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Dissipative Landau-Zener quantum dynamics with transversal and longitudinal noise
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We determine the Landau-Zener transition probability in a dissipative environment including both longitudinal
as well as transversal quantum-mechanical noise originating from a single noise source. For this, we use the
numerically exact quasiadiabatic path integral, as well as the approximative nonequilibrium Bloch equations.
We find that transversal quantum noise in general influences the Landau-Zener probability much more strongly
than longitudinal quantum noise does at a given temperature and system-bath coupling strength. In other words,
transversal noise contributions become important even when the coupling strength of transversal noise is smaller
than that of longitudinal noise. We furthermore reveal that transversal noise renormalizes the tunnel coupling
independent of temperature. Finally, we show that the effect of mixed longitudinal and transversal noise originating
from a single bath cannot be obtained from an incoherent sum of purely longitudinal and purely transversal noise.
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I. INTRODUCTION

The transition dynamics of quantum systems driven by
external fields in the vicinity of avoided crossings of en-
ergy levels [1–4] is at the heart of many vastly different
physical problems. Examples are the dynamics of chemical
reactions [5], the spin reversal dynamics in molecular nano-
magnets [6], the nonequilibrium dynamics of glasses at low
temperatures [7–10], Bose-Einstein condensates in optical
lattices [11–13], and the dynamics of solid-state artificial
atoms [14–18]. In any physical realization, a quantum system
is influenced by its environment, which exerts fluctuating
forces on the system. These result typically in decoherence
and relaxation [19,20]. The according relaxation or dephasing
times constitute important additional time scales. In fact, it has
been shown that they typically compete with the time scales
imprinted by the external driving and that they significantly
influence the Landau-Zener switching dynamics [21,22].

The Landau-Zener model [1–4] constitutes an archetype
problem of driven quantum dynamics around an avoided
energy-level crossing. The energy difference of the two
diabatic states of a two-level quantum system with the
Hamiltonian (� = 1)

HS(t) = �

2
σx + ε(t)

2
σz (1)

is externally driven by ε(t) = vt with speed v. Here, the σi=x,z

are the Pauli matrices. The two diabatic states are coupled
due to a nonzero value of �, which results in an avoided
level crossing at the symmetry point taken here at t = 0. The
Landau-Zener probability P0 gives the probability that the
quantum system remains in the ground state while the quantum
two-level system (TLS) is driven from t = −∞ through the
avoided crossing at t = 0 to +∞. An analytical solution
to the problem was provided independently by Landau [1],
Zener [2], Stueckelberg [3], and Majorana [4]. It amounts
to the celebrated expression P0(v,�) = 1 − exp[−π�2/(2v)]
for the Landau-Zener probability.

When the influence of external fluctuating forces is included
by coupling the two levels to a bath of harmonic oscillators,
only a numerical treatment is possible or approximating

assumptions have to be invoked. In general, the dissipative
Landau-Zener model is challenging since, first, the driving
force generates for most times the dominant contribution in the
Hamiltonian. Second, the idealized driving protocol includes
infinitely long times such that the dissipative fluctuations can
substantially influence the dynamics even for weak system-
bath coupling strengths.

Several relevant limiting cases have been studied analyti-
cally [23–30]. In the limit of very fast sweeps (or nonadiabatic
driving) v � �2, it has been found that a thermal heat bath
has no influence on the Landau-Zener probability [21–30].
Conversely, a dissipative influence is expected for adiabatic
driving when v � �2, and in the crossover region when
v � �2. In many cases, a dissipative environment causes
fluctuations of the energies of the diabatic states and can be
denoted as longitudinal system-bath coupling. This longitudi-
nal dissipative Landau-Zener model was numerically solved
in the full parameter regime of temperatures, driving speeds
v, and system-bath couplings [21,22]. At low temperatures,
the Landau-Zener probability P is hardly influenced by
longitudinal noise [21,22,26]. At zero temperature, it has
strictly no influence [27], which not only holds true for bosonic
but also for spin-carrying environments [28]. For small sweep
velocities and medium to high temperatures, nonmonotonic
dependencies on the sweep velocity, temperature, coupling
strength, and cutoff frequency are observed [21,22]. This
characteristic behavior can be understood as a nontrivial
competition between relaxation and driving. Relaxation is
limited to a “crossing time window” around the avoided
crossing where the energy splitting of the two-level system
is smaller than temperature. Outside this window, phonon
excitations are suppressed by the Bose factor. For a thermal
influence on the Landau-Zener probability, the two-level
system must, however, absorb a phonon. Thus, for v � vmin

the time within this crossing window is too short for relaxation
to occur and, accordingly, the bath has no influence. In
contrast, for v � vmin relaxation dominates and the system
can relax at all times within the crossing time window. Thus,
due to the increasing energy splitting beyond the avoided
crossing the system relaxes back toward the ground state.
Maximal thermal excitation is obtained for v � vmin, where
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the crossing time equals the relaxation time. The particular
value vmin of the driving speed, for which the Landau-Zener
probability exhibits a minimum, depends on temperature, the
system-bath coupling strength, and the bath cutoff frequency.
To quantitatively underpin this simple picture, the relaxation
rates of the two-level system during the Landau-Zener sweep
through the avoided crossing must be determined. This can be
done by approximate quantum master equations, such as the
nonequilibrium Bloch equations [31,32].

The general role of environmental fluctuations inducing
transitions between the diabatic states for a transversal system-
bath coupling has been studied very little. Pokrovsky and
Sun [30] have employed a perturbative approach and find
that transversal noise acts within a much wider time window
as opposed to longitudinal noise, which acts mainly closely
around the avoided crossing. Thus, neglecting the interplay
and possible correlations between longitudinal and transversal
noise, Pokrovsky and Sun find an approximative solution
for the Landau-Zener probability. At zero temperatures,
transversal noise increases the Landau-Zener probability since
it renormalizes the tunnel coupling � to larger effective
values [27,28].

In this work, we treat the full dissipative Landau-Zener
model including both longitudinal and transversal environ-
mental fluctuations in the full parameter range of sweep
velocities and temperatures and for weak to intermediate
damping strengths. We employ the perturbative nonequilib-
rium Bloch equations (NBEs) [32] and the numerical exact
quasiadiabatic propagator path integral (QUAPI) [33,34]. We
find that the renormalization of the tunneling coupling due to
transversal noise persists for finite temperature. Furthermore,
the particular dependence of the upward transition rate for
mixed longitudinal and transversal noise originating from a
single bath on the energy shows that it cannot be understood as
the incoherent sum of the two upward transition rates of either
purely longitudinal or purely transversal noise. Hence, longi-
tudinal and transverse noise cannot be treated independently.

Typically, the effect of transversal noise is less pronounced,
for example, in solid-state artificial atoms [14–18] and in
molecular donor-acceptor pairs in solution. In the latter case,
however, weak transversal noise can dominate the energy
transfer dynamics [35]. We observe that for the same value
of the system-bath coupling strength the transversal term
in the system-bath coupling has a much more pronounced
effect on the Landau-Zener probability than the longitudinal
coupling term. In other words, to obtain the same modification
of the Landau-Zener probability due to external noise, the
longitudinal system-bath coupling roughly has to be chosen
a factor of 10 stronger than for the corresponding transversal
system-bath coupling strength. Thus, the coupling strength
alone is not decisive to rule out the relevance of transversal
fluctuations in comparison with longitudinal ones.

In the next section, we introduce the model and briefly
summarize in the third section the methods employed. Then,
we present the results and end with a conclusion.

II. MODEL

A minimal approach to study the dissipative dynamics
at avoided crossings is to couple the two-level quantum

system (TLS) of Eq. (1) to external harmonic fluctuations.
These are conveniently described by quantum harmonic
oscillators [19,20] incorporated in the Hamiltonian HB =∑

k ωkb
†
kbk , with bosonic annihilation bk and creation b

†
k

operators and angular frequencies ωk . Together with coupling
term HSB , the total Hamiltonian H (t) = HS(t) + HSB + HB

follows. To include both transversal and longitudinal coupling,
we use the bilinear form of the coupling:

HSB = −1

2
(cos θσz + sin θσx)

∑
k

λk(bk + b
†
k) . (2)

Therein, the coupling of the oscillators via σz to the system
describes fluctuations in the driving force and thus generates
“longitudinal” noise. In turn, the coupling via σx models fluctu-
ations in the coupling between the two diabatic states and thus
induces “transversal noise.” The mixing angle θ determines
the mixing of transversal and longitudinal noise, where θ = 0
corresponds to purely longitudinal and θ = ±π/2 corresponds
to purely transversal noise. As usual, the bath influence is
captured by the spectral function J (ω) = π

∑
k λ2

kδ(ω − ωk),
which is typically a smooth function [19] in the frequency
range of interest. To be specific, we assume an Ohmic spectrum
with J (ω) = γω exp(−ω/ωc) with cutoff frequency ωc and the
coupling strength γ .

III. METHODS

In order to obtain the Landau-Zener probability
P (v,�,T ) = |〈g|Ueff(∞, − ∞)|g〉|2 with |g〉 being the
ground state of the quantum two-level system, we need
to determine its effective time evolution Ueff(t,t0), thereby
tracing out the environmental (or bath) degrees of freedom.
Alternatively, we directly determine the reduced density
matrix ρ(t) = Ueff(t,t0)ρ(t0). We employ in the following two
approaches: an adiabatic Markovian quantum master equation,
i.e., the nonequilibrium Bloch equations (NBEs) [32], and
the quasiadiabatic path-integral (QUAPI) approach [33,34].
Throughout this work, we use kB = 1.

A. QUAPI

We briefly summarize the QUAPI approach [33,34] in the
following. The algorithm is based on a symmetric Trotter
splitting of the short-time propagator K(tk+1,tk) for the full
Hamiltonian H (t) into a part depending on the system
Hamiltonian and a part involving the bath and the coupling
term. The short-time propagator describes time evolution over
a Trotter time slice δt . This splitting is by construction exact
in the limit δt → 0, but introduces a finite Trotter error for a
finite time increment, which has to be eliminated by choosing
δt small enough such that convergence is achieved. On the
other side, the bath degrees of freedom generate correlations
being nonlocal in time. For any finite temperature, these
correlations decay exponentially fast at asymptotic times,
thereby setting the associated memory time scale. QUAPI
now uses an augmented reduced density operator which
includes the entire information over the memory time window.
This reduced density tensor is then propagated over time
via an iteration scheme. Within the memory time window,
all correlations are included exactly over the finite memory
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time τmem = Kδt . In turn, they can safely be neglected for
times beyond τmem. Then, the memory parameter K has to be
increased, until convergence is found. The two strategies to
achieve convergence are naturally countercurrent (see [36] for
details), but nevertheless convergent results can be obtained in
a wide range of parameters.

B. Nonequilibrium Bloch equations

Alternatively, a Redfield-type quantum master equation for
the dynamics of the driven dissipative system can be derived.
One starts by switching into the adiabatic basis H̃S(t) =
R†HS(t)R with the transformation R = exp[iφ(t)σy/2] with
φ(t) = arctan[ε(t)/�]. The quantum master equation for the
reduced density operator involves a memory kernel M(t,s).
The lowest order of Born approximation for M(t,s) in the
system-bath coupling [37,38] can be employed for a weak-
system-bath coupling. One obtains

M(t,s) = Tr
{
LSB (t)U0(t,s)LSB(s)ρeq

B

}
, (3)

with ρ
eq
B = exp(−βHB)/Tr{exp(−βHB)} and the free

time evolution superoperator U0(t,s) = exp{∫ t

s
ds ′(LLZ(s ′) +

LB(s ′))}. The Liouvillians Lx act according to LxO =
−i[H̃x,O] on operators O and H̃LZ(t) = H̃S(t) + φ′(t)σy/2.
Here, φ′(t) = dφ(t)

dt
. Next, we may assume that the memory

kernel M(t,s) is short lived, i.e., M(t,s) � 1 for (t − s) �
τmem with τmem much shorter than any system time scale
�−1. Then, a Markovian approximation can be invoked. We
note that we also have to assume further that the external
driving of the system acts on time scales much larger than
τmem for the Markovian assumption to be valid. This enters
formally in the calculation of the memory kernelM(t,s), when
we assume that LSB (s) � LSB(t) and exp{∫ t

s
ds ′LLZ(s ′)} �

exp{LS(t) · (t − s)}. Put differently, we assume that the driving
is adiabatic with respect to the bath memory time.

Neglecting further frequency renormalizations, one obtains
for the time evolution of the components of the statisti-
cal operator ρ(t) = 1

2 (1l − ∑
j=x,y,z rj (t)σj ) of the system

in its adiabatic basis, i.e., H̃S(t) = E(t)σx/2 with E(t) =√
�2 + ε(t)2, the nonequilibrium Bloch equations

∂t rx(t) = φ′(t)rz(t) − γ1(t)
[
rx(t) − req

x (t)
]
,

∂t ry(t) = −γ2(t)ry(t) − E(t)rz(t), (4)

∂t rz(t) = E(t)ry(t) − γ2(t)rz(t) − φ′(t)rx(t),

with time-dependent momentary equilibrium value r
eq
x (t) =

tanh[β 1
2E(t)] and time-dependent decay rates

γ1(t) = J [E(t)]

2
coth

[
1

2
βE(t)

]
{u(t) cos θ − v(t) sin θ}2,

(5)

γ2(t) = 1

2
γ1(t) + γdeph(t), with

(6)
γdeph(t) = 2γ T {u(t) sin θ + v(t) cos θ}2.

Herein, u(t) = cos φ(t), and v(t) = sin φ(t). These equations
of motion incorporate the full nonadiabatic behavior in the
vicinity of the avoided crossing of the system. They can easily

be integrated numerically employing a standard fourth-order
Runge-Kutta scheme.

IV. RESULTS

We have applied both the quasiadiabatic path integral and
the adiabatic Markovian quantum master equation to obtain
results for the Landau-Zener probability for driving speeds
from slow (adiabatic) to fast (nonadiabatic) driving, for low
(T � �) to high (T � �) temperatures, and for system-bath
couplings from small, i.e., γ � 10−4, to intermediate, i.e.,
γ = 2 × 10−2. In particular, our study aims at revealing the
role of varying the mixing angle θ between longitudinal and
transversal noise.

A. Transverse versus longitudinal noise

Figure 1 shows the Landau-Zener probability versus the
sweep velocity for a cutoff frequency ωc = 10�. Figures 1(a)
and 1(b) show data for system-bath coupling strength γ =
2 × 10−4, and Figs. 1(c) and 1(d) show data for γ = 2 × 10−3.
Furthermore, only longitudinal noise, i.e., θ = 0, acts in (a)
and (c), and only transversal noise, i.e., θ = π/2, is present
in (b) and (d). The symbols represent the QUAPI data for
various temperatures as indicated (the symbol size corresponds
to the typical numerical inaccuracy). The lines represent
results determined by the nonequilibrium Bloch equations.
The results of both the QUAPI and the NBE method coincide
in the regime addressed. For larger sweep velocities v �
3�2, the NBE slightly overestimates the exact Landau-Zener
probability [32]. Since dissipative effects are suppressed in the
nonadiabatic regime, we focus in the following on the adiabatic
and crossover regime, i.e., v � 3�2.

In the cases displayed in Figs. 1(b)–1(d), a minimum in
the Landau-Zener probability versus v at a certain vmin is
observed for temperatures T � �. With increasing temper-
ature, vmin increases and P (vmin) decreases. This minimum is
the signature of the competition between the Landau-Zener
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FIG. 1. (Color online) Landau-Zener probability P vs sweep
velocity v for various temperatures as indicated for ωc = 10�. Panels
(a) and (c) show P for pure longitudinal system-bath coupling
(“LC”) with θ = 0, and panels (b) and (c) show P for pure
transversal system-bath coupling (“TC”) with θ = π/2, respectively.
The dissipative coupling strength is γ = 2 × 10−4 for panels (a) and
(b) and γ = 2 × 10−3 for panels (c) and (d).
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driving and relaxation [21,22]. In Fig. 1(a), the LZ probability
becomes minimal at velocities vmin which are smaller than
those studied. For v � vmin, the time span during which the
system stays in the vicinity of the avoided crossing, is too short
for relaxation to occur. The dynamics deviates little from P0.
In contrast, for v � vmin relaxation dominates and the system
then can relax at all times in the crossing region. Thus, due to
the increasing energy splitting beyond the avoided crossing,
the system relaxes back towards the ground state. In this
respect, the minimum occurs when the underlying time scales
for passing through the avoided crossing and for relaxation
become equal [21,22].

Moreover, the role of purely longitudinal and purely
transversal noise is revealed in Fig. 1. It is known for lon-
gitudinal noise [21,22] that for increasing γ the minimum vmin

shifts to larger v. This feature is recovered when comparing
Figs. 1(a) and 1(c). This holds true as well for transversal
noise, when we compare Figs. 1(b) and 1(d). In that respect,
we can conclude that transversal noise resembles longitudinal
noise for effective larger system-bath coupling strengths. The
Landau-Zener probability versus v at a given temperature
differs quantitatively even when comparing cases with stronger
longitudinal to cases with weaker transversal noise. However,
the Landau-Zener probability, and, specifically, vmin, is qual-
itatively the same when we compare a case with longitudinal
noise with the coupling strength roughly a factor of 10 larger
than for the corresponding case of transversal noise only [see
Figs. 1(b) and 1(c)]. Thus, transversal noise generically causes
stronger dissipative effects than longitudinal noise at the same
nominal strength γ . Since the condition for vmin is that the time
scales for passing through the avoided crossing and relaxation
are equal, transversal noise must either result in effectively
larger relaxation rates or it must have an extended crossing time
window. For purely classical transversal noise, a similar effect
was reported by Pokrovsky and Sun [30]. It was attributed
to a larger time window around the avoided crossing where
dissipative effects are more efficient for transversal than for
longitudinal noise. Since the QUAPI and NBE results coincide
for the weak system-bath coupling strengths studied here, we
make extended use of the much simpler NBE approach in
the following to gain an understanding of the crossing time
windows for both noise configurations.

Before we proceed, we note that we have also performed
calculations for a smaller value of the cutoff frequency, i.e.,
ωc = 5�. The results are essentially the same as those shown
in Fig. 1 for ωc = 10�.

In Fig. 2, we show the momentary energy spectrum at a fixed
time t (full black lines) of the quantum two-level system versus
t which shows the avoided level crossing around the symmetry
point t = 0. In order that the Landau-Zener probability is
altered, dissipative effects have to excite the two-level system
out of the ground state. Within the NBE approach, we may cal-
culate the rate γu(t) for the upward transition from the ground
to the excited adiabatic eigenstate at a given time t . We find

γu(t) = J [E(t)]

2
nB

(
E(t)

2T

)
{u(t) cos θ − v(t) sin θ}2, (7)

with the Bose factor nB(ω). The dependence of this rate on
t is shown in Fig. 2 for a temperature T = 4�. The blue
dashed line refers to longitudinal noise with θ = 0, and the

-5 0 5
vt/Δ

-5

0

5

 γu(θ=0,T=4Δ)
 γu(θ=π/2,T=4Δ)

FIG. 2. (Color online) Momentary energy levels (black full lines)
of the two-level system (energies and γ in units of �) and the
momentary upward transition rate γu(t) of Eq. (7) for longitudinal
system-bath coupling (blue dashed line) with θ = 0 and for transver-
sal system-bath coupling (red dash-dotted line) with θ = π/2 vs time.

red dash-dotted line refers to transversal noise with θ = π/2.
We observe that the action of the longitudinal noise is clearly
restricted to the regime close to the avoided level crossing when
|t | � �/v. This is due to the prefactor u2(t) = �2/[�2 +
(vt)2]. In contrast to this, the prefactor v2(t) = (vt)/[�2 +
(vt)2] for the transversal noise vanishes at the symmetry point
at the avoided crossing but approaches 1 for large t � �/v.
In turn, the transversal noise has much more time to influence
the Landau-Zener probability by dissipative effects.

The suppression of the upward transition rates far away
from the symmetry point results from a vanishing Bose factor.
Phonon excitations in the bath have to be available which
could be absorbed by the two-level system in order to get
excited from its ground to the excited state. In both cases, the
rate is further suppressed once the energy splitting exceeds the
bath cutoff frequency ωc. A large value of the cutoff frequency
is also necessary to ensure that the Landau-Zener probability
can be determined numerically accurately. This also facilitates
numerical convergence. In our calculations, we have ωc � T ,
so that the influence of ωc is reduced to a mere quantitative
level. To support this observation, we have studied also the
case ωc = 5� (data not shown) and find qualitatively the same
results as in Fig. 1 (up to some minor quantitative differences).

B. Renormalization of tunnel coupling due to transversal noise

At zero temperature, longitudinal noise has no influence
on the Landau-Zener probability, whereas transversal noise
renormalizes the tunnel coupling [27] according to

�2 → W 2 = (� − ER sin θ cos θ )2 + S sin2 θ, (8)

with the reorganization energy ER = ∫ ∞
0 dωJ (ω)/ω = γωc

and the total spectral weight S = ∫
dωJ (ω) = γω2

c . These
exact results are strictly valid for T = 0. For finite temperature,
the influence of longitudinal noise vanishes when T � �, but
for transversal noise the behavior for any finite temperature
in the limit T → 0 has not been clarified. Two scenarios are
possible. On one hand, the renormalization could be connected
to the renormalization of the tunnel coupling in the spin-boson
model [19] which emerges at all temperatures. On the other
hand, the renormalization might be connected to the quantum
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FIG. 3. (Color online) Landau-Zener probability vs sweep ve-
locity for various low-to-intermediate temperatures for transversal
system-bath coupling with strength γ = 0.02 and ωc = 10. The
black full line represents the pure Landau-Zener probability without
dissipation whereas the dotted red line marks the Landau-Zener
probability with an effective renormalized tunnel coupling.

phase transition of the spin-boson model [19,20] which is only
present strictly at T = 0, but vanishes at finite temperatures.

Clearly, these effects are beyond a mere Markovian de-
scription and cannot be observed within the NBE approach.
However, we can use QUAPI to determine the Landau-Zener
probability for low temperatures and transversal noise with a
larger value of the dissipative coupling strength. For this, we set
γ = 0.02 and show in Fig. 3 the results in the relevant regime
of sweep velocities. The full line is the pure Landau-Zener
probability P0(v,�) without noise. In addition, the dotted
curve depicts the Landau-Zener probability P0(v,W ) without
noise, but with a renormalized value of the tunnel coupling
according to Eq. (8). The Landau-Zener probability follows
the case with an effective renormalized tunnel coupling for
all small temperatures T � � (only the data for T = 0.01�

are shown). Once temperature exceeds the tunnel coupling,
the dissipative effects due to relaxation, and, in particular,
the emergence of the minimum, become sizable. Accordingly,
for small v, the Landau-Zener probability decreases and
no longer follows P0(v,W ). However, for large v, even at
T � �, the numerical results match P0(v,W ). Hence, we can
conclude that the renormalization is a qualitatively similar
effect as the renormalization of the tunnel coupling in the spin-
boson model. It remains open, however, why renormalization
vanishes for longitudinal noise.

C. Asymmetric mixed noise

So far, we have addressed only purely longitudinal or purely
transversal quantum noise. In the following, we investigate
the case of a finite mixing of both terms. Figure 4 shows
the Landau-Zener probability versus v for various mixing
angles 0 � θ � π/2 for a fixed temperature T = 25�. With
increasing mixing angle, the minimum in the probability shifts
to larger values of v as could be expected since the character
of the total noise becomes more transversal with increasing
θ . Transversal noise results in effectively stronger dissipative
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FIG. 4. (Color online) Landau-Zener probability P vs sweep
velocity v for various mixing angles θ for T = 25�, ωc = 10�,
and γ = 5 × 10−4.

effects in an enlarged time window in which relaxation is
active. Accordingly, vmin shifts to larger values.

Pokrovsky and Sun [30] have analyzed mixed noise by
assuming that both contributions originate from two different
independent baths and can be separated. Such an assumption
seems to be valid at first sight, as illustrated by the above
discussion of the upward transition rate shown in Fig. 2.
Considering only the two cases separately may lead to
the conclusion that the transition rates for both cases are
nonzero in separated time windows. If both contributions were
independent, one would expect that the sign of the respective
system-bath coupling terms is not relevant. Thus, we would
expect that P (v,�,θ ) = P (v,�, − θ ).

In order to check this, we have calculated the Landau-Zener
probability versus v for both signs of the mixing angle θ , but
otherwise identical parameters. We should remember that we
have a setup with a single noise source. In particular, when we
reverse the sign of one term, the two coupling terms no longer
commute, i.e., [O+,O−] 
= 0 for O± = 1

2 (cos θσz ± sin θσx).
Correspondingly, we expect a modified dissipative influence
on the Landau-Zener probability in the present configuration.
This is shown in Fig. 5 via the Landau-Zener probability versus
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FIG. 5. (Color online) Landau-Zener probability P vs sweep
velocity v for mixing angles of opposite sign, θ = ±π/30 (upper
figure) and θ = ±π/10 (lower figure) for T = 4�, ωc = 10�, and
γ = 0.01.
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FIG. 6. (Color online) Momentary energy levels (black full lines)
of the two-level system (energies and γ in units of �) and the
momentary upward transition rate γu(t) of Eq. (7) for θ = −π/4
(blue dashed line) and θ = π/4 (red dash-dotted line) vs time.

v for both signs of θ but otherwise identical parameters. Indeed,
we find significant differences which emerge specifically in the
adiabatic regime with v � vmin. In contrast, for v > vmin and
in the nonadiabatic regime, the sign of θ is irrelevant.

This asymmetric behavior with respect to the sign of θ is
again a result of the time-dependent upward transition rates
and the associated time window for the action of dissipation.
The system Hamiltonian and the system-bath coupling term
only commute at a single time tc. This time is determined
according to [HS(tc), cos θσz + sin θσx] = 0, which is fulfilled
when vtc = � tan(π/2 − θ ). For θ > 0, we have that tc > 0
which thus occurs beyond the avoided crossing. At this time,
the upward transition rate vanishes. The upward transition rate
is asymmetric in time with respect to the symmetry point t = 0
for all 0 < θ < π/2. We plot in Fig. 6 the upward transition
rate for the two mixing angles θ = ±π/4. We observe a single
global maximum for t < 0 (t > 0) for θ < 0 (θ > 0). Thus,
the rate is also well suppressed for t > 0 (t < 0) when tc > 0
(tc < 0). Now, dissipative effects before the avoided crossing,
i.e., when t < 0, mainly support the excitation out of the
ground state since driving can only excite the system close
to the avoided crossing when |vt | � �. Relaxation beyond the
avoided crossing rather induces a repopulation of the ground
state. Thus, the minimum in the Landau-Zener probability is
expected to be more pronounced for tc < 0 or when θ < 0.
This is indeed what we find.

V. CONCLUSIONS

We have investigated the dissipative Landau-Zener model
including both longitudinal and transversal environmental

fluctuations in the full parameter range of sweep velocities
and temperatures and for weak to intermediate damping
strengths. We have employed the perturbative nonequilibrium
Bloch equations (NBEs) [32] and the numerically exact
quasiadiabatic propagator path integral (QUAPI) [33,34]. We
have found that the renormalization of the tunnel coupling at
zero temperature due to transversal noise persists up to finite
temperatures. Furthermore, we have shown that the upward
transition rate for mixed longitudinal and transversal noise
originating from a single bath is not the incoherent sum of the
two upward transition rates of purely longitudinal and purely
transversal noise.

Most importantly, we have found that for equal system-
bath coupling strength the influence of transversal quan-
tum fluctuations on the Landau-Zener probability is much
stronger. In detail, for equal modifications of the Landau-
Zener probability, the transversal system-bath coupling has
roughly to be a factor of 10 stronger than the longitudinal
system-bath coupling. This can be understood in terms of the
time-dependent momentary relaxation rates emerging from
an adiabatic-Markovian treatment. From this, we see that the
relaxation rates due to longitudinal noise act only within a
time window determined by |vt | � �. In turn, transversal
noise effects are sizable over a much larger time window
around the avoided crossing. We note that these results
hold for an Ohmic spectral function for the environmental
fluctuations. For super-Ohmic fluctuations as, for example,
resulting from lattice vibrations, both longitudinal as well
as transversal noise would act in the broader time window
defined by temperature. Thus, the difference between both
kinds of fluctuations is expected to be smaller. However, both
will act more strongly on the Landau-Zener probability than
longitudinal Ohmic noise for otherwise identical parameters.
Thus, we can conclude furthermore that the system-bath
coupling strength alone is not the decisive parameter to rule
out the relevance of one type of noise against another one for
driven quantum dynamics around an avoided level crossing.
This observation can be rather important for the interpretation
and the analysis of experiments, specifically for artificial
solid-state atoms and devices designed to process quantum
information.
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