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In the circuit quantum electrodynamics architecture, both the resonance frequency and the coupling of
superconducting qubits to microwave field modes can be controlled via external electric and magnetic fields
to explore qubit-photon dynamics in a wide parameter range. Here, we experimentally demonstrate and analyze
a scheme for tuning the coupling between a transmon qubit and a microwave resonator using a single coherent
drive tone. We treat the transmon as a three-level system, with the qubit subspace defined by the ground and
the second excited states. If the drive frequency matches the difference between the resonator and the qubit
frequencies, a Jaynes-Cummings-type interaction is induced, which is tunable in both amplitude and phase. We
show that coupling strengths of about 10 MHz can be achieved in our setup, limited only by the anharmonicity
of the transmon qubit. This scheme has been successfully used to generate microwave photons with a controlled
temporal shape [M. Pechal et al., Phys. Rev. X 4, 041010 (2014)] and can be directly implemented with

superconducting quantum devices featuring larger anharmonicity for higher coupling strengths.
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I. INTRODUCTION

The interaction between an atom and a single electromag-
netic field mode leads, in the simplest case, to an exchange of
single energy quanta. This process is commonly described by
the Jaynes-Cummings (JC) Hamiltonian ga'oc + H.c., where
the ladder operator a' creates an excitation in the mode, while
o simultaneously de-excites the atom. The strength g of this
coupling is determined by the dipole moment of the atom
and the mode volume of the field. Although in free space the
interaction is typically weak, it can be enhanced by confining
the field to a small volume in a cavity quantum electrodynamics
(QED) setting. This field has seen tremendous progress [1-3]
and has diversified from the traditional setting with real atoms
to solid-state realizations using nanoscale electronic devices
such as quantum dots [4,5] and superconducting circuits [6—8]
as artificial atoms. However, in most solid-state settings the
coupling strength between the atom and the cavity modes
is fixed by the geometry of the device and the position of
the artificial atom in the cavity, neither of which can be
modified in situ. Although in recent years, superconducting
circuit devices which allow in situ access to the amplitude of
the qubit-resonator coupling g have been realized [9-12], the
phase of g is fixed in these systems. A scheme for controlling
this phase, which is equivalent to choosing the field quadrature
the qubit couples to, has only recently been demonstrated, in
our earlier work [13]. Because of this direct phase tunability,
our scheme does not rely on additional frequency-tuning
elements to achieve full control over the phase of the resonator
field, in contrast with other techniques demonstrated in recent
experiments [14,15]. The scheme described here is expected
to be useful in a variety of settings, such as performing
quantum gate operations [16], creating shaped photons for
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quantum networks [13,17,18], measuring the vacuum state of
a cavity [19], exploring vacuum-induced Berry phases [20],
enabling the controlled coupling of a single or multiple qubits
to multiple resonator modes [21-23], and engineering quantum
reservoirs [24].

The amplitude and phase tunability of the qubit-resonator
coupling strength can be achieved by a two-photon process,
known as a cavity-assisted Raman process, which has been
extensively studied for A systems [25-29] and ladder-type
(2) systems [30]. Cavity-assisted Raman processes employ
an external coherent drive with a time-dependent amplitude
Q2 cos (wgt + ¢) to induce an effective coupling g between the
qubit and the resonator degrees of freedom. The experimental
access to the amplitude (€2) and the phase (¢) of the external
drive enables in situ amplitude and phase tunability of this
effective qubit-resonator coupling.

Cavity-assisted Raman processes can be readily applied to
superconducting circuit elements of the transmon type [31],
which are in widespread use because of their excellent
coherence properties and the relative simplicity of their
fabrication. These circuit elements realize an anharmonic
oscillator system, i.e., a system in which transitions are
allowed only between neighboring states and the transition
frequencies differ from each other by multiples of a small
negative parameter o which characterizes the anharmonicity.
In experiments using the circuit QED architecture, not only
the transition between the ground |g) and the first excited |e)
state at frequency wg., but also transitions between higher
lying energy levels can easily be addressed [32] and complex
quantum states can be realized [33]. In particular, the second
excited state |f), which is separated from |e) by w.r =
wge + o, has been used widely for quantum gates [34-37]
and plays an important role in our implementation of the
cavity-assisted Raman processes in a circuit QED setting.

In our experiments, we investigate the tunability of a
cavity-assisted Raman-process-induced coupling between a
microwave resonator and a transmon device whose qubit
states are defined as the ground and second excited states.

©2015 American Physical Society
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We demonstrate the amplitude tunability of the transmon-
resonator coupling and analyze the effects of the small
anharmonicity of the transmon on the rate and fidelity of the
population exchange (SWAP) between the transmon and the
resonator, thereby complementing our experiments in which
shaped microwave photons were created and analyzed [13].

The outline of the paper is as follows. In Sec. II we present
spectroscopic measurements of the tunable coupling strength
£ using a transmon-type superconducting qubit. In Sec. III,
we derive an analytical expression for g using first-order
perturbation theory in the drive amplitude €2. In Sec. IV, we
explain an iterative method for calculating the drive-induced
ac Stark shift of the qubit levels. In Sec. V, we use numerical
simulations and second-order perturbation theory to analyze
the fidelity of the excitation exchange between the transmon
and the resonator induced by the tunable coupling.

II. SPECTROSCOPIC MEASUREMENT OF THE TUNABLE
TRANSMON-RESONATOR COUPLING

Our system consists of a transmon-type superconducting
qubit with maximal Josephson coupling energy E}™/h =
47.3 GHz and charging energy Ec¢/h = 0.343 GHz. We
operate the transmon at a transition frequency of w,./27 =
8.103 GHz, which is higher than the fundamental mode
frequency, w, /2w = 7.126, GHz of the resonator, resulting
in a positive transmon-resonator detuning A = wg, — 0, =
2mr x 0.977 GHz. With a coupling strength g/2m = 65 MHz
between the transmon g-e transition and the fundamental res-
onator mode, the system is far into the dispersive regime (A >
g). The transmon has an anharmonicity « /2w = —0.376 GHz,
and the frequency of the transition between the first and the
second excited state is w,r = wg, +a = 27w x 7.727 GHz.
The resonator decay rate « /27 is measured to be 6.6 MHz.

A tunable effective JC-like coupling between the transmon
state | f) and the resonator can be activated by applying a
coherent microwave tone at a frequency close to the energy
difference between the dressed states |fO)p and |gl)p.
Here, the subscript D denotes the dressing of the combined
eigenstates |f0) =|f) ®1|0) and |gl) =|g) ® |1) by the
transmon-resonator coupling g. The effective coupling leads to
a coherent excitation exchange between the transmon and the
resonator. The fidelity of this exchange is maximum when the
transmon drive frequency wy is equal to a)g, which is defined
by the resonance condition

@) = 2wge + & — @, + A fog1 (). (1)

Thus, a)g is the angular frequency difference between | f0)p
and |g1)p modified by the difference A qz1(£2) between the
ac Stark shifts for | f0)p and |g1)p, which depends on the
amplitude of the coherent drive €.

The strength of the effective transmon-resonator coupling
g is measured by weakly probing the frequency-dependent
transmission through the resonator [6]. In the strong-coupling
regime, the transmission peak of the resonator splits into two
distinct peaks of equal width when the resonance condition in
Eq. (1) is satisfied, as observed in the measurement data shown
in Figs. 1(a) and 1(b). The frequency separation between the
two maxima in transmission then equals 2§ /2, i.e., twice the
coupling strength between the states | fO)p and |g1)p.
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FIG. 1. (Color online) (a)Resonator transmission as a function of
the transmon and resonator drive frequencies. The white curve is a fit
to the data at the fixed transmon drive frequency w, /2w = 8.75 GHz.
(b) Normalized transmission data for the white fit curve in (a). The
amplitude of the effective coupling strength g /2 extracted from this
trace is 3.1 MHz. (c) Measured effective coupling g (black diamonds)
as a function of the coherent drive amplitude €2: perturbation theory
prediction [thick (red) line] and numerical simulations [thin (green)
line].

To extract the effective coupling, we first identify the
transmon drive frequency ) at which the transmission curve
is split into two peaks of identical width. We then fit the reson-
ator transmission curve to the response function of the
transmon-resonator system given by

2
2

ilylo— @

S(wg) = A2
T 432(0)’ = (i lylo — @) k| — &)

derived from the master equation of the coupled transmon-
resonator system in a truncated basis [38]. In Eq. (2), y is the
qubit decay rate, and &> = w* — (w2)2.

We have measured the coupling strength g for increasing
amplitude of the coherent drive strength Q [see Fig. 1(c)].
When the drive is weak, the effective coupling strength g
increases linearly with the amplitude of the drive strength,
in good agreement with a first-order perturbation theory
calculation outlined in Sec. III. However, for drive amplitudes
higher than approximately 0.2 GHz, higher order effects
start to contribute significantly and the dependence of g on
Q becomes nonlinear, making the g smaller than predicted
by the linear model. The measured strength of the tunable
coupling shows good agreement with the numerical simulation
[Fig. 1(c); thin solid (green) line] and the analytical result from
a perturbation theory calculation to first order in Q2 [Fig. 1(c);
thick solid (red) line], which are discussed in the following.
All system parameters which are relevant to the calculations
were extracted from separate experiments. The drive amplitude
seen by the transmon qubit was calibrated by fitting the Q2
dependence of A f,;. The calibration routine for the coherent
drive strength is further discussed in Sec. I'V.

III. CALCULATING THE COUPLING STRENGTH g

In a reference frame rotating at frequency w,, the Hamilto-
nian for a transmon coupled to a resonator mode can be written
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FIG. 2. (Color online) Schematic energy level diagram of the
system: (a) in the laboratory frame and (b) in the rotating frame of
the drive frequency w,, which compensates for the energy difference
between |f0) and |g1). The effective tunable coupling g between
the bare states | f0) and |g1) can be understood as a second-order
cavity-assisted Raman process, indicated by the dashed arrows.

as the sum of an N-level JC term and a coherent drive term,
H = Hyc + H;. Here [31],

o . ,
Hic = 8,a'a +8,b'b + EbTbTbb + glab' +a'b) (3)

and

H; = ?(ei% +H.c), 4)

where §, = a)O —wy and 8, = a)ge wy are the resonator-
drive and transmon-drive detunings, respectively. ®° and a)ge
denote the bare quantities associated with w, and w,, defined
above (Fig. 2). The operator a (a") is the annihilation (creation)
operator for the resonator mode and b (b') its analog for
the transmon b = |g) (e| + ﬁ|e)(f| + «/§|f)(h| + ... when
treated as an anharmonic oscillator at frequency U)ge [31]. A
JC-type interaction [39] couples states which have the same
total number of excitations, while a coherent drive field with
time-dependent amplitude €2(¢), frequency w,, and phase ¢
couples neighboring pairs of transmon states. In the following,
we omit the time dependence of €2(¢) for notational clarity.
The above Hamiltonian is valid in the transmon limit where
Ej/Ec > 1.

We consider the system in the dispersive regime, that is,
A = wg, — w, > g. To calculate the tunable effective cou-
pling strength, we rewrite the Hamiltonian H in the eigenbasis
of Hjc and treat the coherent drive term H; perturbatively,
expanding the solution in powers of the small parameter 2.
Note that |i,j)p (i = g,e, f,h,... and j =0,1,2,...)is used
for the eigenstates of Hjc, and |i, j) for the bare qubit-resonator
states. The drive Hamiltonian H, can be written in the |i, j)p
basis as

Q . .
Ha =y Sl otk lo@ b + e~ gbDIk.1) ).

ij.kl

When the resonance condition in Eq. (1) is satisfied the
main contribution to the evolution of the system comes from
the terms coupling the resonant states |g,l 4+ 1)p and | f,I) p,
while the terms describing off-resonant transitions in Eq. (5)
can be neglected. With this rotating-wave-type approximation,
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the drive Hamiltonian becomes

Q
Hy~ ) S lg.d+ Dp{fidlp
!

x {(g.] + 1|p(e?b 4+ e )| f.1) p}. (5)

To show that the effective coupling between the transmon
and the resonator is indeed of the JC type, we note that the
dressed states | f,/)p and |g,l + 1) p are given, up to first order
in g, by

V200 +1
\fDp = 1£D) — %ﬂ)w +1)
A‘W— hl— 1), ©6)
V1
80+ 1)p = lg + 1)+ %w,l), )

where the coupling g(ab' + a'b) is considered a perturbation
to the uncoupled transmon-resonator system [i.e., (g/A)? <
1]. Using this approximation for the dressed states, we
calculate the matrix element

l+ o
g 1+ 1lp Hylf.l)p ~ gQe'\ | — ——— (8
& = (gl + 1lp Hgl f,l)p ~ gQe AB T a) ®)

which represents the coupling strength between dressed states
| fil)p and |g,l + 1)p. As expected, g; is tunable in both phase
and amplitude because of its dependence on the complex drive
strength Qe’?.

Next, defining the qubit raising and lowering operators

EDgl )p(fllp.6' = ZW &lp )
and the dressed photon annihilation operator
EZ\/_|]I (j,l +1lp, (10)

the drive Hamiltonian in Eq. (5) can be written in the JC
form

Hy ~ ga'e + g*as", (11)
with § = gy ~ ngiqﬁa/(ﬂA(A + «)). The absolute value
of the coupling g in Eq. (11) describes the splitting observed
in Fig. 1(c).

It is instructive to compare the tunable transmon-resonator
coupling g to the effective coupling g = gQel¢/A between
the two degenerate states of a A system obtained from the
adiabatic elimination technique [25,27,30,41]. Most notably,
the coupling strength for the transmon-resonator system is
lower than that of the A system, § < gx. This result follows
from the opposite signs of perturbative contributions from
le,l) and |e,l 4+ 1) in Egs. (6) and (7). Physically, this effect
arises from the destructive interference of the two second-order
transition paths that couple degenerate levels | f0)p and |g1)p
(Fig. 2). Indeed, the only reason that the coupling g does not
vanish completely is the anharmonicity « of the transmon
qubit, which results in a difference in the magnitude of
perturbative contributions from |e,/) and |e,/ + 1). On the
other hand, in a A system, there is only one transition path
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coupling the degenerate levels, and consequently there are
no interference effects. The correspondence between the A
and the transmon systems is easy to see in the limit of large
anharmonicity, when g(a¢ — 00) = ga.

As shown in Fig. 1(c), the first-order perturbation theory
gives a satisfactory approximation to the tunable transmon-
resonator coupling for low drive amplitudes which satisfy
(Q/2(A + a))* < 1. However, the approximation to g breaks
down when this inequality is no longer satisfied, and the
first-order approximations to |f0)p and |gl)p in Egs. (6)
and (7) lose their validity. In particular, we observe in the
experiment that the first-order approximation starts to break
down as €2/2x is increased above approximately 0.2 GHz for
A/2m =0.979 GHz, i.e., (2/2(A + a))* ~ 0.025.

IV. AC STARK SHIFT AND DRIVE POWER CALIBRATION

To determine the conversion factor between the applied
drive power and the drive amplitude 2 seen by the transmon
qubit we fit the observed Stark shift to a perturbative expression
for A fog1, where all the parameters other than € can be
determined from separate measurements. In the following, we
discuss the resolvent method used to obtain such a perturbative
expression for A og1.

The resolvent method allows for a systematic approxima-
tion of A rq, for increasing orders of interaction in both g and
2. The Hamiltonian H = Hy + Hj consists of a bare part H
and an interaction part H; and its resolvent is defined as [42]

1
G(iz) = ——, 12
@=— (12)
where 7 is a complex variable. In particular, the eigenenergies
of H are given by the poles of G(z). Specifically, for our
transmon-resonator system, we split the driven JC Hamiltonian
given by Eqgs. (3) and (4) into

Ho = 8.a'a + 8,b'b + %bwbb (13)
and
Q1)
H = gab' + %e“”b tHec., (14)

where g and €2 are real numbers. With this notation, we can
rewrite the resolvent as

o0

1 Z( Hi ) (15)
— H() Z— H() ’

n=0

G(z) =
z

If the states |¢;) and |¢;) are two degenerate eigenvectors of the
bare Hamiltonian satisfying Hy|¢; ;) = E|¢; ;), the resolvent
operator restricted to the two-dimensional space spanned by
them can be written in the final form

1

G@) = Py

(16)

where the operators Hy and X(z) are to be understood as
acting on the two-dimensional space and the matrix elements
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Xy(z) = (k| E(2)|r) for k.l € {i, j} are given by
1

u@) = (GulHi19) + Y ($elHildw) ——(bulHl91)
mei,j m
1
D (Bl Hil ) ——— bl Hilow)
m,m'#i, j < mn
1
X g Ol HIB) (17)

which is the weighted sum of all transition paths coupling
states |¢) and |¢;) through intermediate bare eigenstates
{lm) )5, excluding |¢;) and |¢;). Equation (16) is obtained
by inserting an appropriate number of copies of the identity
I=73", |¢m){¢n into each term of the sum in Eq. (15) and
by noting that the identity

1 oo

H[ n
(¢l (Z_ T Z(Z - HO) ) 1)

n=0

R — O\
= (¢l (Z_HO ZO<Z_HO) )|¢1> (18)

n=

holds if k,I € {i, j}.

Equation (16) shows that Hy + X(z) can be interpreted as
an effective Hamiltonian H°T(z) describing the evolution of
the system in the two-dimensional subspace spanned by |¢;)
and |¢;). The resonance condition, (1), which corresponds to
the avoided crossing in Fig. 1(c), can now be expressed as

2= Hi() = 2 = Hig70(2) = 0,

which is to be satisfied when the bare energies E s and E; are
separated by a detuning A 7o,1(S2) + Ajc. Here the constant
term Ajc represents the Q-independent renormalization of
the bare energies due to the JC coupling g only, such that
A £041(0) = 0. Thus, we can calculate the detuning A rog(£2)
by iteratively solving the coupled equations

2 — Eg1 + Afog1(2) + Ajc — por0(2,2) =0,

with the initial value z = 0. Fitting the resulting expression
for A roe1(€2) to the experimental data (see Fig. 3) provides
the conversion factor k£ between the applied drive power and
the drive amplitude 2 seen by the transmon. This conversion
factor is also used to compute the qubit drive strength value in
Fig. 1(c), giving a good agreement between our measurement
and the perturbation theory calculation.

19)

V. NUMERICAL AND ANALYTICAL RESULTS ON
TIME-DEPENDENT VACUUM RABI OSCILLATIONS

An effective transmon-resonator coupling leads to a coher-
ent exchange of excitations (SWAP) between states | f,/) p and
|g,l + 1)p. Achieving a high fidelity for this SWAP operation
is crucial for further applications of the microwave-induced
transmon-resonator coupling in the context of quantum com-
puting. In this section, first we derive an analytical expression
for the fidelity of the SWAP operation when the external drive
is turned on and off instantaneously. Then we use numerical
simulations to account for the effects arising from pulse
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FIG. 3. (Color online) Measured values of A s, for increasing
drive amplitudes 2. A fit to the expression in Eq. (20) obtained
from the resolvent method (solid line) where the perturbative series is
truncated at the the sixth order in 2. The fit gives the conversion factor
between the applied drive power and the applied drive amplitude seen
by the transmon. The scale at the top indicates the drive power at the
signal generator, where each tick stands for the drive power at which
the data point is obtained.

profiles that vary slowly with respect to A. We conclude that
the SWAP operation can be realized with a very high fidelity
for realistic pulse profiles.

When the drive is turned on and off instantaneously, one
can derive an analytical expression for the Rabi oscillations
in the population in |g1)p, given the initial state | f0)p. The
population in |g1)p at time ¢, denoted P, ip(?), is given by
the modulus square of the overlap between the time-evolved
initial state | fO(¢)) p and the target state |g1)p,

Peip(t) = [(gllp | FO®))pl*, (20)

where | fO(¢))p = U(t)| fO) p, with the unitary time evolution
operator U(t) = e ' Ht.

To express P,ip(f) in a convenient form, we expand
the initial and target states in the eigenbasis of the full
Hamiltonian,

1£0)p = aal®y), @1

lgl)p = Bul®y), (22)

where the eigenstates |®,,) satisfy H|®,) = ¢,|P,), and the
coefficients o, and B, are defined as (®,| f0)p and (P, |g1)p,
respectively. In this new basis, the time-dependent population
in|gl)p is

Pg1p(t) = Z%Z“B,f + 2 Z |t B, Bn

n<m

x cos[(€;, — €u)t + O], (23)

where 6, is the phase of («}, B Br)-

Equation (23) is an exact and useful relation between the
solution to the full Hamiltonian (which can be approximated
using perturbation theory) and the rate and fidelity of the
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population exchange between | f0)p and |g1) p. In particular,
the maximum fidelity J of the SWAP operation between
|fO0)p and |gl)p can be extracted from Eq. (23) as F =
4laya_BiPB-|, and its rate as 2¢g = €, —€_, where the
subscripts + stand for the two eigenstates of H which have
the largest overlaps with | f0)p and |gl)p. We denote these
eigenstates |®). When the resonance condition in Eq. (1)
is satisfied and there are no other states whose energies are
close to that of | f0)p or |g1)p, i.e., (/2/(A +a))* < 1,
these eigenstates are simply the two polariton states |P4) =
1/V2(1f0)p £ |g1)p). In this weak drive limit, Eq. (23)
implies that the population exchange between | f0) p and |g1) p
occurs with unit fidelity F = 1.

For realistic amplitudes and detunings a reduction in F is
caused by the population leakage out of the initial and target
states. To calculate the 2 dependence of the fidelity, we use the
second-order corrections to the eigenstates |®.) induced by
the perturbation H, (see Appendix B). As a result, the fidelity
of the SWAP operation between | f0)p and [g1)p is

( Q/2 )2 (ﬁmz)z (x/isz/z)2
F=1- + +\—— )
A+o A A—o

24
up to second order in €2/A. Note that the reduction in fidelity
is caused by population leakage out of states | f0)p and |g1)p
to neighboring states. We observe that the simulated fidelity
shown in Fig. 4(a) for a drive pulse with zero rise time is in
good agreement with the analytical calculation in Eq. (24).
The simulation of the transmon dynamics in the absence
of decoherence was performed by solving the Schrodinger
equation with the Hamiltonian given by Egs. (3) and (4). The
underlying Hilbert space was truncated to four energy levels
of the transmon and four Fock states of the resonator.

The calculation above is based on the assumption that
the drive pulse is turned on and off instantaneously and the
obtained fidelity is therefore valid in the limit of an ideal
square pulse. If, however, the pulse is ramped up and down
gradually, the process becomes adiabatic with respect to the
off-resonant transitions. Simulation results presented in Fig. 4
show that this effect improves the fidelity significantly.

The shape of the drive pulse 2(¢) for the simulations is
chosen such that the effective coupling g(¢) has the form

g(t)zgmax for At <t < T — At,

= Gmax SIN>(7T1/2A1) for r < At,

= Gmax SIN*((T —1)/2A1)  for t > T — At,

where T denotes the length of the pulse, At is the rise time,
and the amplitude g.,,x is chosen such that fOT gt)dt =m/2,
resulting in a 7 flip between states | f0)p and |g1)p. The
frequency of the pulse is varied in time to exactly cancel the
variations in the amplitude-dependent ac Stark shift.

To generate the correct drive pulse for the simulation,
we needed to calculate the ac Stark shift and the effective
coupling g with a good accuracy. For this reason, we decided
to use a numerical procedure based on diagonalization of the
Hamiltonian, which is described in more detail in Appendix A.
While this method is more accurate than the analytical
expression obtained using perturbation theory, the latter is a

043846-5



S. ZEYTINOGLU et al.

(a)

01y
w 0.01F |
. 005
2 10-3) .
3 "2
.'g ~
5 404t £
2 , =
3 2
1075 L x|
—~— 5
10
10f6 I I I |
50 100 150 200
7 pulse length (ns)
(b) rise time = 0.2 ns
1.0 0.25
0 0.8} 10.2 )
S g
T 06} {0.15 §
S Kl
Q c
g $
@ 0.4} 10.1 %
© Q.
n leakage 19
0.2} {0.05 &
0.0 ‘ . . ‘ 0.0
0 10 20 30 40 50
Time (ns)
(C) rise time =5 ns
1.0 0.25
0 0.8 0.2 g
S g
T 06 0.15 3
S Kol
Q. C
g S
0.4 01 ®
o o
IS 2
2 g
0.2 leakage | 0.05
0.0 . , 0.0
0 10 20 30 40 50
Time (ns)

FIG. 4. (Color online) (a) Dependence of the loss of fidelity 1 —
F on the length of the m pulse and its rise time. The transmon-
resonator detuning is set to A /2w = 0.979 GHz, the anharmonicity
isa/2mr = —0.376 GHz, and g/27 = 65 MHz. Solid lines show the
results of the numerical simulations. The theoretical prediction of Eq.
(24) is shown by the dashed (red) line. (b, ¢) Time evolution of the
populations p s, pei in | f0) p, |g1) p and leakage to other levels given
by 1 — pg1 — pyo for a 50-ns drive pulse with rise times of 0.2 ns (b)
and 5.0 ns (¢).

more time-efficient way of determining the behavior of ac
Stark shift as a function of other system parameters (i.e., A,
o, and g).

With pulses generated by this method, the simulations show
that the population SWAP between | f0)p and |gl)p can be
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realized with essentially unit fidelity (>0.99999) when deco-
herence is neglected. In current state-of-the-art experiments,
the achievable fidelities will therefore be limited mainly by
the coherence times of the transmons or imperfections in the
generated drive pulses.

VI. CONCLUSION

In conclusion, we have experimentally demonstrated a
cavity-assisted Raman process to realize a tunable transmon-
resonator coupling in a superconducting circuit QED ar-
chitecture. This effective coupling is induced by coherently
driving a transmon qubit. Its maximal value is determined by
the maximum drive power that can be applied to the qubit
without violating one of the underlying assumptions, such as
adiabaticity with respect to unwanted off-resonant transitions
or the rotating-wave approximation for the drive term. The
measured data are in very good agreement with a perturbative
calculation of the coupling strength g between |f0)p and
|g1)p. Our calculations show that the strength of the Raman
transition is reduced in comparison to the one implemented
in a A-level system [25,29] by the destructive interference
between the two second-order transition paths which couple
|f0)p and |g1)p.

We also determined the fidelity of the SWAP operation which
utilized the cavity-assisted Raman process, by both numerical
and analytical means. A second-order degenerate perturbation
calculation shows that the fidelity of the population exchange
strongly depends on the population leakage from | f0)p and
|g1)p to the closest lying states [see Eq. (24)], a result which
is also supported by numerical simulations (Fig. 4). We found
that the fidelity of the SWAP operation is expected to be very
close to unity in the absence of a decoherence effect and, in
realistic systems, will most likely be limited by the coherence
time of the transmon.
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APPENDIX A: NUMERICAL CALCULATION
OF THE AC STARK SHIFT

In this Appendix, we describe the evolution of the transmon
under the approximation of slowly varying drive pulses. We
then define the ac Stark shift operationally as the shift of the
drive frequency required to implement a perfect SWAP between
states | f0)p and |gl)p. Finally, we describe a method for
calculating the ac Stark shift numerically.

If the drive amplitude 2(¢) is varied slowly compared to
the energy separation of | f0)p and |gl)p from other energy
eigenstates, the system evolves adiabatically with respect to
the off-resonant transitions. Therefore, if the system is initially
prepared in a superposition of | f0) p and |g1) p, itremains at all
times in the subspace S(€2) spanned by the two instantaneous
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eigenstates |®(2)) and |D,(2)) corresponding to | f0)p and
1g1)p.

To describe the evolution of the state vector |W(¢)) in S(£2),
we first introduce a mapping which connects the subspaces
S(€2) for different values of €2. Using this transformation, the
action of the full Hamiltonian for any €2 is mapped to an
effective Hamiltonian acting on S(0), that is, the subspace
spanned by |f0)p and |gl)p. Using this formalism, we
calculate the Stark shift as the shift of the drive frequency
needed to keep the effective Hamiltonian in the “resonant
form” go, = g(|f0)p(gl|p + H.c.). If the drive frequency
is not adjusted, the effective Hamiltonian contains a term
proportional to o, which prevents us from realizing a perfect
SWAP operation between the two states.

We start by introducing a linear map, Mg : S(0) - S(R),
defined as

Mg = AlgiszP(Q)P(Q —AQ)...PQRAQ)P(AQ)P(0),
(AD)
where P(Q) =) ,_,, |®:())(P;()| is a projector onto
S(£2). This map représents a continuous series of projections
onto the subspaces S(x) for x varying from 0 to €.
As the state vector |\W(¢)) evolves adiabatically and there-
fore lies in S(£2(¢)), we can write it in the form

|W(1)) = Mo | (1)),

where |y(¢)) is some vector evolving in the subspace S(0)
spanned by | f0)p and |g1) p. In this way, we have reduced the
problem of finding the evolution of the state vector |W(¢)) in a
changing subspace S(€2(¢)) to that of finding the evolution of
the directly related vector | (¢)) in a fixed subspace S(0).

Since |W(t 4 dt)) lies in S(2(¢ + dt)), it can be expressed
as

(W (t +dr)) =P(Qt + d))|W(r + dr))
=P (R 4 dt)) exp (—iH (1)dr)| W (1)),
resulting in the following evolution equation for [ (¢)):

Mo 1an ¥ (t + dt))

= P(Q(t + dt)) exp (—iH(t)dt) Mo |y (1)) (A2)

Under the reasonable assumption that the subspace S(€2)
changes smoothly with €2, it can be shown that Mg, preserves

vector norms in S(2). It follows that M, I , which is an infinite
product of projectors analogous to Mg, but in the reverse order,
is the inverse of Mg. Hence, after dropping the projector
P(2(t + dt)) from the right-hand side of Eq. (A2) as well
as from the product form of Mg 4 [cf. Eq. (Al)] on its

left-hand side, we multiply the equation by MST?(,) to obtain

Wt + db)) = My, exp(—iH ()dD) Mg, |4 (1)),

which we transform into the differential form

d
3O = —iM{y, H(O) Mg, [y (1)).

The evolution of the vector |y (¢)) is therefore governed by
the effective Hamiltonian

Heff(t) = M;Lz(t)H(t)MQ(t) (A3)
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acting on S§(0), resulting in the evolution operator U (t;,;) =
T exp ftl’f (—iH(¢))dt. If we assume that the drive am-
plitude at the initial time # and the final time # is O,
we have Mqq,) = Mg, = P(0) and hence |y(%)) = |W (1))
and |y (#)) = |W(#)). Then we can directly write down the
evolution from |W(#)) to |V (t;)):

W) = Ute, )W (1))

This result allows us to determine the ac Stark shift as the
amplitude-dependent shift of the drive frequency needed to
realize a perfect SWAP operation between | f0)p and |g1)p.
For this, the effective Hamiltonian has to have the form

Hei (1) = Eoftse)1 + (@)1 fO0)p{gllp +H.c), (A4)

where the overall energy shift Eg(f) leading only to an
overall phase shift is omitted since it is physically irrelevant.
This equation is equivalent to the requirement that the
equal superposition states |¢;2) = (| f0)p £ 1g1)p)/~/2 are
eigenstates of He () and therefore, by virtue of Eq. (A3), that
Mgqqyle1,2) are eigenstates of H(t) which we have previously
denoted |®; »(£2)). In other words,
|D;(£2)) = Malg;). (A5)
This equation can be solved for Mg. However, since our
goal is to determine the ac Stark shift, we need an equation for
the Hamiltonian instead. To get it, we transform Eq. (A5) into
a differential form. By substituting Q2 — Q + d€2, we find the
relation between |®; (2 + d2)) and |P;(2)),

|P; (2 + d€2)) = P(L2 + dQ)[D;(2)),

which, after multiplication by (® (2 + d€2)|, we write in the
form

d
(@)1 0, @) = 0.

The associated initial condition follows from substituting 2 =
0 into Eq. (AS), giving [®2(0)) = (| f0)p £ |g1)p)/~/2.
Therefore, the two equal superposition states have to be eigen-
states of the nondriven Hamiltonian. This is, by definition,
also true for | f0)p and |g1)p. The only way the two distinct
pairs of vectors can be eigenstates at the same time is if the
subspace they are spanning is degenerate. This can be achieved
by choosing the correct frequency of the rotating frame, giving
us a condition for the drive frequency at 2 = 0.

For i = j, the differential equation above can be satisfied
simply by choosing the correct phase of the eigenstates
|®12(S2)). After expressing the derivative of the eigenstate
in terms of the derivative of the Hamiltonian, the remaining
equations for i # j are equivalent to

dH(Q)
dQ

(@1(£2)] |P2(£2)) = 0.

Now we consider that the Hamiltonian depends on 2
not only directly but also through the amplitude-dependent
drive frequency w,(€2). The total derivative with respect to
Q can then be expressed using the chain rule, leading to
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the equation

IH(Q,w0)
(@1(R2.00)| =5 =22 02(2.0))
dwq (2 0H (L2,
2 012,001 0y, 00) = 0.
wq
(A6)

We can solve this differential equation for w;(€2) numerically
to find the amplitude-dependent drive frequency which yields
an effective Hamiltonian of the form shown in Eq. (A4).

The simple procedure for finding the solution is summa-
rized here:

(1) Start with Q2 = 0. Find w,; by requiring | f0)p and
|g1)p to be degenerate.

(2) Find the eigenstates |®; »(€2,w,)) of the Hamiltonian
H(2,w,). For the first step, when 2 = 0 and the eigenstates
are degenerate, choose | P 2(Q2,wy)) = (| fO)p £ |g1)D)/ﬁ.

(3) Use Eq. (A6) to calculate w),(£2) := dw,(§2)/d2

4) Setwg = wg+ W (QDAQ and Q — Q + AQ.

(5) Go to step 2.

Once the solution is known, the effective coupling g(£2)
is calculated from the eigenenergies E;»(2,w,) of the two
eigenstates | P 2(2,wy)). Inspection of Eq. (A4) shows that
these eigenenergies are equal to Eqgse¢ == & and therefore

E1(Q,wq) — E2(2,04)

§(Q2) = 5

APPENDIX B: CALCULATION OF «,. AND g+

In this Appendix we use perturbation theory to calculate the
overlaps a4, By of the driven Hamiltonian eigenstates |4 )
corresponding to the undriven eigenstates |<I>$)) =(f0)p +
lgl)p)/ /2. The result is then used to derive Eq. (24). We retain
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only terms up to second order in the drive strength 2 and zeroth
order in the JC coupling g. In this approximation, we can treat
states with different numbers of photons as decoupled and
replace the dressed states |ij)p with the corresponding bare
states |ij). The overlaps oy = (®L|f0) and By = (DPi|gl)
which we wish to calculate are given by

we = (1 + (70| FO))
V2
L (1 - l|<f“0<“|fb“)>|2),
V2 2
B = (1 + (1%1g1))
V2

1 Lo~ ~m
=x—\1—-5(@&l " gl ")),
V2 ( 2
where |i~j(k)) are the kth-order corrections to the undriven
eigenstates |ij). Specifically,

- 3Q/2 2Q/2

|f0“)>=—f /20y — Y222 0.
+ o A

Sy

917 = e,

which results in the following expressions for oy and B4 :

_ 1, 22\ 1 (3e2)
“= A0 20T ) T2\ a—a

e fiob(eny BI
Pe=%1 —z(m> ' B
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