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Quantum sound-cone fluctuations in cold Fermi gases: Phonon propagation
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We examine the effect of quantum fluctuations in a tunable cold Fermi gas on phonon propagation. We show
that these fluctuations can be interpreted as inducing a stochastic space-time. This effect can be displayed in the
variation in the travel time of phonons, at its greatest in the crossover region between Bose-Einstein condensate
and BCS regimes.

DOI: 10.1103/PhysRevA.91.051603 PACS number(s): 67.85.Lm, 03.65.Yz, 03.70.+k, 05.70.Fh

Massless particles and gapless modes (photons, phonons)
propagate causally according to the metrics of their respective
light and sound cones. However, the intrinsically quantum-
mechanical nature of the particle environments (quantum
gravity, condensate fluctuations) makes the cones “fuzzy.”
In particular, this fuzziness induces fluctuations in particle
times of flight. Such an effect is difficult to calculate ab initio.
Instead, several authors have addressed the simpler problem of
deriving this and related effects for photons [1,2] and phonons
[3–5] in predetermined phenomenological random media.

In this Rapid Communication we show that, for condensates
of cold Fermi gases, the effect of quantum fluctuations on
phonon times of flight can be calculated directly, without
recourse to external sources of fluctuations. Specifically, the
diatoms in the gas provide the endogenous stochastic medium
in which the phonons move. We recall that the weak-coupling
BCS regime of a Fermi gas is dominated by Cooper pairs
(in which the atoms are correlated in momentum) with low
numbers of diatoms (in which the atoms are correlated in
position). The situation is reversed in the strong-coupling
Bose-Einstein condensate (BEC) regime, where diatoms dom-
inate. We assume that we can interpolate from one regime
to the other by the existence of a tunable narrow Feshbach
resonance, whose interaction with an external magnetic field
enables us to change the strength of atomic interactions or,
equivalently, the atomic scattering length. Such is the case for
the narrow resonance at H0 = 543.25 G in cold 6Li, discussed
in some detail in [6] and used by us elsewhere [7,8], to which
we shall turn later.

We show that the fluctuations in the diatom density can be
interpreted as inducing a stochastic space-time metric whose
effect, as displayed in the variation in the travel time of
phonons, is at its greatest in the crossover region between
BEC and BCS regimes. Roughly, for the case in hand, the
effects are somewhat less than 1% for the propagation time
of waves across a typical condensate. As yet this is too
small to measure but, nonetheless, is huge in comparison to
the relative 10−9 fluctuations in photon propagation times
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in random media [2], which are their nearest equivalent,
let alone the infinitesimally small Planck time induced by
the fluctuations of quantum gravity, which prompted the
analysis [9].

We adopt the notation of our earlier work [7,8] in describing
a cold (T = 0) Fermi gas, tunable through a narrow Feshbach
resonance, by the action (� = 1) [10]

S =
∫

dt d3x

⎧⎨
⎩

∑
↑,↓↓

ψ∗
σ (x)

[
i ∂t + ∇2

2m
+ μ

]
ψσ (x)

+ϕ∗(x)

[
i ∂t + ∇2

2M
+ 2μ − ν

]
ϕ(x)

− g[ϕ∗(x)ψ↓↓(x)ψ↑(x) + ϕ(x)ψ∗
↑(x)ψ∗

↓↓(x)]

⎫⎬
⎭ (1)

for fermion fields ψσ with spin label σ = (↑,↓). The diatomic
field ϕ describes the bound-state (Feshbach) resonance with
tunable binding energy ν and mass M = 2m. Furthermore,
the condensate order parameter is the Feshbach resonance
field itself ϕ(x) = −|ϕ(x)|eiθ(x), which leads to a single-fluid
model in the hydrodynamic limit with a tunable sound
speed [7,8].

As a result of spontaneous symmetry breaking a ho-
mogeneous condensate acquires a nonzero |ϕ(x)| = |ϕ0|,
about which it fluctuates with fluctuations δ|ϕ| = |ϕ| − |ϕ0|.
The diatom density is ρD = |ϕ|2, with fluctuations δρD =
2|ϕ0|δ|ϕ|. We expand in the derivatives of θ and the small
fluctuations in the condensate density (or, equivalently, δ|ϕ|)
always preserving the Galilean invariance of the system.
Galilean scalars are the field fluctuation δ|ϕ| itself (and hence
δρD), G(θ ) = θ̇ + (∇θ )2/4m, and Dt (δ|ϕ|,θ ) = ˙(δ|ϕ|) + ∇θ ·
∇(δ|ϕ|)/2m, the comoving time derivative in the condensate
with fluid velocity ∇θ/2m.

For a narrow resonance, the mean-field approach adopted
in our work can be trusted [10]. The action S is quadratic
in the fermion fields. On integrating them out and changing
variables to θ and ε = κ−1δ|φ|, a dimensionless rescaled
condensate fluctuation, the local Galilean invariant effective
density for the long-wavelength, low-frequency condensate is
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of the form [7,8]

Seff[θ,ε] = S0[θ ] − α

∫
d4xεG(θ )

+ 1

4

∫
d4x[ηε̇2 − ρ0(∇ε)2/2m − M̄2ε2], (2)

where

S0[θ ] =
∫

d4x

[
N0

4
G2(θ ) − 1

2
ρ0G(θ )

]
(3)

is the canonical acoustic BCS action [11]. The scale factor
κ is chosen so that the coefficients of (∇ε)2 and (∇θ )2 in
(2) and (3) are identical [11]. The coefficients α, η, etc., are
known functions of the scattering length [7,8] and hence of the
external magnetic field used to tune the condensate from the
BCS to BEC regimes.

The action (2) roughly represents a two-component system
of diatoms and Cooper pairs, with a corresponding two-
component density in which fermions oscillate from one to
the other while maintaining a fixed total number density ρ0.
In the hydrodynamic approximation, where the spatial and
temporal variation of ε can be ignored in comparison to ε itself,
density fluctuations ε act as sources and sinks to the dynamics
of the phase θ and can be eliminated by simply identify-
ing ε ≈ −2αG(θ )/M̄2. The corresponding Euler-Lagrange
equation for θ is the continuity equation of a single fluid
[7,8] from which the fluctuations in the local number density
δρ = ρ − ρ0 = 2αε − N0G(θ ) = −(N0 + 4α2/M̄2)G(θ ) and
the number current density j = ρ0∇θ/2m lead to the wave
equation θ̈ (x) − c2∇2θ (x) = 0. The sound speed c will be
derived below.

We see immediately that beyond the hydrodynamical
approximation ε becomes a dynamical field with quantum
fluctuations to which the phonons couple. Tracing out the ε

field will introduce stochasticity in the acoustic metric of the
θ field via its Langevin equation.

We proceed by constructing the closed time-path (CTP)
effective action (e.g., see [12]),

SCTP[θ+,ε+; θ−,ε−] = Seff[θ
+,ε+] − Seff[θ

−,ε−],

where ± denote integration on the upper and lower contours of
the path, respectively. It is sufficient to retain only the second
power of ε. Integrating out the ε field then gives an effective
nonlocal action for dynamical phonons,

Seff[θ
+; θ−] = S0[θ+] − S0[θ−] + �S[θ+; θ−], (4)

where

�S[θ+; θ−] = α2

2

∫∫
d4x1d

4x2

∑
a,b=+,−

G(θa(x1))

×Dab
ε (x1 − x2)G(θb(x2)). (5)

In (5) the D±±
ε denote time-ordered D++

ε , and anti-time-
ordered D−−

ε correlators as well as two Wightman correlators
D+−

ε = −〈ε(x2)ε(x1)〉, D−+
ε = −〈ε(x1)ε(x2)〉, respectively.

We recover the semiclassical phonon field θ and the
fluctuating field R about it through the decomposition θ±(x) =
θ (x) ± R/2. For the purpose of wave propagation we need
only to retain terms in Seff linear and quadratic in R.
Specifically, G(θ±) ≈ θ̇±DtR/2 at the relevant order. In �S,

quadratic terms in R are then linearized by the introduction of
Gaussian noise ξ with a bilinear coupling α(DtR(x))ξ (x), and
distribution

〈ξ (x)ξ (x ′)〉 = DεH (x − x ′) = 1

2
〈{ε(x),ε(x ′)}〉

=
∫

d3k
(2π )3

cos[ωk(t − t ′)]
ωkη

e−ik·(x−x′). (6)

The dispersion relation of the ε field is determined by ωk =√
ρ0k2/2mη + M̄2/η. The linear term is obtained in terms of

the ε retarded propagator DεR ,

DεR(x − x ′) = iθ (t − t ′)〈[ε(x),ε(x ′)]〉, (7)

and will in turn modify the dynamics of the phonons in the
semiclassical approximation.

The semiclassical dynamics of the phonon field in a
stochastic background provided by the noise can be explored
by the Langevin equation obtained by taking the variation of
the resulting action with respect to R,

N0

2
θ̈ (x) −

(
ρ0

4m
− αξ

2m

)
(∇2θ )

+α2
∫

d4x ′∂tDεR(x − x ′) θ̇ (x ′) = −αDtξ (x). (8)

What is crucial for our subsequent discussion is the multiplica-
tive noise term ξ∇2θ , a consequence of the Galilean invariance
enforcing covariant derivatives. Behavior of this form is the
starting point for the phenomenological stochastic analysis of
the papers of [1–4]. However, whereas these authors argue for
stochastic behavior on empirical grounds, in our case we see
from (6) that the noise ξ is essentially the (known) diatomic
fluctuation field ε. Equation (8) encodes quantum effects in
two distinct ways, through the retarded commutator DεR and
the noise ξ . Although they overlap we shall do our best to treat
them separately.

In the phonon acoustic limit ω = ck for which, as ω,k → 0
in (7), DεR(x − x ′) → (2/M̄2)δ4(x − x ′), we reproduce the
classical mean value speed of sound c, that has been derived
elsewhere [7,8] by different means:

c2 = ρ0/2m

N0 + 4α2/M̄2
. (9)

If aS is the s-wave scattering length and kF ,vF the Fermi
momentum and Fermi velocity, respectively, c2/v2

F varies
smoothly with 1/kF aS , decreasing monotonically from 1/3 in
the BCS regime (1/kF aS < 0) to vanishingly small in the BEC
regime (1/kF aS > 0) [7,8]. More generally, if we take DεR(x)
as follows from (7) we have a Bogoliubov quantum “rainbow”
[13] of sound speeds ck , according to the wavelength k, of the
form [7,8]

c2
k ≈ c2[1 + k2/K2 + · · · ] , (10)

where

K−2 = 4α2c2

M̄4

[
1 − c2η

ρ0/2m

]
. (11)

In the large momentum limit in the BEC regime we
recover [8] the free particle limit for diatoms and molecules
ω = k2/4m = k2/2M . Provided that the phonons comprise
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FIG. 1. The figure shows the behavior of (εF �T )2 as a function
of εF T at 1/aSkF = 0.7, given by (15), with the UV cutoff k� = kF

for numerically carrying out the momentum integration. The lower
inset figure shows the saturation value of fluctuations in time of flight
by changing 1/aSkF , also obtained from (15). Its maximum value
occurs at 1/aSkF = 0.7 near the crossover regime. The upper inset
figure shows the variation of the momentum scale K of Eq. (11) also
as a function of 1/aSkF .

a wave packet propagating toward the detector with central
momentum k0 and width �k0, with k0 + �k0 < K of (11)
they all experience approximately the same sound speed c and
common fluctuations in times of flight. This is what we now
assume [see inset (top) in Fig. 1].

For such long-wavelength phonons Eq. (8) becomes

θ̈(x) − c2(1 − 2αξ/ρ0)∇2θ ≈ −4m(α/ρ0)c2Dtξ (x), (12)

in terms of the speed of sound c of (9). As a result we can
interpret cξ where c2

ξ = c2(1 − 2αξ/ρ0) as a stochastic speed
of sound in the long-wavelength regime.

The noise term in the right-hand side of (12) has no direct
effect in fluctuations of the time of flight, and thus will not be
considered here.

To see the effect of the fluctuating background on the
propagation of phonons, we follow the analysis of [1,2]. For
a spatially homogeneous static condensate its operator-valued
acoustic metric can be taken as dt2 − c−2

ξ dx2 = 0. In conven-
tional formalism the phonon propagates along the sound cone
determined by the null-geodesic c2dt2 = dx2 + hijdxidxj ,
where hij = (2α/ρ0)ξδij . If the spatial separation between
the source and the detector is r , then the travel time can be
expressed as

T =
∫ T

0
dt ≈

∫ r

0
dr

1

c

[
1 + 1

2
hijn

inj

]
, (13)

where dr = d|x| and ni = dxi/dr is a unit vector along the
direction of the sound wave propagation. The local velocity c

is evaluated on the unperturbed path of the waves r(t), which
we take along the z direction, so that z(t) = ct . With 〈hij 〉 = 0,

the variance of the travel time is given by

(�T )2 = 〈T 2〉 − 〈T 〉2

= 1

4

∫ T

0
dt1

∫ T

0
dt2 ninjnlnm

×〈hij (r(t1),t1) hlm(r(t2),t2)〉

= α2

ρ2
0

∫ T

0
dt1

∫ T

0
dt2〈ξ (z(t1),t1) ξ (z(t2),t2)〉. (14)

With the noise correlation given by DεH in (6), Eq. (14)
is our key result, but to see whether it can be tested is not
straightforward. We have in mind an experiment along the
lines of that described in [14], discussed further in [15], in
which sound pulses are created by density perturbations. (Note
that, for our condensate c2 ∝ ρ0 just as for a condensate of
elementary bosons.)

Straightforward substitution of DεH in (6) gives

(�T )2 = α2

ρ2
0

∫ T

0
dt1

∫ T

0
dt2

∫ k�

0

k2dk

4π2

× cos[ωk(t1 − t2)]

ωkη

2 sin[ck|t1 − t2|]
kc|t1 − t2| . (15)

(�T )2 shows a logarithmic UV divergence because of the
acoustic approximation and we cut off momentum at k = k� =
O(K) = O(kF ) in the relevant regime. The initial growth
of (�T )2 from zero at time zero is rapid, and when Ts ∼
1/ω(k=0) = √

η/M̄ , the growth halts and (�T )2 saturates to
its late time value (Fig. 1).

For large times the k integral in (15) is dominated by large
k contributions and can be approximated well by

(εF �T )2 ≈ α2

ρ2
0

(
mv2

F

)2

4π2η c3

x2

(1 − x2)
{− tanh−1[x/

√
1 + y2]

+ x ln[1 +
√

1 + y2/y]}, (16)

where y =
√

2mM̄2/ρ0k
2
� and x = c/

√
ρ0/2mη < 1 across

the whole regime from BCS to BEC. We stress that the
behavior described above is a consequence of quantum
fluctuations and not thermal fluctuations.

Before our numerical study, we need to list the basic
attributes of the parameters in the model (See [7,8] for more
detail). We find that 0 � α/ρ0 � 1 increases as we tune the gas
from the deep BCS regime (1/kF aS < 0), when α/ρ0 ≈ 0 to
the deep BEC regime (1/kF aS > 0), when α/ρ0 ≈ 1. On the
contrary, η, N0, and M̄2 go from finite values to zero as we go
from deep BCS to BEC regimes, in each of which η ≈ N0. As a
result of M̄2 vanishing, c2 falls to zero in the deep BEC regime
[7,8]. It follows that, for Fermi energy εF , (εF �T )2 → 0 in
the deep BEC regime. Also, (εF �T )2 → 0 in the deep BCS
regime since α ≈ 0 there.

To be concrete, consider a cold 6Li condensate of 3 × 105

atoms tuned by the narrow resonance at H0 = 543.25 G [6],
mentioned earlier. The narrowness of the resonance width is
best determined by the dimensionless width γ0 ≈ √

�0/εF ,
where the resonance width �0 [10] is mainly given by Hω, the
so-called “resonance width” of the central field H0 required to
achieve infinite scattering length (the unitary limit).
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We take the number density ρ0 = k3
F /3π2 ≈ 1 ×

1011 cm−3 [6], for which εF ≈ 7 × 10−12 eV (εF /� ≈
10 ms−1) and γ0 ≈ 0.6. In terms of the dimensionless coupling
ḡ, where g2 = (64ε2

F /3k3
F )ḡ2 [10], 6Li at the density above

corresponds to ḡ2 = 0.8. In the inset (bottom) to Fig. 1 we
plot the saturation value of (εF �T )2 obtained from (15) on
varying 1/kF aS , where we take the UV cutoff k� = kF for
carrying out the momentum integration in (15) numerically.
The maximum travel time fluctuation occurs near the crossover
regime at 1/aSkF ≈ 0.7. The main figure in Fig. 1 shows
the evolution of �T for this value of 1/aSkF , achieving its
saturation value of �T ≈ 0.9ε−1

F ≈ 0.1 ms, in agreement with
Eq. (16), after Ts ∼ √

η/M̄ ≈ 1.0ε−1
F ≈ 0.1 ms. In particular

(see upper inset), K ≈ 0.3kF at 1/aSkF ≈ 0.7 with the central
momentum k0 ≈ 0.1kF determined by the sound speed c ≈
0.1vF . With kF ≈ 1/μm the width of the density fluctuations
moving on a condensate of size L ≈ 100k−1

F ≈ 100 μm can
be of the order of several micrometers. With c ≈ 1.4 μm/ms
the time of flight from the center of the condensate is
approximately 30 ms, whence the 1% or less fluctuation effect
cited initially. Unfortunately, the effect is not yet testable since
experimentalists most easily measure the (saturated) fluctua-
tions �r = c�T ≈ 0.14 μm in the position of the propagating
wave front. Currently, such uncertainty is well within the noise
by between one and two orders of magnitude [16].

Unlike the case for light-cone fluctuations, where �T ∝ T

[2], the saturation of �T here, and hence the vanishing of
�T/T for large T , makes comparison difficult. Nonetheless,
the result �T = O(ε−1

F ) is as we would expect by analogy
with quantum gravity [1], as discussed in [2,4]. In quantum
gravity, at best (�T/T )2 ∼ �2

P λ2
cU where �P is the Planck

length, and U is the energy density of a bath of gravitons
with a characteristic wavelength λc. If, for example, we take
the energy density and typical wavelength of gravitons to be
of the order of those of microwave background radiation in

the present Universe, we find �T/T ≈ 10−33, immeasurably
small. By analogy with gravity, on dimensional grounds
(�T )2 can be parametrized as (�T )2 ∼ Uωc/k3

c in which the
effective energy density U is due to the condensate fluctuations
with a typical frequency ωc and momentum kc. We estimate
U as U ≈ k3

F εF with the frequency ωc ≈ M̄/
√

η ≈ εF , and

the momentum kc ≈
√

2mM̄2/ρ0 ≈ kF near crossover regime,
leading to the relatively large value of �T = O(ε−1

F ) results.
In our model the speed of sound (9) vanishes in the

BEC regime because of the absence of direct diatomic self-
interactions in the Lagrangian density in (1), but the qualitative
behavior shown in Fig. 1 does not rely on this fact. Suppose,
as in [17], we include such a term

L(ϕ) = −uB |ϕ(x)|4/4 (17)

in the integrand of (1). The effect in Seff(θ,ε) of (4) is
just to replace M̄2 by M2 = M̄2 + 6uBκ2|ϕ0|2 in all results
following (4). [The term linear in ε, which corresponds to
making the replacement αG0 → αG0 + uBκ|ϕ|3 in (4) has
no effect, since it always contributes to total derivatives in
the calculations which follow.] This leaves c2 unchanged in
the BCS regime because α ≈ 0 there, but since κ2|ϕ0|2 �= 0 it
permits c2 to tend to a nonzero limit in the deep BEC regime.
However, the vanishing of α in the deep BCS regime and
the vanishing of η in the deep BEC regime are sufficient for
fluctuations to have no effect there. In the intermediate regime
there will be a reduction in �T due to the increase in M̄2 in
Eq. (16) for the crossover regime. The effect is not dramatic
but the details will depend on parameter choice. Qualitatively
the behavior shown in Fig. 1 will persist.
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