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We explore theoretically the optical response properties in an optomechanical system under an electromagnet-
ically induced transparency condition but with the mechanical resonator being driven by an additional coherent
field. In this configuration, more complex quantum coherent and interference phenomena occur. In particular, we
find that the probe transmission spectra depend on the total phase of the applied fields. Our study also provides
an efficient way to control propagation of a probe field from perfect absorption to remarkable amplification.
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I. INTRODUCTION

Optomechanical systems couple photons and phonons via
radiation pressure. Significant research interest in this frontier
of optomechanics is motivated by its potential applications in
ultrasensitive measurements, quantum information process-
ing, and implementation of novel quantum phenomena at
macroscopic scales [1–4]. Recently, a phenomenon resem-
bling electromagnetically induced transparency (EIT) [5–7]
in atomic physics, called optomechanically induced trans-
parency (OMIT), is studied theoretically [8–10] and observed
experimentally [11–14]. OMIT can be used for slowing and
switching probe signals [15] and may be further used for
on-chip storage of light pulses via microfabricated optome-
chanical arrays [16]. OMIT in the nonlinear quantum regime
has also been investigated [17–20]. On the other hand, the
optomechanically induced absorption (OMIA) phenomenon,
which is an analog of electromagnetically induced absorption
(EIA) investigated in atomic gas [21,22] and superconducting
artificial atoms [23], can also be realized in the optomechanical
setup [13,24,25]. And OMIA is a phenomenon closely related
to optomechanically induced amplification [13,14,26–28].

To obtain optomechanical analogs of atomic-coherence-
related phenomena such as EIT and EIA, the key point is that
a mechanical coherence (similar to atomic coherence) must
be induced. Specifically, in standard OMIT [8–14] and OMIA
[13,24], the coherent oscillation of the mechanical resonator
results from a time-varying radiation pressure force induced
by the beat of the probe and the control laser. The oscillating
mechanical resonator together with the (red- or blue-detuned)
control field can further induce sidebands on the cavity field.
The generated field with probe frequency can interfere with
the original probe field, leading to OMIT or OMIA absorption
spectra. On the other hand, in three-level atomic physics, the
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atomic coherences can be produced by the direct drive at
the microwave frequency [29–31] or by the spontaneously
generated coherence [32]. Usually, these additional drives can
generate a closed transition loop. These so-called phaseonium
systems [33,34] can lead to many remarkable phase-dependent
effects such as correlated lasing [35,36] and inversionless gain
[29,30,37]. Similarly, in the optomechanical system, one can
expect that this type of mechanical coherence can also be
generated by directly driving the mechanical resonator, and
further used to coherent control the propagation of probe fields.
Thus, in this paper, we study the influence of directly produced
mechanical coherence on optical response properties of an
optomechanical system.

In our study, besides a red-detuned control field and a
nearly resonant probe field applied to pump the optical cavity,
an additional weak driving field is used to directly excite
the mechanical resonator to produce mechanical coherence.
In contrast to the strong magnetic driving used for the
coherent connection between two electric-dipole-forbidden
atomic energy levels [29–31], the weak electric driving is
enough for our study here, because there is no selection rule
in our system. In this case, the optomechanical cavity can
be resonantly exited by directly absorbing a probe photon,
or through the phonon-photon process. For the interference
effects of these two possible transition paths, the optical
response properties for the probe field become phase sensi-
tive, and more complex quantum interference and quantum-
coherence-related phenomena will appear. Specifically, gain
without inversion (GWI)-like, OMIA and EIT-type spectra
can be obtained, depending on the amplitude and phase of the
control field. In addition, by adjusting the control field and the
additional driving field applied on the mechanical resonator,
the probe field can be efficiently manipulated from perfect
absorption to remarkable amplification.

The paper is organized as follows. In Sec. II, we introduce
the theoretical model for describing the driven optomechanical
system. Then, in Sec. III, we study the phase-dependent
optical response for the probe field in detail, including
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FIG. 1. (Color online) (a) Standard optomechanical setup driven
by a control laser and a probe laser, with an auxiliary driving field
applied to the mechanical resonator. (b) A block of three energy levels
in the system. Nc (Nm) denotes the number of photons (phonons).
The control laser with amplitude εc resonantly couples the transition
|Nc,Nm + 1〉 ↔ |Nc + 1,Nm〉, the probe laser with amplitude εp and
detuning �′ couples the transition |Nc,Nm〉 ↔ |Nc + 1,Nm〉, and the
auxiliary driving field with amplitude εa and detuning �′ couples the
transition |Nc,Nm〉 ↔ |Nc,Nm + 1〉.

GWI-like spectra in Sec. III A, OMIA and EIT-like spectra in
Sec. III B, amplification and perfect absorption in Sec. III C,
and numerical simulation in Sec. III D. Finally, further discus-
sions and conclusions are given in Sec. IV.

II. THE MODEL

We consider a standard optomechanical system schemati-
cally illustrated in Fig. 1(a). The cavity is driven by a strong
control laser and a weak probe one, where ωc (ωp) and εc

(εp) are the control (probe) laser frequency and amplitude,
respectively. Meanwhile, a weak coherent driving field with
frequency ωa and amplitude εa is applied to excite the
mechanical resonator. Experimentally, a micro- or nanoscale
mechanical resonator can be driven by microwave electrical
signals [38–40]. For example, in a recent experiment [38], the
mechanical element is a thin film of piezoelectric materials
AlN, which is sandwiched between two aluminium metal elec-
trodes, enabling strong electromechanical coupling through
the piezoelectric effect. We also assume that the frequencies
of the three coherent driving fields satisfy the condition
ωp − ωc = ωa. Figure 1(b) shows a block of three energy levels
in the system. Clearly, the three couplings create a set of �-type
transitions analogous to those in microwave-driving natural
atoms [29–31,41], superconducting artificial atoms [42–45],
or chiral molecules [46,47]. Thus one can expect that, similar
to these quantum systems with closed-loop transition structure,
the optical properties of the optomechanical system considered
here will be sensitive to the relative phases of three applied
fields.

In a frame rotating at the frequency of the coupling field
ωc, The Hamiltonian of the system is of the form,

Ĥ = ��0ĉ
†ĉ + �ωmb̂†b̂ − �g0ĉ

†ĉ(b̂† + b̂) + Ĥdr, (1)

where ĉ (b̂) is the photon (phonon) annihilation operator, ωm

is the mechanical resonance frequency, �0 = ω0 − ωc is the
detuning of the control laser from the bare cavity frequency
ω0, g0 is the single-photon coupling strength of the radiation
pressure between the cavity field and the mechanical resonator,
and Ĥdr describes the interaction between the optomechanical

system and the three driving fields:

Ĥdr = i�
(
εc + εpe

−iωat
)
ĉ† + i�εae

−iωat b̂† + H.c. (2)

The nonlinear quantum Langevin equations for the operators
of the optical and mechanical modes are given by

˙̂c = −
(

i�0 + κ

2

)
ĉ + ig0ĉ(b̂† + b̂) + εc + εpe

−iωat + f̂ ,

(3)

˙̂b = −
(

iωm + γm

2

)
b̂ + ig0ĉ

†ĉ + εae
−iωat + ξ̂ . (4)

κ and γm are the decay rates of cavity and mechanical
resonator, respectively. f̂ and ξ̂ are the quantum and thermal
noise operators, respectively. We assume that they satisfy the
condition 〈f̂ 〉 = 〈ξ̂〉 = 0.

It is not easy to obtain the solutions of the nonlinear Eqs. (3)
and (4). However, we are only interested in the linear response
of the driven optomechanical system to the weak probe field.
Thus, in the case of |εp|, |εa| � |εc|, we can linearize the
dynamical equations of the driven optomechanical system by
assuming ĉ = cs + δĉ and b̂ = bs + δb̂. Here cs and bs are
steady-state values of the system when only the strong driving
field is applied. They can be gotten from Eqs. (3) and (4) by
assuming εp,εa → 0 and all time derivatives vanish:

cs = εc

i� + κ
2

, bs = ig0 |cs|2
iωm + γm

2

, (5)

where � = �0 − g0(bs + b∗
s ) denotes the effective detuning

between the cavity field and the control field, including
the frequency shift caused by the mechanical motion. After
plugging the ansatz ĉ = cs + δĉ,b̂ = bs + δb̂ into Eqs. (3) and
(4), and dropping the small nonlinear terms, we can get the
linearized quantum Langevin equations for the operators δĉ

and δb̂:

δ̇ĉ = −
(

i� + κ

2

)
δĉ + iG(δb̂† + δb̂) + εpe

−iωat + f̂ , (6)

˙δb̂ = −
(

iωm + γm

2

)
δb̂ + i(Gδĉ† + G∗δĉ) + εae

−iωat + ξ̂ ,

(7)

where G = g0cs is the total (linearized optomechanical)
coupling strength.

Now we move into another interaction picture by in-
troducing δĉ → δĉe−iωat , δb̂ → δb̂e−iωat , f̂ → f̂ e−iωat ,ξ̂ →
ξ̂ e−iωat . In addition, we assume the cavity is driven by a control
field at the mechanical red sideband with � = ωm, the system
is operating in the resolved sideband regime ωm/κ 	 1, the
mechanical resonator has a high mechanical quality factor
ωm/γm 	 1, and the mechanical frequency ωm is much larger
than |G| and |ωa − ωm|. In this parameter regime, analogous
to the rotating wave approximation presented in the context of
atomic EIT, one can ignore the fast oscillating terms e2iωat and
get the following equations:

δ̇ĉ =
(

i�′ − κ

2

)
δĉ + iGδb̂ + εp + f̂ , (8)

˙δb̂ =
(

i�′ − γm

2

)
δb̂ + iG∗δĉ + εa + ξ̂ , (9)
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with �′ = ωa − ωm = ωp − ωc − ωm. Then we take the ex-
pectation values of the operators in Eqs. (8) and (9). Note
that the mean values of the quantum and thermal noise terms
are zero (i.e., 〈f̂ 〉 = 〈ξ̂ 〉 = 0). Under steady-state condition
〈δ̇ĉ〉 = 〈 ˙δb̂〉 = 0, one has

0 =
(

i�′ − κ

2

)
〈δĉ〉 + iG〈δb̂〉 + εp, (10)

0 =
(

i�′ − γm

2

)
〈δb̂〉 + iG∗〈δĉ〉 + εa. (11)

Thus, the expectation value of the operator δĉ

corresponding to the intracavity field oscillating at the
probe frequency reads

〈δĉ〉 = eiφp

[ (
γm

2 − i�′) |εp|(
κ
2 − i�′) (

γm

2 − i�′) + |G|2

+ |εa| |G| ei
(
κ
2 − i�′) (

γm

2 − i�′) + |G|2
]

. (12)

Here the total phase 
 is defined as arctan( κ
2ωm

) + φc +
φa − φp, and φi is the phase of amplitude εi (i = c,a,p).
In the resolved sideband limit, 
 
 φc + φa − φp. In
Eq. (12), the first term is the contribution from the usual
OMIT effect [8,11], and the second term is the contribution
from the phonon-photon parametric process involving the
driving on the mechanical resonator. The intracavity field
with probe frequency is determined by the interference of
these two terms and is strongly dependent on the relative
phase of the applied driving fields. Thus we can control the
transmission of the probe field by adjusting the total phase 
.

The output field of the cavity can be derived by the input-
output relation [48],

〈ĉout〉 + εc + εpe
−i(ωp−ωc)t = κex 〈ĉ〉 , (13)

with the external loss rate κex = ηκ . When the the coupling pa-
rameter η � 1, the cavity is undercoupling, and when η 
 1,
the cavity is overcoupled [4]. Experimentally, η can be
continuously adjusted [49,50].

Here, we concentrate on the component of the output
field oscillating at the probe frequency. To study the phase-
dependent optical response properties for the probe field,
we define the corresponding quadratures of the field εT =
κex 〈δĉ〉 /εp. The transmission coefficient and power transmis-
sion coefficient can be further defined as T = −1 + εT and
T = |T |2, respectively. At weak cavity-waveguide coupling
η � 1, |T | 
 1 − Re (εT), arg (T ) 
 −Im (εT). Thus, similar
to atomic physics, we can use the real and imaginary parts of
εT to represent absorptive and dispersive behavior of the probe
field. In the following, the ratio between |εa| and |εp| is defined
as y = |εa/εp|.

III. PHASE-DEPENDENT OPTICAL RESPONSE
PROPERTIES FOR THE PROBE FIELD

A. GWI-like absorption spectra

Here we assume |G| >
√

κγm/2, i.e., the cooperativity
C = 4 |G|2 / (κγm) > 1. In this regime, one can obtain typical
OMIT or Autler-Townes splitting spectra if only the control
and the probe fields are applied. But if an additional driving
field is applied on the mechanical resonator, the interference
between the OMIT process and the phonon-photon parametric
process [represented by the first and the second terms in
Eq. (12), respectively] can lead to the expected phase-
dependent absorption spectra. In Figs. 2(a)–2(d), we plot
absorption Re (εT), dispersion Im (εT), and power transmission
coefficient T versus �′ for different relative phase 
. For
simplicity, we have assumed the ratio of amplitude between
the two weak drivings y = |εa/εp| = 1. When 
 = 0, the
interference of the two terms in Eq. (12) results in absorption
and anomalous dispersion around �′ = 0. When 
 = π/2,
we can get asymmetric gain spectra with transparency point
at �′ 
 0 and absorption and amplification appear in the
red- and blue-detuned regions, respectively. The nature of
dispersion is normal in the transparency and amplification
regions where quantum interferences are prominent. When

 = π , a remarkable probe gain can be established between

FIG. 2. (Color online) Phase-dependent absorption (dashed line), dispersion (dash-dotted line), and power transmission coefficient (solid
line) versus �′ for different phase factor: (a) 
 = 0; (b) 
 = π/2; (c) 
 = π ; (d) 
 = 3π/2. Other parameters are |G| = κ/3, ωm = 10κ ,
γm = κ/1000, η = 0.05, y = 1.
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FIG. 3. Phase-dependent power transmission coefficient versus �′ with 
 = 0, |G| = γm/2 in (a); 
 = π , |G| = γm/2 in (b); 
 = π ,
|G| = γm in (c). Other parameters are the same as in Fig. 2.

two Autler-Townes absorption peaks, with the maximum gain
point being located at �′ = 0. The curve of Im (εT) exhibits
normal dispersive behavior in the amplification regime. When

 = 3π/2, we attain the mirror image of the 
 = π/2
absorption curve.

Note that Figs. 2(a)–2(d) exhibit the similar type of
phase-dependent GWI absorption spectra as those in �-
type superconducting artificial atoms [43,44]. But there also
exist some differences between them. Specifically, a �-type
artificial atom is a three-level system, and one can easily
check that when such an atom is driven by three coherent
fields (i.e., a strong control, a weak probe, and an additional
weak auxiliary field, respectively), the populations of the
two levels related to the probe transition are inversionless
[43,44]. While an optomechanical cavity is a system with an
infinite number of energy levels |Nc,Nm〉 [Nc(Nm) denotes
the number of photons (phonons)], the probe field couples all
the transitions |Nc,Nm〉 ↔ |Nc + 1,Nm〉 [see Fig. 1(b)], and
the population-inversionless condition between these pairs of
states is not necessarily satisfied. Thus we term the spectra in
Fig. 2 as GWI-like absorption spectra.

B. Weak control field regime: OMIA and EIT-like spectra

When |G| � √
κγm/2, i.e., the cooperativity C � 1, the

expectation value of the fluctuation operator δĉ can be
approximately written as

〈δĉ〉 = eiφp

[ |εp|
κ
2 − i�′ + 2 |εa| |G| ei


κ( γm

2 − i�′)

]
. (14)

Clearly, the first term shows that in this parameter regime,
the OMIT effect vanishes, the probe absorption spectrum
will exhibit the usual Lorentz line shape with width κ in the
absence of the driving field εa. However, in our case, due to the
existence of εa, the photons generated by the phonon-photon
parametric process can interfere (depending on the phase factor

) with the photons directly exited by the probe beam. The
absorptive behavior of the probe field can be represented by
the real part of the quadrature of the field,

Re (εT) =κex

2

⎡
⎣ κ

κ2

4 + �′2 + 2 |G| (γm cos 
 − 2�′ sin 
)

κ
(

γ 2
m
4 + �′2

)
⎤
⎦ ,

(15)

which depends on the phase factor 
. Note that without loss
of generality, we have let the ratio of amplitude between the
two weak drivings equals to one (i.e., y = 1). Typically, when

 = 0 or 
 = π , we have

Re (εT) = κex

2

⎡
⎣ κ

κ2

4 + �′2 ± 2 |G| γm

κ
(

γ 2
m
4 + �′2

)
⎤
⎦ . (16)

Here, the sign “+” and “−” correspond to relative phase

 = 0 and 
 = π , respectively. Equation (16) is composed
of a sum of two Lorentzians with width κ and γm, respec-
tively. In addition, when 
 = 0(π ), constructive (destructive)
interference appears. In Figs. 3(a)–3(c) we plot power trans-
mission coefficient T = 1 − 2Re (εT) curves to display these
kinds of spectral structures resulting from phase-dependent
constructive or destructive interference effects.

Specifically, when 
 = 0, constructive interference occurs
at �′ = 0, resulting in a typical OMIA spectrum with a very
sharp absorption feature around the resonant point, as shown in
Fig. 3(a). Note that in optomechanical setups, a similar OMIA
spectrum for a probe field can also be obtained by placing
a pump blue-detuned at a mechanical frequency away from
cavity [13,24]. Also, another version of OMIA was predicted
in a driving double-cavity configuration, where the absorption
peak is established in the OMIT window [25]. When 
 = π ,
destructive interference occurs, thus a transparency or an
amplification window can appear at the resonance point,
depending on the value of |G|. According to Eq. (16), when
|G| = γm/2, the absorption Re (εT) = 0 at resonant point. In
this case, an EIT-like power transmission curve can be obtained
with the value of T at the transparency dip being exactly one,
as shown in Fig. 3(b). When |G| > γm/2, Re (εT) < 0 (i.e.,
T > 0), a gain dip can be established in the vicinity of the
cavity resonant point, as shown in Fig. 3(c).

Let us now make comparisons between the EIT-like
phenomenon shown in Fig. 3(b), and the standard OMIT
phenomenon [8–14]. In both cases, the coherent oscillation
of the mechanical resonator induces sidebands on the cavity
field. Thus photons with frequency ωp is generated and
interfere destructively with the probe beam, resulting in a sharp
transparency window splitting the probe absorption peak.
However, the coherent oscillation of the mechanical resonator
is attributed to a different mechanism in these two cases. In
the standard OMIT phenomenon, the mechanical resonator is
driven by a time-varying radiation pressure force induced by
the beat of the probe laser and the control laser, and oscillates
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(a) (b)

FIG. 4. (Color online) The power transmission coefficient for the probe as function of |G| for various y, is plotted with 
 = 0 in (a) and

 = π in (b). In all cases, the cavity-waveguide coupling parameter is η = 1. Other parameters are the same as in Fig. 2.

coherently. To manifest this effect, a relatively large effective
optomechanical coupling constant with |G| � √

κγm/2 (i.e.,
C � 1) is required. While in the present EIT-like case, |G| =
γm/2 � √

κγm/2, the usual OMIT effect already vanishes, but
the mechanical resonator is still directly driven by the external
driving field with amplitude εa and oscillates coherently. Thus
the EIT-like effect may provide an alternative way to control
photon propagation even if the control field is too weak to
produce the usual OMIT phenomenon. Note that in a recent
experiment on coherent signal transfer between microwave
and optical fields, this type of phenomenon has been used
to demonstrate coherent interactions between microwave,
mechanical, and optical modes [38].

C. Amplification and perfect absorption for the probe beam

Usually, an amplifier based on the optomechanical setup
is realized by pumping the optomechnical cavity by a blue-
detuned control field [13,14,26]. Our proposal shows that a
red-detuned control field associating with an auxiliary driving
applied to the mechanical resonator can also realize probe am-
plification. In previous subsections, to get power transmission
spectra analogous to those investigated in atomic gases (such
as EIA, GWI), we have taken the coupling parameter η � 1,
and have shown a gain dip around �′ = 0 when 
 = π [see
Figs. 2(c) and 3(c)]. Here, to obtain a remarkable amplification
for a resonantly injected probe, we take η = 1 (i.e., the cavity
is over-coupled) and 
 is equal to either 0 or π . Substituting
Eq. (12) into relation T = |−1 + εT|2 and letting �′ = 0, we
get the power transmission coefficient at the resonant point as
a function of |G|:

T =
(

κγm

4 ± yκ |G| − |G|2
κγm

4 + |G|2
)2

. (17)

Here, the sign “+” and “−” correspond to relative phase 
 = 0
and 
 = π , respectively. From Eq. (17), we can find that a
resonant probe can be effectively amplified, the main results
can be summarized as follows: (i) when 
 = 0, under the
condition κ � γm, as is often the case in cavity optomechan-
ics, the amplification region (with T > 1) is approximately
|G| < yκ/2; (ii) when 
 = π , the amplification region is
approximately |G| > γm/ (2y); (iii) in both 
 = 0 and 
 = π

cases, when |G| 
 √
κγm/2 (i.e., the cooperativity C 
 1),

for different ratio y between the amplitudes of the two weak
fields, dT /d|G| = 0, d2T/d|G|2 < 0, the output power for
the field at probe frequency ωp achieves maximum with power
transmission coefficient Tmax 
 y2κ/γm. Figures 4(a) and 4(b)
show the amplitude of the output power from the cavity as a
function of |G| in these cases.

Physically, the extra energy of the amplified probe is due
to the contribution of the phonon-photon parametric process
described by the second term in Eq. (12), whose strength
is dependent on the coherent photons (excited by εc) in the
cavity and phonons (excited by εa) in the mechanical resonator.
On one hand, for a given probe, increasing y (by increasing
|εa|) can excite more phonons in the mechanical resonator,
leading to a more remarkable amplification, as shown in
Figs. 4(a) and 4(b). On the other hand, an increasing |G| (by
increasing |εc|) can produce more photons in the cavity but at
the same time lower the phonon numbers in the mechanical
resonator for the existence of sideband cooling effect. The first
process contributes positively and the second one negatively
to the phonon-photon parametric process, resulting in maxi-
mal amplification appearing at |G| 
 √

κγm/2, as shown in
Figs. 4(a) and 4(b). Note that at the maximal amplification
point, the modulus of the expectation value |〈δĉ〉| may be
very large, to ensure the validity of the linearize theory,
|〈δĉ〉| /cs � 1 should be satisfied. Using this relation, we can
estimate that the condition

√
Tmax

∣∣εp/εc

∣∣ � 1 (i.e., the probe
magnitude after amplification must have a lower value than
that of the control field) must be satisfied to ensure the validity
of the linear-regime analysis.

In addition, Eq. (17) shows that when 
 = 0 and
|G| 
 yκ , or 
 = π and |G| 
 γm/ (4y), the power transmis-
sion coefficient for a resonant injected probe beam is zero.
This means that the probe can be totally absorbed. These
results can be clearly seen in Figs. 4(a) and 4(b). It is known
that for the over-coupled case η = 1, if a single probe laser
drives the cavity, the output probe beam will leave the cavity
without any absorption [3]. However, in our case, because a
control field εc and an auxiliary driving field εa are applied,
destructive interference can lead to zero output for the probe
field. Thus, the device may be used as a quantum switch to
control the photon propagation in the future quantum network.
We note that similar perfect absorption phenomena also exist
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(a) (b)

FIG. 5. (Color online) Comparison between the numerical (dots and circles) and the analytical (solid curves) results of the phase-dependent
absorption spectra with (a) 
 = 0,π ; (b) 
 = π/2,3π/2. The average thermal phonon number Nth = 10. The coupling strength |G| = κ/3.
The probe amplitude |εp| = κ/30. Other parameters are the same as in Fig. 2.

in two-side driving resonator-in-middle-type optomechanical
systems [51,52].

D. Numerical results

In this part, to verify the above phase-dependent spectral
structure obtained analytically, we give numerical results by
solving the master equation. The quantum Langevin Eqs. (8)
and (9) correspond to an effective Hamiltonian,

Ĥeff = −��′(δĉ†δĉ + δb̂†δb̂) − (�Gδĉ†δb̂ + �G∗δĉδb̂†)

+ (i�εpδĉ
† + i�εaδb̂

† + H.c.), (18)

with beam-splitter-like interaction. Based on this Hamiltonian,
we can get the quantum master equation,

˙̂ρ = 1

i�
[Ĥeff,ρ̂] + κD [δĉ] ρ̂ + γm (Nth + 1)D[δb̂]ρ̂

+γmNthD[δb̂†]ρ̂, (19)

describing the dynamics of the system, where ρ̂ denotes
the density matrix of the system, D[ô]ρ̂ = ôρ̂ô† − (ô†ôρ̂ +
ρ̂ô†ô)/2 (ô = δĉ,δb̂,δb̂†) is the standard dissipator in the
Lindblad form, and Nth is the average thermal phonon number
of the mechanical resonator. For a nanomechanical resonator
with frequency 2π × 10 MHz, under typical environment
temperature (30 mK) in present experiments [26], the thermal
phonon number Nth is about 10. Figure 5 gives both the
numerical and analytical results of the phase-dependent probe
absorption spectra. Without loss of generality, we only take
the GWI-like case discussed in Sec. III A as an example. We
can see that the analytical results are in good agreement with
the numerical calculations.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, we have explored an optomechanical system
under the EIT condition with the mechanical resonator being

driven by an auxiliary coherent field. We find that the response
of the driven optomechanical system to the weak probe
field depends on the total phase of three classical fields.
Because an additional driving field is applied to the mechanical
resonator, the system will exhibit more complex quantum
interference phenomena. Specifically, when the cooperativity
C = 4 |G|2 / (κγm) > 1 is satisfied, we can get GWI-like
spectra similar to those predicted in superconducting artificial
atoms. When the cooperativity C � 1, our proposal provides
a way to obtain OMIA and EIT-like spectra. When the
cooperativity C 
 1, we can get remarkable amplification for
the probe beam by adjusting the phase and amplitude of the
coherent driving field applied on the mechanical resonator.
We also give numerical results including thermal decoherence
by solving the master equation. The numerical results are in
good agreement with the analytical ones. Experimentally, there
are various ways to coherently drive a micro- or nanoscale
mechanical resonator [38–40]. This kind of optomechanical
setups may be used to switch or amplify probe signals in the
future quantum networks.
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