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Limit-cycle phase in driven-dissipative spin systems
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We explore the phase diagram of interacting spin-1/2 systems in the presence of anisotropic interactions,
spontaneous decay, and driving. We find a rich phase diagram featuring a limit-cycle phase in which the
magnetization oscillates in time. We analyze the spatiotemporal fluctuations of this limit-cycle phase based on
a Gaussian-Floquet analysis. Spatial fluctuations destroy long-range limit-cycle ordering for dimension d � 2,
as a time-dependent generalization of the Mermin-Wagner theorem. This result can be interpreted in terms of a
spatiotemporal Goldstone mode corresponding to phase fluctuations of the limit cycle. We also demonstrate that
the limit-cycle phase exhibits an asymmetric power spectrum measurable in fluorescence experiments.
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A quantum system that is coherently driven and connected
to a heat bath eventually reaches a steady state; when the
system is macroscopic, this steady state can be ordered in
the sense of spontaneously breaking a symmetry [1,2]. The
patterns of steady-state ordering are, in general, qualitatively
different from those of the equilibrium phase diagrams:
For instance, the interplay between coherent and dissipative
dynamics can stabilize staggered phases that are absent in
equilibrium [3], and by engineering the dissipative terms one
can optically pump a many-body system into a pure state
[4,5]. The forms of steady-state order [6–15] that have been
investigated to date mostly fit into equilibrium paradigms,
such as the Landau paradigm of spontaneous symmetry
breaking or the paradigm of topological order. However, the
departure from equilibrium allows one to realize novel types
of order—specifically, limit cycles (LCs) [16–20] which break
time-translation invariance—that have no obvious equilibrium
counterpart. Although previous works have predicted a LC
phase within mean-field theory [18–20], its correlation effect
is not known and it is an open question whether such a phase
really exists or is an artifact of mean-field theory.

In this Rapid Communication, we show that long-range
order of the LC phase exists in three and higher dimen-
sions, but is forbidden in lower dimensions. We study a
paradigm model of interacting spins—the anisotropic spin-1/2
Heisenberg model in a transverse field—and find a regime
where it exhibits a LC phase. We discuss the origin of
the LC and study the effects of quantum fluctuations to
go beyond previous mean-field works. Since the LC order
parameter is time periodic, its Gaussian fluctuations obey
an inhomogeneous Floquet equation. We show by explicit,
microscopic calculation that the spontaneous breaking of
the continuous time-translation symmetry is reflected in the
presence of a gapless “Goldstone” mode, and that this gapless
mode prevents global time-translation-symmetry breaking in
one or two dimensions. We then discuss this LC at a more
phenomenological level, noting its unusual implications, e.g.,
that the temporal ordering of the LC phase gives rise to an
asymmetric dynamical power spectrum of emitted photons.
These predictions are straightforward to test in experiments
with trapped ions [21–23] or Rydberg atoms [3,24,25].

We want to contrast our Rapid Communication with
recent works on time crystals which also spontaneously break

time-translational symmetry [26–31]. A LC is the nonequilib-
rium steady state of a master equation, whereas a time crystal
is the ground state of a Hamiltonian; thus, LCs are unaffected
by the no-go theorems concerning equilibrium time crystals
[30].

Model and phase diagram. Consider a d-dimensional
square lattice of spins with a nearest-neighbor exchange
interaction. Each spin, with energy splitting ω0, is resonantly
driven by a laser and experiences spontaneous decay that
incoherently flips the spin from up to down. The resultant
many-body dynamics is governed by a master equation for the
system’s density matrix ρ,
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FIG. 1. (Color online) (a) Mean-field phase diagram of the
driven-dissipative spin system for (Jy,Jz)/γ = (6,2), highlighting
the limit cycle and its vicinity. The nonequilibrium spin system has
different phases: uniform (U1), bistable (U1/U2), staggered (S), and
LC phases. LC/U2 denotes phase coexistence. In the LC phase, the
spin system undergoes self-sustaining collective oscillations in time.
The solid and dashed lines represent continuous and discontinuous
phase transitions, respectively. (b) An example trajectory of the
time-dependent LC at (�,Jx,Jy,Jz)/γ = (1,−7,6,2) that breaks both
the time-translational and sublattice symmetry.
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FIG. 2. (Color online) Zoomed-out phase diagram showing dif-
ferent phases for (Jy,Jz)/γ = (6,2).

where σα
i is the α component Pauli matrix for spin i. HJ

and H� describe the Heisenberg interaction and coherent
driving, respectively, and γ denotes the spontaneous decay
rate. Note that we work in the rotating frame so that the
driving Hamiltonian becomes time independent [32], i.e.,
H�,i(t) = ω0

2 σ z
i + � cos ω0tσ

x
i → �

2 σx
i .

The system above can be realized experimentally with
Rydberg atoms or trapped ions. For example, in Rydberg
systems, one can generate spin-spin interactions based on
optical adiabatic elimination [3,24,25]. The idea is that dipolar
interactions between two Rydberg atoms provide an Ising
Hamiltonian of the form V σz

1 σ z
2 . Further coupling to additional

lasers with coupling strengths �′ and detuning � � V can
lead to effective flip-flop (σ+

1 σ−
2 + H.c.) and flip-flip (σ+

1 σ+
2 +

H.c.) processes via second-order two-photon transitions. The
consequential exchange interactions ∼O(�′2/�) can be ad-
justed variably by changing the laser intensities and detuning
[3]. Similar interactions can be engineered in trapped ions via
motional sidebands instead [21–23]. In both cases, the decay
rate γ can be controllably introduced by optical pumping. γ

and J can be of the order of 1 kHz with trapped ions, and up
to 100 kHz with Rydberg atoms [3]. In the following, we shall
focus on the parameter regime J ∼ � ∼ γ .

The resulting dynamics can be understood in terms of
the interplay between spontaneous decay, drive, and spin
interaction. When there is no interaction, a spin is driven
around the x axis and equilibrates in the lower yz plane
(so that 〈σx〉 = 0, 〈σy〉 �= 0, 〈σ z〉 < 0). In the presence of
an interaction, each spin precesses about an effective field
(∼∑

α Jα〈σα〉α̂) due to neighboring spins. This effective field
is established self-consistently, leading to the possibility of
ordered states. When the coupling is anisotropic (Jx ∼ −Jy),
the effective field becomes almost perpendicular to the spin
direction, and the precession effect is stronger. Therefore,
we expect a richer phase diagram in the anisotropic coupling
regime. Note that this system does not possess any Z2 symme-
try (as σx

i ,σ
y

i → −σx
i ,−σ

y

i ) due to the presence of the drive.
The only symmetries of the master equation are a continuous
symmetry under time translation and a discrete symmetry
under spatial (lattice) translation. In bipartite lattices, the mean
field on sublattice A is due to the magnetization on sublattice
B and vice versa.

A typical scan of the steady-state phase diagram is shown in
Figs. 1(a) and 2. The calculation is based on sublattice mean-
field theory and linear stability analysis to obtain the stable
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FIG. 3. (Color online) (a) Phase transitions of the LC phase as
a function Jx at (�,Jy,Jz)/γ = (0.6,6,2). The sublattice spin order
parameter Sx develops bistability, Hopf bifurcation, and sublattice
order. The LC phase has a continuous and discontinuous phase tran-
sition to the U1 and S phase, respectively. Vertical bars represent the
amplitudes of the sublattice spin oscillations. Circles and solid squares
denote the two sublattice stationary states. The LC amplitude shows
a scaling of (δJx/γ )1/2 near the continuous LC-to-U1 transition.
(b) LC period T as we vary � for fixed (Jx,Jy,Jz)/γ = (−6.37,6,2).
The divergence of period scales as T ∼ (δ�/γ )−1/2 as we approach
the tricritical point at (Jx,c,�c)/γ ≈ (−6.37,0.37).

fixed points of Eq. (1). There are (i) three qualitatively different
uniform steady states (U1,2,3) that do not break any symmetry
and predominate at large drive and/or isotropic couplings; (ii) a
staggered phase (S), which is time independent but breaks the
sublattice symmetry, and dominates for strongly anisotropic
coupling; and (iii) a LC phase, which breaks both sublattice and
time-translation symmetries. Note that beyond the sublattice
mean field, one could have spin-density wave instability [3].
We have checked that it can only occur inside the U3 phase
without affecting the LC, so we do not detail it here.

The uniform phases are related to the paramagnetic (U3)
and the two ferromagnetic (U1,2) steady states of the undriven
system; in the presence of the drive, Z2 symmetry is explicitly
broken so these phases are no longer distinct in terms
of symmetry. The staggered phase is a descendant of the
antiferromagnet; since it breaks lattice-translation symmetry,
it is quite different from the uniform phases; thus the uniform-
staggered transition is second order. Finally, the LC phase,
which has no analog in the undriven system, emerges near the
uniform-staggered phase boundary in the presence of a drive.
It is intuitive that the LC arises in this regime, since even in
the undriven system the relative orientation between the two
sublattices is “soft” (i.e., highly susceptible) near the transition
between the ferromagnet (U1) and the antiferromagnet (S).

Limit cycle: Mean-field behavior. In the LC phase, the
magnetizations on the two sublattices oscillate with a relative
phase of π [Fig. 1(b)]. Thus, the LC breaks both spatial and
time-translation symmetry.

Figure 3(a) illustrates the properties of the LC phase
transitions. The plot shows the mean-field amplitude of
Sx = 〈σx〉 as we vary Jx with fixed �, Jy , and Jz. As Jx

decreases, the spin system goes from a bistable phase (U1/U2)
to a uniform (U1) phase, and then exhibits a supercritical
Hopf bifurcation [16,33] to the LC phase at the critical point
of Jx,c ≈ −6.082γ . A further decrease of Jx to ≈ −6.78γ

renders a first-order transition from the LC phase to the
staggered phase. Note that in this LC phase, there are no stable
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fixed points. The amplitude of the LC scales as (δJx/γ )1/2

near the second-order phase transition from LC to U1, with
δJx = Jx,c − Jx [34].

The intersection of continuous LC-U1 and discontinuous
LC-S phase boundaries defines a LC tricritical point [Fig. 1(a)].
Interestingly, the LC period T diverges near this tricritical point
[Fig. 3(b)]. The reason stems from the imaginary part of the
stability eigenvalues that determine the frequency of the LC
[34]. Along the LC-U1 boundary, the two stability eigenvalues
are purely imaginary complex conjugates, corresponding to
the Hopf bifurcation, while on the S-U1 boundary, they both
vanish due to the sublattice symmetry. Therefore, the LC near
their intersection has a divergent period [35].

Gaussian fluctuations and Floquet analysis. We now go
beyond mean-field theory and explore spatial fluctuations on
top of the mean-field states. We proceed by first obtaining
the correlations numerically and then understand the analytic
properties with the aid of Floquet theory. At Gaussian level,
the correlation functions can be expressed as [36]

Ċ(k,t) = A(k,t)C(k,t) + C(k,t)AT (k,t) + D(k,t), (2)

where C(k,t) is the Fourier transform of the correlation matrix
C

α,β

L,L′(r,t) = 〈σα
L (0,t)σβ

L′(r,t)〉 − 〈σα
L (0,t)〉〈σβ

L′(r,t)〉, with L

and L′ denoting sublattices. A and D are the drift and the
diffusion matrices, respectively [37,38], and are both periodic
in time due to dependence on the mean-field order parameters.
Thus, in contrast to a stationary phase, the steady-state solution
of C(k,t) is time dependent in the LC phase.

The LC correlation function has interesting dynamical
behavior due to the time periodicity of A and D. Figure 4(a)
presents a typical plot of the momentum and time dependence
of correlation functions by solving Eq. (2) numerically. Fig-
ure 4(b) shows that the oscillating correlation function reaches
a steady value for finite k, but diverges linearly in time at k = 0.
In the long time limit, the stroboscopic correlation goes as 1/k2

for small momentum [Fig. 4(c)]. This infrared divergence pre-
cludes LC ordering for dimensions d � 2, and—as we discuss
below—can be traced to the Goldstone mode [1] generated by
spontaneous time-translational-symmetry breaking in the LC
phase. In 2 < d < 4, a similar analysis can be used to compute
correlation lengths ξ [Fig. 4(d)], and to estimate the size of the
fluctuation-dominated region around the onset of a LC via a
Ginzburg criterion [36]. In d = 3, the critical region has a
parameter-space width δJx � 10−1γ , which is of the order of
10 kHz in atomic experiments.

Understanding the 36-component correlation functions is
nontrivial due to the time dependence. Here, we employ
Floquet theory to extract the steady-state behavior of Eq. (2),
which is an inhomogeneous Floquet equation. We rewrite

it as 
̇Ck(t) = Mk(t) · 
Ck(t) + 
Dk(t), where Mk(t) and 
Dk(t)
contain the drift and the diffusion coefficients, respectively.
According to inhomogeneous Floquet theory [39,40], the
solution can be expressed as


Ck(t) = Xk(t)

[

Ck(0) +

∫ t

0
dτ X−1

k (τ ) 
Dk(τ )

]
. (3)

Xk(t) is known as the principal fundamental matrix satisfying
the homogeneous equation Ẋk(t) = Mk(t) · Xk(t) and obeys
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FIG. 4. (Color online) (a)–(c) Dynamical spin correlations when
(�,Jx,Jy,Jz)/γ = (0.6,−6.09,6,2). (a) A typical plot of the sublat-
tice correlation function as a function of momentum and time in
the long-wavelength limit. (b) When k = 0, the correlation diverges
linearly with time, while it saturates to finite values for k �= 0. The
oscillations have the same period as the LC. (c) The stroboscopic
correlation in the long time limit shows a 1/k2 dependence, reflecting
the gapless excitation of the broken time-translational symmetry
of the LC phase. (d) Correlation length ξ scales as ξ ∼ (δJx/γ )−1/2

near the continuous LC-U1 phase transition.

the Floquet form

Xk(t) = Pk(t)eFk t , (4)

where Pk(t) is a T -periodic matrix and Fk is the Floquet
matrix.

The stability of Eq. (3) is governed by the eigenvalues of
Xk(t = T ) = eFkT . These eigenvalues, denoted by eμiT , are
called the Floquet multipliers and μi are the Floquet exponents.
When μi < 0, the result is stable, while if μi > 0, the solution
will grow exponentially in time. Figure 5 presents the largest
two Floquet exponents as a function of k in the LC phase. In
the long-wavelength limit, μ1 ∼ −k2 and μ2 ∼ −(k2 + k2

0).
In the long-wavelength and time limit, each stroboscopic

correlation can be written in terms of the Floquet exponents
f as [36]

Ck(t = nT ) ≈ − c1

μ1T
− c2

μ2T

≈ 1

Ktk2
+ 1

Kl

(
k2 + k2

0

) , (5)

where c1,2 are some microscopic constants ∼O(1) and we
have inserted the k dependence of μ1,2 in the second line.
Now, it is apparent that μ1 and μ2 correspond physically
to the transverse and longitudinal fluctuations, respectively,
with stiffness coefficients Kt/l and inverse correlation length
k0 ∼ ξ−1. Therefore, the correlation function is stable for
finite k [Fig. 4(b)] and the k = 0 situation is special since the
largest Floquet exponent is zero, corresponding to a Floquet
instability. Equation (5) allows us to characterize the LC
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FIG. 5. (Color online) The first and second largest Floquet expo-
nents μ1 and μ2 for the correlation functions C(k,t) in the LC phase
at (�,Jy,Jz)/γ = (0.6,6,2). μ1 ∝ −k2 and μ2 ∼ −(k2 + k2

0) in the
small k limit. The correlation length k−1

0 diverges as Jx/γ approaches
the critical value.

phase and phase transition, despite being nonequilibrium, by
divergent correlation lengths and critical dimensions.

Phenomenological description. The analysis above has the
advantage of being fully microscopic, thus enabling compar-
isons with experiment. Here, we provide a more transparent
picture of the origin of the Goldstone mode. In the spirit
of Landau theory, we consider a general phenomenological
description of a LC, known as its normal form [34]. The idea
is to expand the order parameter around the time-independent
component 
Sc near the onset of a Hopf bifurcation, 
S(t) − 
Sc =
A(t) 
p + c.c., with the vector 
p lying on the plane of oscillation.
Following standard procedures [34], the mean-field equation
can be rewritten near the LC-U1 boundary as

dA(x,t)

dt
=

(
λ + 2πi

T
+ S∇2

)
A(x,t)

+μ |A(x,t)|2 A(x,t) + ζ (t), (6)

where A,T are the amplitude and period of the LC, respec-
tively. We have augmented the normal form with a stiffness S
against spatial fluctuations, as well as a Langevin noise term
[41]. The stability of the LC requires the coefficients λ ∈ �
(being linear in δJα) and μ to satisfy λ Re μ < 0. Importantly,
while the original master equation does not have any explicit
continuous symmetry, Eq. (6) reveals the continuous U (1)
symmetry (A → Aeiψ ) of the LC phase.

The normal form equation can be used to derive the lower
critical dimension by the following procedure [36]: working
in a rotating frame (A → Ae2πit/T ), expanding A in terms of
phase fluctuations to obtain a phase-only action, and using
this action to compute the correlation function of the phase
of the LC. In momentum space, this correlator is 〈θkθ−k〉 ∼
1/k2. Thus, its inverse Fourier transform in d � 3 goes as
r2−d and does not destroy long-range order. However, in d =
2, we have 〈θ (r)θ (0)〉 ∼ γ ′ log r , so that 〈A(r)A(0)〉 ∼ 1/rγ ′

,
i.e., algebraic order with γ ′ ∼ γ /(SA2

0) and A0 being the LC
amplitude. This corresponds to effectively thermal behavior
with an effective temperature set by the noise term ζ (which is
proportional to γ ). We note that it is possible to further suppress
the correlation from algebraic to stretched exponential in light
of a previous renormalization group study [42].

Photon temporal correlation. The LC phase possesses
dynamical features in the temporal fluctuations of spins,
which can be seen in the emitted fluorescence. Each spin is
coupled to the electromagnetic vacuum such that the time
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00

FIG. 6. (Color online) Power spectra as a function of detuning
� with respect to the spin natural frequency in stationary and LC
phases. (a) At (�,Jx,Jy,Jz)/γ = (0.6,−6,6,2), the system is in the
time-independent U1 phase and the corresponding power spectrum
has a standard Mollow triplet structure. (b) The sublattice power
spectrum for the LC phase at (�,Jx,Jy,Jz)/γ = (1,−7,6,2) and a
particular time t . The asymmetry in � is caused by the complex-
valued two-time correlation function in the LC phase. Both sublattice
spectra have a time dependence and they do not cancel each other.
(c) The total dynamical power spectrum SA(t,ω) + SB (t,ω) oscillates
in time with the same periodicity of the LC.

correlation of the fluorescence signal reflects that of the
spin. For a conventional stationary state, such as the U1

phase, the two-time correlation function 〈σ+(0)σ−(τ )〉 has
a damped oscillation, corresponding to a power spectrum with
a three-peak structure [Fig. 6(a)]. This is because the spins are
collectively driven by an effective field and the dynamics are
similar to those of a driven two-level system, so the photon
power spectrum resembles a Mollow triplet [32].

However, the temporal dynamics are very different in the
LC phase. A power spectrum is usually defined for a stationary
state. Extending it to a time-dependent phase, the dynamical
power spectrum is

SL(t,ω) = I0

π
Re

∫ ∞

0
dτ 〈〈σ+

L (t)σ−
L (t + τ )〉〉eiωτ , (7)

where the fluctuation is 〈〈O1O2〉〉 = 〈O1O2〉 − 〈O1〉〈O2〉, I0

is the conventional power spectrum coefficient [32], and L

denotes the sublattice. For a stationary phase, only the time
difference τ between the spin operators matters and the
spectrum is independent of t . However, in the LC phase,
〈σ+

i (t)σ−
i (t + τ )〉 �= 〈σ+

i (0)σ−
i (τ )〉 and the spectrum becomes

periodic in t . To calculate it, we focus on the parameter regime
far away from the phase boundary so that spatial fluctuations
are negligible and mean-field theory is valid [36].

Figure 6(b) shows the power spectrum for the LC phase
at a given time t after the system reaches a steady state. The
spectrum is asymmetric in the detuning because 〈σ+(t)σ−(t +
τ )〉 is no longer real due to the loss of time-translational
invariance. Moreover, as illustrated in Fig. 6(c), the power
spectrum is periodic in time due to the oscillations. These
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dynamical properties are in sharp contrast to fluorescence
signals in a stationary system [Fig. 6(a)].

To probe the dynamical power spectrum, one can perform
a time-resolved photon detection. The photon detection for a
time T is proportional to [32]

P (T ,ω) ∝ 1

T
Re

∫ T

0
dt

∫ ∞

0
dτ 〈〈σ+

L (t)σ−
L (t + τ )〉〉eiωτ , (8)

where the average value is subtracted. A T -resolved photode-
tection permits the measurement of (T + δT )P (T + δT ,ω) −
T P (T ,ω) ≈ δT × S(T ,ω), when δT is much shorter than the
LC period.

Conclusion. Driven-dissipative spin systems with
anisotropic interactions have a rich nonequilibrium phase

diagram; the most remarkable feature of this phase diagram
is the presence of a limit-cycle phase. Although the limit
cycle is inherently nonequilibrium (and thus exhibits an
asymmetric power spectrum), this phase and its transitions
can be understood in terms of familiar equilibrium concepts
such as correlation lengths, Goldstone modes, and critical
dimensions. We believe this work opens up a fruitful interface
between the condensed matter and nonlinear dynamics
communities. Possible future directions include studying
the criticality of spatiotemporal oscillation patterns [43],
non-Markovian environments [44], and non-Hermitian spin
systems [45].
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