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We consider the nonequilibrium dynamics in quantum field theories (QFTs). After being prepared in a density
matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state.
In the presence of local conservation laws, these stationary states are believed to be described by appropriate
generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary
state, it is necessary to take into account conservation laws that are not (ultra)local in the usual sense of QFTs,
but fulfill a significantly weaker form of locality. We discuss the implications of our results for integrable QFTs
in one spatial dimension.
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I. INTRODUCTION

The past decade has witnessed dramatic progress in realiz-
ing and analyzing isolated many-particle quantum systems out
of equilibrium [1–6]. Key questions that emerged from these
experiments is why and how observables relax toward time-
independent values, and what principles underlie a possible
statistical description of the latter [7–29]. It was demonstrated
early on that nonequilibrium dynamics is strongly affected by
dimensionality, and that conservation laws play an important
role. In particular, the experiments of [2] on trapped 87Rb
atoms established that three-dimensional condensates rapidly
relax to a stationary state characterized by an effective
temperature, whereas constraining the motion of atoms to one
dimension greatly reduces the relaxation rate and dramatically
changes the nature of the stationary state. The suggestion that
this unusual steady state is a consequence of (approximate)
conservation laws motivated a host of theoretical studies
investigating the role played by conservation laws. We may
summarize the results of these works as follows: given an
initial state |�〉 and a translationally invariant system with
Hamiltonian H ≡ I0 and conservation laws In such that
[In,Im] = 0, the stationary behavior of n-point functions of
local operators Oa(x) in the thermodynamic limit is described
by a generalized Gibbs ensemble (GGE), as proposed by Rigol
et al. in a seminal paper [9],

lim
t→∞〈�(t)|

n∏
j=1

Oj (xj )|�(t)〉 = Tr

⎛
⎝ρGGE

n∏
j=1

Oj (xj )

⎞
⎠ . (1)

Here |�(t)〉 = exp(−iH t)|�〉 and

ρGGE = 1

Z
exp

(
−

∑
n

λnIn

)
, (2)

where the values of the Lagrange multipliers λn are fixed by
the requirement that the expectation values of the conserved
charges must be the same at time zero and in the stationary
state, i.e., limV →∞〈�|In|�〉/V = limV →∞ Tr[ρGGEIn]/V .
Very recently it has become clear that the question of which
conservation laws In need to be included in the definition of
(2) is quite subtle [30–34]. Here we address this issue for

continuum quantum field theories (QFTs), in both relativistic
and nonrelativistic cases. This is of fundamental importance
as a problem in QFT per se. It is also a pressing concern due
to the crucial role QFT has played in establishing the current
theoretical understanding of the nonequilibrium dynamics of
isolated quantum systems, providing key insights [35–37] of
experimental relevance [6,38]. We show that it is generally
necessary to include “quasilocal” charges in the definition of
the GGE. This can already be seen for the simplest possible
example, namely noninteracting QTFs, to which we turn next.

II. FREE MAJORANA FERMION

Let us consider a general quantum quench in the free
Majorana fermion theory with Hamiltonian density,

H = iv

2
[R(x)∂xR(x) − L(x)∂xL(x)] + imR(x)L(x), (3)

where R and L are real chiral fermions, and v is the velocity.
This theory describes the scaling limit of the transverse field
Ising chain, where the mass term is a measure of the distance
to the quantum critical point. The initial state |�(0)〉 of the
quench process could be, for example, the ground state at a
particular, but different, value m0 of the mass [39,40]. The
Hamiltonian is diagonalized through a mode expansion and
takes the form

H =
∫

dk

2π

√
m2 + v2k2 Z†(k)Z(k), (4)

where {Z†(k),Z(q)} = 2πδ(k − q). Clearly the mode occu-
pation operators N (k) = Z†(k)Z(k) commute with H and are
therefore conserved. In cases like this, the GGE density matrix
in a large, finite volume L is most conveniently constructed in
terms of the charges N (k) [9],

ρGGE = 1

Z
exp

(
−

∑
n∈Z

λ(kn)N (kn)

)
, kn = 2πn

L
. (5)

The Lagrange multipliers λ(k) are related to the mode
occupation numbers n�(k) = 〈�(0)|N (k)|�(0)〉 by λ(k) =
ln[n(k)] − ln[1 − n(k)]. In practice, it is more convenient to
work with the “microcanonical” version of the GGE [41,42].

1050-2947/2015/91(5)/051602(6) 051602-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.91.051602


RAPID COMMUNICATIONS

F. H. L. ESSLER, G. MUSSARDO, AND M. PANFIL PHYSICAL REVIEW A 91, 051602(R) (2015)

This is defined by the density matrix ρGMC = |�〉〈�|, where
the state |�〉 is an eigenstate of all N (kn) with eigenvalues
equal to n�(kn). By construction, the knowledge of the
eigenvalues n� (kn) of the conserved charges N (kn) is sufficient
to construct ρGMC.

The existence of conserved mode occupation operators in
a large, finite volume is a particular property of free theories
and does not generalize to the interacting case (see below). In
contrast, no such problem arises for local conservation laws,
which are therefore the appropriate charges to consider in the
general case. Following the standard approach in a relativistic
QFT (which we recall in the Supplemental Material [43]), one
can construct the following set of ultralocal conserved charges
for the free Majorana theory:

I−
n = iv

2

∫
dx

[
R(x)∂2n+1

x R(x) + L(x)∂2n+1
x L(x)

]
,

I+
n = i

2

∫
dx

[
R(x)v∂2n+1

x R(x) − L(x)v∂2n+1
x L(x)

+ 2mR(x)∂2n
x L(x)

]
. (6)

A widely held belief is that the GGE (2) constructed from these
charges is the same as the one built from the mode occupation
operators (5). However, in the infinite volume, this cannot be
generally the case, simply because there is a mismatch between
the countable number of conserved charges and the continuum
number of degrees of freedom in the field theory. To see this,
we express the charges (6) in momentum space. This gives

I±
n = (−1)n

∫ ∞

−∞

dk

2π
ε±
n (k) N (k), (7)

where ε+
n (k) = √

m2 + v2k2k2n and ε−
n (k) = vk2n+1. The

question is then whether the knowledge of i±n =
limL→∞〈�|I±

n |�〉/L is sufficient to reconstruct the function
n�(k) and hence the density matrix ρGMC. The answer is
negative: as is shown in the Supplemental Material [43],
one can explicitly construct functions f (k) such that i±n =
(−1)n

∫
dk
2π

ε±
n (k)[n�(k) + f (k)] are independent of f . This

suggests that there are additional local conservation laws that
need to be taken into account in the construction of the GGE.
How do we find such charges? We recall that (3) is obtained as
the scaling limit of a model of lattice Majorana fermions an,
for which a complete set of local conservation laws is [44]

I+
n = iJ

2

∑
j,σ=±1

a2j [a2j+2nσ+1 − ha2j+2nσ−1],

I−
n−1 = − iJ

2

∑
j

[a2j a2j+2n + a2j−1a2j+2n−1].

The lattice Hamiltonian itself is I+
0 . The I±

n have the
important property that their densities have strictly finite
ranges: the density of I±

n involves only n + 2 neighboring
sites. The scaling limit is defined as J → ∞, h → 1, a0 → 0
while keeping J |h − 1| = m and Ja0 = v fixed. In this limit,
upon taking appropriate linear combinations of the lattice
charges I±

n , one recovers the QFT charges (6). However, in
the process of taking the scaling limit, we can also scale the
index n in such a way that the combination na0 = α is kept
fixed, obtaining in this way conserved charges of the form (see

FIG. 1. (Color online) Construction of ultralocal and quasilocal
charges by taking the continuum limit of an integrable lattice model
with conservation lawsIn, whose densities act on n consecutive lattice
sites. (a) Ultralocal charges are obtained by taking the lattice spacing
a0 to zero, while keeping the index n fixed. (b) Quasilocal charges are
obtained by taking the double scaling limit a0 → 0, n → ∞, while
keeping na0 = α fixed.

Fig. 1)

I+(α) = i

4

∫ L

0
dx [R(x) + L(x)] (v∂x − m)

× [R(x + α) − L(x + α) + (α → −α)] ,

I−(α) = iv

2

∫ L

0
dx[R(x)R(x + α) + L(x)L(x + α)] . (8)

Here the index α is by construction a real positive number
such that 0 < α < L, where L is the system size and we
have imposed periodic boundary conditions on the fields. The
charges I±(α) are no longer local quantities in the usual QFT
sense, but they have densities with support on a finite interval
of size α. We will call such operators quasilocal. In mo-
mentum space, we have I±(α) = ∫ ∞

−∞
dk
2π

ε±(k,α)N (k), where

ε+(k,α) = √
m2 + v2k2 cos(αk) and ε−(k,α) = sin(αk). This

establishes that {I±(α)} of conserved charges is complete in the
sense that the initial data 〈�|I±(α)|�〉 suffice to fix any given
occupation number distribution n�(k). Hence the appropriate
GGE for the free Majorana theory is

ρGGE = 1

Z
exp

(
−

∑
σ=±

∫ ∞

0
dα λσ (α)I σ (α)

)
. (9)

We stress for the lattice model itself, the conservation laws
that give rise to the quasilocal charges in the scaling limit are
both unnatural and unimportant: the goal is to describe finite
subsystems of arbitrary size in the thermodynamic limit, and
here truncated GGEs [44] involving only I±

n with fixed n in
the L → ∞ limit are required.
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III. INTERACTING INTEGRABLE QFTs

We next turn to the case of integrable QFTs (IQFTs) with
nontrivial S-matrices. The scattering in IQFTs is purely elastic
[45,46,47], and concomitantly a convenient way to describe
their Hilbert spaces in the infinite volume is in terms of the
Faddeev-Zamolodchikov algebra [46]. In the scalar case, the
latter reads

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1),

Z(θ1)Z†(θ2) = 2πδ(θ1 − θ2)

+ S(θ2 − θ1)Z†(θ2)Z(θ1), (10)

where Z†(θ ) and Z(θ ) are creation and annihilation operators
of elementary excitations with rapidity θ (related to momen-
tum by vq = M sinh θ ), and S(θ ) is the two-particle S-matrix.
In the infinite volume, the quantities N (θ ) = Z†(θ )Z(θ )
are integrals of motion and can be viewed as appropriate
generalizations of the mode occupation numbers in free-field
theories. Unfortunately, in contrast to the special case of free
fields, the occupation numbers N (θ ) cannot be used for the
construction of the GGE [48]. The reason is that while for free
fields the possible values for rapidities are simply given by
m sinh θn = 2πn/L and can be independently occupied, in the
IQFT case the quantization conditions are given by the Bethe
ansatz equations

eiLm sinh θn =
∏
m	=n

S(θn − θm), n = 1, . . . ,N. (11)

Hence the allowed values of θn depend on the entire set {θm}
specifying the particular eigenstate under consideration. Due
to this complication, it is not clear how to define a finite volume
version of N (θ ) in an operator sense [48]. We therefore want to
construct the GGE using local conservation laws. The standard
ultralocal conserved charges are related to conserved currents
∂μj

μ
n (t,x) by In = ∫

dx j 0
n (t,x). In relativistic IQFTs, there is

a standard method for constructing In [45,47,49]. There, the
index n is related to the Lorentz spin of the operator In. As n

can take only discrete values, ultralocal conserved charges are
insufficient for constructing GGEs for general initial states.
To see this, we recall that their action on eigenstates can be
represented in the form I±

n = ∫
dθε±

n (θ )N (θ ) with ε+
n (θ ) =

cosh nθ and ε−
n (θ ) = sinh(nθ ) [45]. It is again convenient to

consider the microcanonical version ρGMC = |�〉〈�|, which
describes the saddle point of the GGE [42]. In the infinite
volume limit, we require knowledge of the function n(θ ) =
〈�|N (θ )|�〉 [50] in order to specify ρGMC. The knowledge
of the countable set {〈�|Im|�〉} does not suffice to uniquely
determine n(θ ). Indeed, let us consider the family of states
|�f 〉 characterized by the macroscopically distinct mode
occupations n(θ ) + f (θ ), where f (θ ) is an analytic function
whose Fourier transform has an infinite number of zeros at
zm = im. Using the explicit expression for the eigenvalues of
Im given above, one finds that 〈�f |Im|�f 〉 = 〈�|Im|�〉. This
establishes that the countable set {Im} of charges is in general
insufficient to fully characterize ρGMC.

To construct the GGE, we therefore follow the procedure
used for free fields: (i) find an integrable lattice discretization of
the field theory (with lattice spacing a0); (ii) follow the standard
procedure [49] for constructing local integrals of motion In for

integrable lattice models. Here the index n, roughly speaking,
sets a number of lattice sites upon which the density of In acts;
(iii) take a double scaling limit a0 → 0, n → ∞, while keeping
α = na0 fixed. This procedure generates a continuous family
of conserved charges I (α) (labeled by a real positive number
α), which are quasilocal. In cases like the one considered
below, it is known that theIn form a complete set of integrals of
motion on the lattice. Concomitantly, the set {I (α)} is sufficient
to construct the GGE in a large finite volume, and hence in the
thermodynamic limit.

We now illustrate this programme for the example of the
nonlinear Schrödinger model, also known as the Lieb-Liniger
δ-function Bose gas [51], which is a key theory for the
description of ultracold quantum gases [52]. In particular, it
underlies seminal experiments probing thermalization in such
systems [2,3].

IV. NONLINEAR SCHRÖDINGER MODEL

The Hamiltonian density of the NLS is [53]

H = ϕ†(x)

[
− ∂2

x

2m
− μ

]
ϕ(x) + λ|ϕ2(x)|2, (12)

where ϕ(x,t) is a complex bosonic field and μ is a chemical
potential. Quenches to the NLS have been previously consid-
ered by several groups [25,26,54–63]. A key issue in many of
these works has been how to construct the appropriate GGE
describing the stationary state at late times after the quench. Let
us now address this question using the framework introduced
above. The ultralocal integrals of motion for the NLS can be
constructed by the quantum inverse-scattering method [49,64]
through an appropriate expansion of the quantum transfer
matrix. This provides a countable number of In, which by
the above argument are insufficient for constructing the GGE
describing the stationary behavior after a quench from a
general initial state. Moreover, as was discussed in detail in
Ref. [63], the expectation values in in fact do not exist for many
initial states due to ultraviolet divergences. These problems
can be overcome by using quasilocal charges. To construct
them, we utilize an integrable lattice regularization [65–67]
of the NLS in terms of so-called q-boson operators fulfilling
commutation relations,

B
†
jBk − q2BkB

†
j = δjk. (13)

The q-bosons are related to canonical lattice bosons bj

by the relation Bj =
√

[Nj +1]q
Nj +1 bj , where [x]q = 1−q−2x

1−q−2 . The

Hamiltonian of the lattice model is

Hq = − 1

a2
0

L∑
j=1

(B†
jBj+1 + B

†
j+1Bj − 2Nj ), (14)

where Nj = b
†
j bj . The lattice conserved charges I±

n are known
and their eigenvalues are [68]

i±n (p1, . . . ,pN ) = 1 − q−2|n|

|n|a0

N∑
j=1

f ±(npj ), (15)

where n is an integer, f +(x) = cos(x), f −(x) = sin(x), and
{p1, . . . ,pN } are solutions to the Bethe ansatz equations for
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the q-boson model. The NLS is recovered taking the scaling
limit as a0 → 0 and q → 1 with c = 2 ln(q)/a0 fixed. The
continuum field ϕ(x) is related to the canonical lattice bosons
by ϕ(ja0) = a

−1/2
0 bj . In this limit, the appropriate rapidity

variables are λj = pj/a0. The ultralocal conserved charges
of the NLS are obtained by considering appropriate linear
combinations of the I±

n and then taking the continuum limit;
see, e.g., [63]. In contrast, the quasilocal charges I±(α) are
constructed by keeping na0 = α fixed in the scaling limit.
Their eigenvalues on Bethe ansatz states are then found to be

i±(α; λ1, . . . ,λN ) = 1 − e−c|α|

|α|
N∑

j=1

f ±(αλj ). (16)

Let us now show that the set {I±(α)} is sufficient for
constructing the microcanonical version of the GGE, i.e.,
the density matrix ρGMC = |�〉〈�|. Here |�〉 is a particular
Bethe eigenstate [42]. In a large finite volume, L it is
characterized by rapidities {λ1, . . . ,λN }, and we are interested
in the thermodynamic limit N,L → ∞ with N/L fixed. In
this limit, the state is described by a root density ρ�(λ), which
arises from the finite volume quantity ρL(λj ) = 1

L(λj+1−λj ) . The
expectation values of the quasilocal charges are then

lim
L→∞

1

L

〈�|I±(α)|�〉
〈�|�〉 = 1 − e−c|α|

|α|
∫ ∞

−∞
dλ f ±(αλ) ρ�(λ).

(17)

This shows that ρ�(λ) can be determined by Fourier transform
from the expectation values of the I σ (α). Inspection of (16)
shows that in contrast to the ultralocal charges [63], there are
no ultraviolet divergences in the expectation values (17) [the
integral over ρ�(λ) is equal to the density and must be finite].

V. DISCUSSION

The main lesson to be drawn from our work is that
understanding the nonequilibirium evolution in QFTs requires
one to go beyond the usual concept of locality. More precisely,
we have shown that the construction of generalized Gibbs
ensembles in QFTs requires integrals of motion I±(α) that are
not strictly local. In the cases we have considered, the densities
of the I±(α) act nontrivially only on intervals of length α, and
they are different from known nonlocal conserved charges

related to Yangian or quantum group symmetries [69,70].
We stress that the locality of the charges required to build
a GEE is a different matter from the locality of the quantity
λnIn entering the definition of the GGE density matrix [71].
We have presented a general argument showing that GGEs
built from the usual local conservation laws Im are generally
insufficient for describing the stationary state at late times
after quantum quenches (this does not preclude the possibility
that they may do so in particular examples). In analogy to
observations made for the transverse field Ising chain [44], we
expect that in order to obtain an accurate description of the
stationary values of local observables acting on a subsystem
of size �, only charges with α� + ξ will be required. Here ξ

is a constant related to the correlation length in the stationary
state.

Our work raises a number of open problems. First, our
construction should be employed to determine the expectation
values of local observables for particular quenches to the NLS
model directly from the GGE. This requires the generalization
of the method developed in Ref. [30] to the q-boson model.
Second, it would be interesting to consider quantum quenches
in other QFTs such as the sine-Gordon or SU(2) Thirring
models. Here an additional complication arises, because the
conservation laws obtained by standard methods for the
corresponding lattice regularizations are no longer complete
[30–34], and charges such as those constructed in [72–74]
should be taken into account. Third, we expect quasilocal
charges to be of importance for certain nonintegrable models
in the context of prethermalization [75–83]. For a number of
examples, it has been found that quenching to lattice models
with weak integrability breaking terms, which includes the
case of weakly interacting systems, leads to relaxation of
local observables to nonthermal values at intermediate time
scales. It has been suggested and substantiated in particular
cases that almost conserved charges are the underlying cause
of these prethermalization plateaus. It would be interesting
to investigate this issue for QFTs in light of our findings.
Finally, quasilocal charges may also be of importance for
understanding the equilibration of QFTs in large-N limits [84].
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