2 no longer overlap, and finally vanishes for τ exceeding
1/�1, as illustrated in Fig. 3(a). This is an agreement with the
broadly accepted view that, in resonance tunneling, a particle
spends approximately a duration of order of the lifetime of the
metastable state supported by the barrier [17] (see also [6] and
references therein).

With only two resonances accessible to the incident particle,
for C1 ≈ C2 = C, and |τ (�1 − �2)| � 1, we find

δP T (τ ) ≈ 2C exp(−�1τ ) cos(δωτ ) cos(ωτ ), (13)

where ω = (Er
1 + Er

2)/2, and δω = (Er
2 − Er

1)/2. If two reso-
nance levels are close to each other, ω � δω, damped rapid os-
cillations of δP (τ ) are modulated with a much lower frequency
δω (see Fig. 4). We recall that for two identical particles,
quantum statistical correction to transmission probability was
found to oscillate with the frequency 2δω [6], which suggests
a certain similarity between two effects. We will return to
discuss this further in Sec. V.

Finally, for an initial state (9), containing N identical
modes, we have

P T (τ ) ≡ Nw +
∑

j

Fj

(
τ,Er

j ,�j

)
, (14)
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FIG. 4. (Color online) Same as Fig. 3, but for two resonance
levels, p0σ = 9, Er

1/E0 = 0.9, �1/E0 = 0.032, Er
2/E0 = 1,1, and

�2/E0 = 0.038. Also shown by a thick solid line is the envelope
2C exp(−�1τ ) cos(δωτ ) in Eq. (13).

where the function FN (τ,Er,�) is given by

Fj (τ,Er,�) = Cj Re

{
N

exp
(−iE r

j τ
) − 1

− exp
[
iE r

j (N − 1)τ
] − exp

(−iE r
j τ

)
[

exp
(−iE r

j τ
) − 1

]2

}
,

(15)

and we have introduced complex energies E r
j = Er

j − i�j to
shorten the notations. For N � 1, it is sufficient to retain only
the first term in the curly brackets, which yields

FN (τ,Er,�) = −CN
cos(Erτ ) − exp(−�τ )

cos(Erτ ) − cosh(�τ )
. (16)

Thus, for �τ � 1, FN (τ,Er,�) has sharp peaks at τ =
2πk/Er , k = 1,2,..., whose heights are proportional to
NEr/k�. When added together, the peaks may give δP T a
highly irregular shape, as shown in Fig. 5.
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FIG. 5. (Color online) Same as Fig. 4, but for five identical
Gaussian components, N = 5, and tn − tn−1 = τ . The inset shows
the sequences of peaks [cf. Eq. (15)], contributed by each of the two
resonances.
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FIG. 6. (Color online) Real part (dashed) and modulus (solid)
of ψT

n in Eq. (17) transmitted across a barrier supporting a single
metastable state, with pr�/c = 0.05 and A(pr )�/c = 0.11. Also
shown by the dot-dashed line is the modulus of ψT

n as given by
Eq. (17).

V. THE INTERFERENCE MECHANISM

The task of evaluating P T (τ ) is particularly straightfor-
ward, since we need not follow the evolution of the wave
function in the barrier region, and only require the final
overlap matrix Tmn. By filtering momenta of a ψn, a narrow
resonance at Er

j produces a nearly monochromatic transmitted
state ψT

nj with E ≈ Er
j . The state is broad in the coordinate

space, and the overlaps between ψT
mj and ψT

nj , whose relative
delay is (m − n)τ , contains a factor exp[iEr

j (m − n)τ ]. For
several well-separated resonances, ψT

nj and ψT
nj ′ with j �= j ′

have different energies, and are practically orthogonal, so
that transmissions via different metastable states are mutually
exclusive events. In this way, summation over all transmitted
modes in Eq. (6) produces interference structures shown in
Figs. 3–5.

We illustrate this with a simple example by considering
nonspreading wave-packet states with a linear dispersion law,
E(p) = cp. Assuming the Breit-Wigner form for the trans-
mission amplitude, T (p) = i�/[(E − Er ) + i�], and putting
A(p) ≈ A(pr ), we have

ψT
n (x,t) ≈ 2π�A(pr )

c
�(x − ct − ctn), (17)

where

�(y) ≡ θ (−y) exp(ipry + �y/c), (18)

and θ (y) = 1 for y � 0 and 0 otherwise. Thus, ψT
n in Fig. 6 has

a sharp front followed by a long exponential tail, which allows
different ψT

n to overlap, 〈ψm|ψn〉 ∼ exp[−iEr (tm − tn)], even
if ψn didn’t, Imn = 0 for m �= n. With two or more resonances
involved, ψT

n would contain several contributions of the form
(17), one for each metastable state.

Our analysis of a single particle, prepared in an exotic initial
state, helps us to gain an insight into the interference effects
accompanying scattering of several identical particles. Earlier
we considered [6] the case of two fermions or bosons, emitted
in the same wave-packet state, with a time delay τ between
the emissions. For a barrier with two resonance levels, the

two-particle transmission probability P T (2,2), considered as
a function of τ , exhibited oscillations with a frequency 
ω =
Er

2 − Er
1. The oscillations disappear if the particles can be

distinguished.
We note that in both problems we only require the

knowledge of the initial and final overlap matrices, Imn, and
Tmn [6]. They are, however, used differently. Whereas in the
single particle case, considered here, the correction δP T (τ ) =
2ReT12 contains all barrier frequencies Er

j ; the statistical
correction to P T (2,2) depends on |T12|2, and oscillates only
with 
ω = Er

2 − Er
1.

What makes the two cases similar is that the particle, or par-
ticles, are distributed between wave-packet modes ψ1 and ψ2.
For a single particle, this is readily seen from Eq. (1). A sym-
metrized (antisymmetrized) state of two uncorrelated particles,
I12 = I21 = 0 is given by �(x1,x2,t) = [ψ1(x1,t)ψ2(x2,t) ±
ψ1(x2,t)ψ2(x1,t)]/

√
2, which also implies that particle 1 is

simultaneously present in both ψ1 and ψ2, albeit in a different
manner. In both cases, the physical origin of an oscillatory
pattern in the transmission probability is the overlap between
different ψT

n , acquired in the barrier, and the phases carried by
different ψn, experiencing different time lags. In conclusion,
it is worth noticing that our approach relies on the analysis
of asymptotic states, thus leaving the details of what actually
happens in the scatterer [18] while the particle is inside it
beyond the scope of this work.

VI. TRANSMISSION OF A MIXED CAT STATE

Before concluding, we briefly discuss transmission of a
mixed cat state with two components, ψ1(x,t) and ψ2(x,t),
〈ψm|ψm〉 = δmn, m,n = 1,2. The system is prepared in the
following way: With a probability p/2 it is in one of the states
ψ1(x,t) and ψ2(x,t), and with a probability (1 − p) it is in their
coherent superposition, [ψ1(x,t) + ψ2(x,t)]/

√
2. The incident

density matrix is, therefore, given by

ρ(x,x ′) = [ψ1(x,t)ψ∗
1 (x ′,t) + ψ2(x,t)ψ∗

2 (x ′,t)]/2

+ (1 − p)[ψ1(x ′,t)ψ∗
2 (x,t) + ψ2(x,t)ψ∗

1 (x ′,t)]/2,

(19)

and for the transmission probability we have

P T = [w1 + w2]/2 + (1 − p)Re[T12(τ )]. (20)

Thus, for a pure state, p = 0 we recover Eq. (5). As p increases,
the last interference term in Eq. (20) becomes smaller, and
finally vanishes for the incoherent combination of the two
states, p = 1, where P T = (w1 + w2)/2. This simple result is
easily extended to the case where the initial state has three, or
more, components, N > 2.

VII. CONCLUSIONS AND DISCUSSION

In summary, various wave-packet modes of the same
one-particle state, well separated (nonoverlapping) initially,
may coincide inside a scatterer, provided the particle is
detained there for an appreciable period of time. Then
the interference, resulting from this “pile-up” effect, may
significantly change the tunneling probability P T . The effect
requires that transmitted modes be significantly broadened
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in the coordinate space, and is absent in tunneling across a
rectangular barrier. It is present in resonance tunneling, where
P T , considered as a function of the time between the arrivals
of two consecutive modes at the barrier, oscillates with internal
frequencies of the barrier. We have shown that the interference
patterns predicted for the resonance transmission of several
identical particles [6,7], have a similar origin, both resulting
from the particle being distributed, in one way or another,
between different wave-packet components. The interference
patterns are washed out if the initial state is mixed, rather than

pure. The proposed type of “interferometry in the time domain”
is within the capability of modern experimental techniques
[9,19].
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