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High-harmonic generation from Bloch electrons in solids
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We study the generation of high-harmonic radiation by Bloch electrons in a model transparent solid driven by a
strong midinfrared laser field. We solve the single-electron time-dependent Schrödinger equation (TDSE) using a
velocity-gauge method [M. Korbman et al., New J. Phys. 15, 013006 (2013)] that is numerically stable as the laser
intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau
due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly
with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying
conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of
the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis
set, the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which allows us to separate
interband and intraband contributions to the time-dependent current. We find that the interband and intraband
contributions display very different time-frequency characteristics. We show that solutions in these two bases are
equivalent under a unitary transformation but that, unlike the velocity-gauge method, the Houston state treatment
is numerically unstable when more than a few low-lying energy bands are used.
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I. INTRODUCTION

Since high-harmonic generation (HHG) in inert gases was
first discovered in 1987 [1,2], it has become one of the major
research areas in ultrafast atomic physics. In three decades
of development, HHG has pushed the technology for creating
tunable extreme ultraviolet (XUV) pulses into the attosecond
regime [3–5], and has been widely used to probe the ultrafast
dynamics of atomic and molecular, and solid systems [6–9].
Since the HHG process is highly nonlinear, the intensity of
the generated harmonics is typically orders of magnitude
lower than the driving laser intensity. This limits the number
of photons per pulse that can be obtained, meaning that
applications such as pump-probe spectroscopy and lithography
using HHG are not presently practical using gas-phase sources.

Recently, Ghimire et al. discovered that high-order har-
monics can also be generated from a bulk crystal [10], which
has opened up the possibility of studying attosecond electron
dynamics in materials. Because of the use of a high-density
target, solid-state HHG has a potential for high efficiency.
In addition, it may be possible to engineer the structure of the
solid target on a micrometer scale, and thereby design periodic
structures that enhance the macroscopic phase matching
[11–15], further boosting the number of photons generated.
From a fundamental point of view, solid-state HHG is also
interesting as a potential tool for addressing and understanding
the ultrafast dynamics of electrons in periodic structures.

The electron dynamics in a solid interacting with an
electromagnetic field is generally considered to have a
contribution from both intraband and interband dynamical
processes [16–18], as illustrated in Fig. 1. The intraband
dynamics involves k-space motion of an electron along one (or
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several) specific bands, while the interband dynamics involves
electron transitions between different bands. Although this
picture has been widely adopted in studying dynamics in
solids, the mechanism for solid-state HHG has still not been
well characterized in these terms. Ghimire et al. [10,19]
suggested that laser-driven Bloch oscillations of an electron
wave packet on a single conduction band could be the source
of the nonlinear current responsible for HHG. This model
was supported by recent results on THz HHG by Schubert
et al. [20]. In contrast, calculations by Vampa et al. [18]
using a two-band model indicated that the HHG spectrum
is dominated by the interband current and furthermore that
the cutoff is limited by the largest band gap. Hawkins et al.
[21] suggested that higher-lying bands should be included in
the laser-solid description in order to accurately capture the
laser-driven electron dynamics.

A theoretical framework for the interaction of lasers with
solids has been constructed using both many-electron models
[16,20,22,23] and single-electron models [18,21,24–27]. The
many-electron models are based on second quantization,
together with a reduction in correlation via a Hartree-
Fock decoupling scheme, which leads to the well-known
semiconductor Bloch equations (SBE) [28]. In the simplest
case, the SBE describe an ensemble of correlated two-level
systems [29]. The SBE approach has been used extensively in
describing optical properties of solids, where it successfully
describes many semiconductor optical experiments such as
pump-probe, four-wave-mixing, and photon echoes [29–32].
The single-electron models, on the other hand, treat the solid
as a single electron in an effective periodic potential. The
laser-solid interaction is then described by the laser-driven
single-electron motion in this effective periodic potential
[33]. This single-electron approach has been very successful
in addressing electron dynamics in periodic structures such
as Bloch oscillations, Zener tunneling, and Wannier-Stark
localization in semiconductor superlattices [34,35], optical
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FIG. 1. (Color online) The band structure used in our calcu-
lation and the scheme of the interband and intraband dynamics.
The intraband dynamics involves the motion of the electron on
the same band, while interband dynamics describes the transitions
of the electron between different bands. We regard the second band
as the valence band and the third band as the conduction band.

lattices [36,37], as well as waveguide arrays [38,39]. We note
that the single-electron models are conceptually the closest to
the hugely successful single-active-electron treatment of HHG
in atomic and molecular gases, which has yielded a number of
insights into both the mechanism and control over the harmonic
and attosecond pulse generation processes [3,4,40–44].

In this paper, we will follow the analogy to optical lattices
and HHG in gases and work in a single-electron framework.
We solve the time-dependent Schrödinger equation (TDSE)
for an electron interacting with a periodic potential using two
different numerical approaches, which allows us a number of
insights into the HHG process. In the first approach, we follow
the velocity-gauge treatment of Korbman et al. [45] in which
the wave function is expanded in a basis of Bloch states, which
means that many bands are included in the calculation. We find
that this method is numerically stable with respect to increasing
both the laser intensity and the number of bands considered,
but that it does not allow us to separately consider the intraband
and interband electron dynamics. Our second approach is
to solve the TDSE in a time-dependent basis set [46], the
so-called Houston states, in which the intraband and interband
contributions can be naturally separated. We show that while
the two methods are equivalent under a unitary transformation,
the Houston state treatment becomes numerically unstable
as the number of bands is increased.

We find that the resulting harmonic spectra exhibit both a
primary and a secondary plateau, each with a cutoff energy
that depends linearly on the laser electric field strength. The
primary plateau is dominated by interband transitions between
the valence band and the first conduction band. The secondary
plateau is due to transitions between the valence band and the
higher-lying conduction bands. This plateau is much weaker
than the primary plateau at low intensity, but increases rapidly
with the intensity and eventually merges with the primary
plateau. Using the Houston state approach, we also separately
analyze the time-frequency characteristics of the interband
and intraband contributions to the current and find that they
exhibit very different characteristics, in the intensity regime

where the spectrum is dominated by one primary plateau.
We propose that this difference could potentially be used
to experimentally address which mechanism dominates the
solid-state HHG process.

This paper is organized as follows: In Sec. II, we present
the theoretical framework and the results of solving the TDSE
using the velocity-gauge approach, and in Sec. III, we solve
the TDSE in the Houston basis [46] and analyze the results
of Sec. II in terms of interband and intraband dynamics.
Section IV presents an analysis of the numerical instability
of the Houston basis treatment, and Sec. V presents a brief
summary.

II. TDSE IN THE BLOCH STATE BASIS

We consider a linearly polarized laser field propagating
through a thin crystal along the optical axis. We describe
the laser-solid interaction in one dimension, along the laser
polarization which lies in the crystal plane. We follow the
velocity-gauge treatment in [45], in which the TDSE reads as

i�
∂

∂t
|ψ(t)〉 = (Ĥ0 + Ĥint)|ψ(t)〉, (1)

where H0 is the field-free Hamiltonian and Hint is the
interaction Hamiltonian between the laser and the electron

Ĥ0 = p̂2

2m
+ V (x̂), (2)

Ĥint = e

m
A(t)p̂. (3)

A(t) is the vector potential, and is related to the electric field
by

A(t) = −
∫ t

−∞
E(t ′)dt ′. (4)

p̂ is the momentum operator and V (x) is the periodic
lattice potential. We have employed the dipole approximation
A(x,t) ≈ A(t) because the wavelengths we are interested in
are much larger than the lattice constant. According to Bloch’s
theorem, the eigenstates of the field-free Hamiltonian are the
Bloch states

Ĥ0|φnk〉 = εn(k)|φnk〉, (5)

where n is the band index and the eigenvalues εn(k) represent
the dispersion relations of the bands. Each Bloch state can be
written as a product of a plane wave and a function periodic in
the lattice spacing a0:

〈x|φnk〉 = eikxUnk(x), (6)

where Unk(x) satisfy

Unk(x + a0) = Unk(x). (7)

Because the vector potential is independent of x, the lattice
momentum �k is still a good quantum number [47]. This means
the dynamics of the different lattice momentum channels are
independent, and the TDSE can be solved independently for
each k [45].
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To solve the TDSE for a specific k0, we express the wave
function in Bloch states

|ψk0 (t)〉 =
∑

n

Cnk0 (t)|φnk0〉, (8)

and solve for the time-dependent coefficients Cnk0 (t),

i�
∂

∂t
Cnk0 = Cnk0εn(k0) + eA

m

∑
n′

Cn′k0p
nn′
k0

, (9)

where the pnn′ matrix element is the integration of the
momentum operator over a lattice cell in space

pnn′
k0

= 〈φnk0 |p̂|φn′k0〉

= 1

a0

∫ a0

0
dx φ∗

nk0
(x)

(
�

i

∂

∂x

)
φn′k0 (x). (10)

Usually, the p matrix is dominated by its tridiagonal matrix
elements, which means the transitions to higher bands are
most likely to happen through successive transitions between
intermediate bands. Finally, we calculate the time-dependent
laser-induced current as the sum of of the current in each of
the different k0 channels jk0 [45] where

jk0 = − e

m
{Re[〈ψk0 |p̂|ψk0〉] + eA(t)}. (11)

The laser pulse we use has a cos4 envelope in its electric
field, with a full width at half maximum (FWHM) pulse
duration of three optical cycles for all wavelengths. We
have considered laser wavelengths λ between 2 and 5 μm,
and intensities between 1 × 1010 and 2 × 1012 W/cm2. The
harmonic spectrum is calculated as the modulus square |j (ω)|2
of the Fourier transform of the time-dependent current in
Eq. (11). Before the Fourier transform, we multiply j (t)
by a time-dependent window function in order to suppress
the dipole moment between population remaining in the
conduction band at the end of the pulse and the valence band,
which would otherwise last forever (in our model) and would
dominate the spectrum in the region around the band-gap
energy. The window function matches the envelope of the laser
pulse, with the form G(t) = cos4(5.8 × 10−4t), and thus does
not suppress the coherently driven nonlinear current which is
produced predominantly at the peak of the laser pulse.

Throughout the paper, we use a periodic potential V (x) =
−V0[1 + cos(2πx/a0)], with V0 = 0.37 and lattice constant
a0 = 8, both in atomic units. This Mathieu-type potential leads
to a band structure that can be expressed in terms of Mathieu
functions [48]. It has been used extensively in the optical
lattice community [49–51]. The resulting band structure has
a minimum band gap of 4.2 eV and is shown in Fig. 1.
Unless otherwise specified, we have used 51 Bloch states in
our expansion of the wave function, which means that 51
bands are included in the calculations for each k value. Since
the lowest band (band 1) is deeply bound and very flat, we
use band 2 as the initially populated valence band. We have
checked that transitions involving band 1 play a negligible role
in the harmonic generation dynamics. The initial population
is a small superposition (	k0 = π/20a0) of Bloch states near
k0 = 0 on the valence band, corresponding to a wave function
which is initially spatially delocalized throughout the solid.
This implies that the valence band is near “frozen” so that only
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FIG. 2. (Color online) High-harmonic spectra (logarithmic in-
tensity scale) of the laser-induced current calculated by solving the
TDSE in velocity gauge. The laser wavelength and peak intensity
are 3.2 μm and 4.5 × 1011 W/cm2. The red solid curve shows the
spectrum where 51 bands are used in the calculation, whereas the
blue dashed curve uses the same condition as the red curve, except
bands 4 and 5 are removed from the calculation. The black arrow
indicates the minimum and maximum band-gap energies.

a small distribution of population near k = 0 can be excited to
higher bands, and is similar to the initial condition proposed in
[19], where only a small part (about 2% in our case) of valence
band electrons are excited to the conduction band where they
undergo laser-driven Bloch oscillations. It is also similar to
the initial condition used in quantum well and optical lattice
systems when inducing Bloch oscillations [28,49–52]. We note
that Bloch oscillations (usually thought of as electron motion
in k space) can indeed be captured by our formalism in which
different k’s are uncoupled from each other. In this formalism,
Bloch oscillations are more easily conceptualized as charge
oscillations in real space, rather than in k space [53].

Figure 2 shows harmonic spectra for our model system
calculated using a laser wavelength λ = 3.2 μm and intensity
4.5 × 1011 W/cm2. This corresponds to a Bloch frequency
ωB = Ea0/� = 0.78 eV/�, where E is the electric field
amplitude. Although this intensity is low compared to the
experiment in [10], it is high enough to generate rich nonlinear
dynamics. The harmonic spectrum exhibits both a perturbative
regime (harmonic order <10), a plateau regime (10–30) and
a cutoff (∼30), very similar to the general structure of the
harmonic spectrum generated by atoms [40,41]. As we will
show in the following section, the plateau is due to interband
transitions between the conduction and valence bands. This
agrees with the prediction in [18]. However, in contrast to that
paper, we find that harmonics can be generated with photon
energies well above the minimum and maximum band-gap
energies, as shown in Figs. 2 and 3.

The two curves in Fig. 2 represent the full calculation,
including all 51 bands, and a calculation in which bands 4
and 5 (the second and third conduction bands) have been
dynamically excluded. This is done by setting the coefficients
of C4k0 and C5k0 to zero in Eq. (8) at each time step in
solving the TDSE. We note that since the transition probability
from bands 2 and 3 to bands 6 and above is very small, and
the contribution from the low-lying band 1 is very small in
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FIG. 3. (Color online) (a) Harmonic yield as a function of laser
field strength for λ = 3.2 μm. (b) Same as (a) but excluding bands 4
and 5. White dashed lines indicate the linear dependence of the cutoff
energy on field strength, and vertical black lines indicate the minimum
and maximum band gaps between the valence and conduction bands.
(c) Field strength dependence of H19 and H61 from (a). (d) Same as
(a) but using λ = 4.0 μm. (e) Wavelength dependence of the cutoff
scaling coefficient with electric field strength. All yields are shown
in logarithmic scale.

general, removing bands 4 and 5 makes our model effectively
a two-band model. We have compared spectra from our
effectively two-band model and a true two-band model and
find that they are in very good agreement. The full-calculation
spectrum exhibits a weak second plateau, about 10 orders of
magnitude lower than the main plateau, which is absent in the
reduced-band calculation. The comparison between the two
curves yields two insights: (i) the main part of the plateau and
cutoff region is well described by the dynamics involving just
the valence and the lowest conduction bands, indicating that
higher bands play a negligible role in the harmonic generation
in this wavelength and intensity regime, and (ii) the second
plateau is due to contributions to the dynamics involving
higher-lying bands, predominantly due to transitions between
bands 4 or 5 and the valence band.

We next investigate the intensity and wavelength depen-
dence of the first and second plateaus and cutoff. Figure 3(a)
shows the harmonic yield as a function of laser electric
field strength for λ = 3.2 μm. We see that the cutoff of the
first plateau increases linearly with field strength. This is in
agreement with the experimental finding in [10]. Figure 3(b)
shows the same intensity scan without bands 4 and 5, and
the linearity of the first cutoff is revealed for a larger range.
Going back to Fig. 3(a), we see that as the intensity increases,
the second plateau rises and merges with the first plateau
consistent with what was observed in [54]. Subsequently, the
cutoff energy of this new, longer plateau also exhibits a linear
dependence on the laser field strength. Figure 3(c) explores
the buildup of the second plateau in more detail. We show a

line-out of the field-strength dependence of harmonics 19 and
61 (H19 and H61), which are located in the first and second
plateaus, respectively. At the highest fields, these harmonics
are both in the plateau and therefore have similar yields and
change only slowly with field strength. However, at the lowest
field strengths, H61 is essentially zero [not shown in Fig. 3(c)]
until it starts to increase exponentially with intensity, indicating
that the second plateau is not independent but rather built off
of the first plateau. This is consistent with our finding above
that the population in the higher bands is built in a steplike
process based on first populating lower bands.

Our model predicts similar harmonic generation dynamics
at other wavelengths. Figure 3(d) shows the field strength
dependence of the harmonic spectrum at λ = 4.0 μm, which
also exhibits two plateau regions with two different, linear,
dependencies of the cutoff energy on the field strength.

From our numerical results, we can quantify the scaling of
the cutoff energy in the following way. We start by writing the
cutoff energy Ecutoff in units of the Bloch frequency as

Ecutoff ≈ β�ωB, (12)

then the scaling factor for the first and second plateaus are
β1 = 14, β2 = 38, respectively. Figure 3(e) shows the scaling
factor for six different wavelengths for the first plateau and
suggests that the cutoff also scales approximately linearly with
the wavelength. Thus, in this model, the first cutoff energy
depends linearly on both the electric field strength and the
wavelength:

Ecutoff ∝ λE, (13)

where the proportionality constant depends on the band struc-
ture. The linear dependence on field strength contrasts with
the (λE)2 scaling of the cutoff in atomic and molecular gases
[55], but agrees well with the prediction for a strongly driven
two-level system [56,57] which in our case would be Ecutoff =√

(Ebg)2 + (pvcEλ/πc)2, where pvc is the momentum operator
matrix element between the valence and conduction bands
at k = 0 and Ebg is the minimum band-gap energy. We note
that at high field strengths, the cutoff energy in the strongly
driven two-level system is not limited by the band-gap energy,
but nearly proportional to the E, in agreement with that of
our model system. The two-level formula underestimates our
numerical values for β by about 10%. The scaling of the
second cutoff with wavelength is more difficult to quantify.
Both Figs. 3(a) and 3(d) suggest that a third plateau appears
at the highest energies, possibly due to the contribution of
bands 6 and 7. Apart from concerns about applying our simple
model to such high intensities, we note that there are as of yet
no high-harmonic experiments with the level of sensitivity that
would be needed to observe such an effect.

To conclude this section, we briefly comment on our choice
of initial condition in which a small k-state wave packet
yields an initial wave function which is spatially delocalized
across the entire [one-dimensional (1D)] crystal. Other recent
calculations have considered a different initial condition in
which the valence band is initially fully populated [18,21],
which in our model would correspond to an initial wave
function localized at one particular lattice site. In a real
insulating material, the filled valence band means that all the
different electronic states of the valence band are occupied
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by different electrons. The full valence band thus only has
meaning in the multielectron context. In a single-electron
framework, the valence band can never be filled in the same
way since we only have one electron, which corresponds to a
much lower-dimensional Hilbert space than the multielectron
wave function. In this sense, in the single-electron framework
the solid is modeled like a superatom with an atomic potential
that is periodic. What we can choose is only the initial wave
function for this superatom. For instance, we can choose the
initial condition of the superatom to be a Bloch state (few k’s,
spatially delocalized) or a Wannier state (many k’s, spatially
localized). As demonstrated recently in rare-gas clusters [58],
the delocalization of the initial wave packet may affect the
HHG process, which could also be the case in solids.

III. HOUSTON STATE BASIS

In the previous section, the electron dynamics was de-
scribed in a static basis of Bloch states using the velocity-gauge
interaction. In this picture, the time dependence of the wave
function is due solely to the time dependence of the Bloch state
coefficients Cnk(t). Although computationally convenient, this
method provides a time-dependent current which is hard to
understand at an intuitive level. For example, the familiar
Bloch oscillation of an electron with a momentum �k0 in a
static field is built from the superposition of a large number of
bands all at the same k0. Obviously, in this picture there can
be no separation of the current into intraband and interband
contributions.

In this section, we describe an alternative way to calculate
the electron dynamics using a time-dependent basis set, the
Houston states [59]. As demonstrated in Appendix A, the two
solutions are equivalent since they are related by a unitary
frame transformation. In the Houston basis, however, we can
obtain a separation of the induced current into intraband and
interband components. This will allow us to separately explore
the time-frequency characteristics of the two contributions, and
show that they exhibit very different emission times.

The Houston states are best thought of as an adiabatic basis
in which the lattice momentum that would be �k0 in the absence
of a field has the time dependence

�k(t) = �k0 + eA(t). (14)

By construction they are the instantaneous eigenstates of the
time-dependent Hamiltonian H (t):

H (t)|φ̃nk0 (t)〉 = εn(k(t))|φ̃nk0 (t)〉, (15)

where H (t) is the Hamiltonian in the same single-electron
Schrödinger equation as above Eq. (1) [46] except for an
additional term proportional to A2:

i�
∂

∂t
|ψ(t)〉 =

[
(p̂ + eA)2

2m
+ V (x)

]
|ψ(t)〉. (16)

Including this term in the Schrödinger equation makes the
form of the Houston states simpler, but it has no effects on
the current since the wave function only differs by an overall
time-dependent phase. In this convention, the Houston states
are related to the Bloch states with lattice momentum �k(t)

by [46]

|φ̃nk0 (t)〉 = e−ieAx̂/�|φnk(t)〉, (17)

where x̂ is the position operator. Expanding the time-
dependent wave function with initial lattice momentum �k0

in Houston states

|ψ(t)〉 =
∑

n

ank0 (t)|φ̃nk0 (t)〉, (18)

we find equations of motion for the coefficients

i�
∂ank0

∂t
=

∑
n′

[εn(k(t))δnn′ − eE(t)Xnn′(k(t))]an′k0 , (19)

where we have made use of Eq. (4). Xnn′ is the interband
transition matrix element defined by

Xnn′ (k) = 1

ia0

∫ a0

0
U ∗

nk

∂

∂k
Un′kdx, (20)

where Xnn′ = 0 if n = n′. It is calculated numerically using
procedures in [60]. Note that the initial wave function has a
lattice momentum of �k0, but we could also make it a wave
packet as we did in the previous section.

The time-dependent Houston states describe the electron
dynamics in a moving frame in which the lattice momentum is
prescribed by the vector potential as in Eq. (14). Pictured in k

space, one can think of an electron wave packet oscillating on
each energy band, while at the same time some of the amplitude
transitioning between different bands, corresponding to the
intraband and interband dynamics, respectively. The motion
on each band is governed by the time-dependent dispersion
εn(k(t)). For the intensity used in Fig. 2, the motion of the
wave packet in k space samples about 2

3 of the first Brillouin
zone.

The total current can be calculated from Eq. (11), using
Eq. (18) for the wave function:

jtot = − e

m
Re

[∑
nn′

a∗
nk0

an′k0〈φnk(t)|p̂|φn′k(t)〉
]

. (21)

Since now the system is described in the frame that moves
along with the field, there is no A term in the expression for
the current, as opposed to that of Eq. (11).

Figure 4 compares spectra calculated in the Houston
basis and the Bloch basis at three different field strengths,
corresponding to the electron wave packet in k-space sampling
about 2

3 , 3
3 , and 4

3 of the first Brillouin zone. In the Houston
basis, we use the three lowest bands shown in Fig. 1, while
in the Bloch state basis we use as many of the 51 bands that
were used to calculate the band structure as are necessary for
numerical convergence. Of these three bands, only the valence
and conduction bands (2 and 3) contribute meaningfully to the
dynamics. The reason for using only three bands in the Houston
basis is discussed below in connection with the numerical
properties of the X matrix elements. The initial condition used
in both cases is a single k state (k = 0) in the valence band
where the band gap is the smallest. Figures 4(a) and 4(b)
show that the agreement between the Houston and the Bloch
calculations is excellent for the part of the spectrum that is
dominated by the dynamics in the valence and conduction band
only. This agreement is expected since the two wave functions
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FIG. 4. (Color online) Comparison of harmonic spectra (loga-
rithmic scale) from a three-band Houston basis calculation and a
51-band Bloch basis calculation, for three different intensities of a
3.2-μm driving field, (a) 4.5 × 1011 W/cm2, (b) 1.0 × 1012 W/cm2,
and (c) 1.8 × 1012 W/cm2. The initial condition used in both
calculations is a single k = 0 in the valence band. The thin line in (a)
and (c) is calculated from the conduction band only, in the Houston
basis, by ignoring interband transitions (see text).

are related by a unitary transformation (see Appendix A). Since
the Houston calculation only includes three bands, it cannot be
expected to reproduce the high-frequency part of the spectrum
that in the Bloch calculation is due to higher-lying bands
[approximately above harmonic order 50 in both Figs. 4(b)
and 4(c)]. It is worth noting, though, that at the highest intensity
the slope of the Houston spectrum matches that of the Bloch
spectrum. We comment on this in more detail in the following.

One advantage of the Houston basis is that the electron
dynamics naturally separates into an intraband and interband
contributions, and can be studied separately. In Eq. (21), the
intraband contribution to the current involves only Houston
states on the same band (n = n′), whereas the interband
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FIG. 5. (Color online) (a) The intraband (red, dashed line) and
interband (blue, solid line) current (logarithmic scale) of a Houston
model. The low-order harmonics mainly come from intraband current
while the harmonics in the plateau mainly come from the interband
current. (b) The valence band (orange) and conduction band (purple)
contributions to the intracurrent (logarithmic scale).

contribution involves transitions between different bands (n 
=
n′):

jintra = − e

m

∑
n

|ank0 |2〈φnk(t)|p̂|φnk(t)〉, (22)

jinter = − e

m
Re

⎡⎢⎢⎢⎣ ∑
n,n′
n
=n′

a∗
nk0

an′k0〈φnk(t)|p̂|φn′k(t)〉

⎤⎥⎥⎥⎦ . (23)

The intraband and interband contributions to the current are
shown in Fig. 5(a), for the Houston spectrum shown in
Fig. 4(a). We find that for the range of intensities where
the three-band Houston model is applicable, the interband
contribution to the plateau in the spectrum is stronger than
the intraband contributions by several orders of magnitude in
the plateau regime. This is in agreement with the prediction
in [18]. In Fig. 5(b), we show the intraband contribution
from the valence and conduction bands separately. This is
done by plotting separately the terms in the sum in Eq. (22).
We note that the intraband contribution from the valence
band would be unphysical for a real insulator in which the
valence band would be filled. In the Bloch state basis, we have
performed calculations in which we used a full valence band
as the initial condition. This suppresses the yield of the few
lowest harmonics but otherwise leads to a harmonic spectrum
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that agrees well with those in Fig. 4(a) until approximately
harmonic 30. We conclude from this that the (overestimated)
contribution from driven Bloch oscillations in the valence band
can be ignored for the range of frequencies we are interested
in.

It is interesting to note that the single conduction band
model used in [10,19] comes naturally from the Houston
model if one starts with the initial population in the conduction
band and eliminates interband transitions. When the interband
transition matrix X vanishes, the total current reduces to
the intraband current expression used in [19], where the
current originates in the electron motion in the conduction
band (see proof in Appendix B). The resulting spectrum is
plotted in Fig. 4 (labeled “conduction only”), normalized to the
response at the fundamental. For the lower intensities, the intra-
conduction-band current spectrum is completely different than
the full (Bloch basis) spectrum and does not exhibit a plateau or
cutoff. This is in agreement with our finding that the harmonic
spectrum is dominated by interband transitions. It also shows
that the clear cutoff that can be seen in the conduction band
spectrum in Fig. 5(b) is in fact due to the time dependence of the
population transfer in and out of the conduction band (through
the time dependence of the transition matrix X), rather than
due to the intraband dynamics itself. At the highest intensity
[Fig. 4(c)], the slope of the intra-conduction-band spectrum
agrees very well with that of the full calculation, but is again
lacking a cutoff energy. In Sec. II, we interpreted the extended
(secondary) plateau in the harmonic spectrum as being due
to transitions involving high-lying bands, when describing the
dynamics in the Bloch state picture. The result in Fig. 4(c)
suggests that an alternative interpretation is that the extended
plateau is due to driven conduction band Bloch oscillations
traversing the entire Brillouin zone, but that in this model
the cutoff energy cannot be captured without considering
interband transitions [18,21].

For the remainder of this section, we return to the lower
intensity case in which we observe a clear distinction between
interband and intraband dynamics. In order to investigate the
electron temporal dynamics using the Houston-basis wave
function, we perform a wavelet transform of the intraband
and interband currents. The wavelet transform is similar to
a windowed Fourier transform and provides time-frequency
information about the two contributions. In the wavelet
transform we use an order 10 Gabor wavelet to achieve a
balanced resolution in both the time and frequency domains.
Figure 6 shows the resulting time-frequency profiles for the
two different contributions, which clearly exhibit two distinct
types of dynamics. We will discuss these separately in the
following.

The time structure of the interband current in Fig. 6(b)
exhibits two emission times that are symmetrically placed
around the peak of the vector potential in each half-cycle.
These two emission time profiles have opposite chirps, and
are merged at the cutoff frequency. In the momentum picture
we described above, these two emission times arise from
the fact that the lattice momentum �k(t), and thereby the
time-dependent band-gap ε(k(t)), traverses all allowed values
twice in a half-cycle. Since the two emission times contribute to
the current with about the same strength, our model suggests
that one or the other must be filtered out to obtain a train

(a) (b)
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0.5
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0.5

0.0

2.5
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FIG. 6. (Color online) Wavelet transforms (linear scale) of the
(a) interband and (b) intraband currents calculated using the Houston
model. The harmonics resulting from interband dynamics are mainly
generated at the peak of the vector potential and have a clear chirp,
whereas harmonics resulting from intraband dynamics are mainly
generated at the peak of the electric field, with no chirp. The yield is
saturated for the lowest frequencies in (b). The time-dependent vector
potential for the laser pulse is plotted above (a) and (b).

of identical attosecond pulses from the plateau. In contrast,
harmonics near the cutoff frequency are generated near the
time when the band gap ε(k(t)) is the largest, corresponding
to the peaks of the vector potential in our case.

The time structure of the intraband current [Fig. 6(c)], on
the other hand, follows simply from the time dependence
of the band structure ε(k(t)), i.e., the curvature of the bands.
The emission times correspond to those times when the
band has the largest curvature (the largest rate of change in
the group velocity), which corresponds to the zeros of the
vector potential, as shown above Figs. 6(a) and 6(b). The
time-frequency features of the intraband current can also be
seen from the cosine expansion of the conduction band in [10]

jintra(t) =
∞∑

s=1

Ds sin [(2s − 1)ωt] , (24)

where Ds is related to the band structure and the strength of the
field. From this expansion, it is clear that all the harmonics are
generated at the same time and there is no chirp in the generated
field. We propose that the differences in the two time-frequency
characteristics could be used as an experimental signature of
the intraband and interband dynamics.

An analogy can be drawn between the Houston picture and a
strongly driven two-level system to help understand the picture
of the interband and intraband dynamics that naturally emerges
from it. In the two-level system, the adiabatic states are the
instantaneous eigenstates of the time-dependent Hamiltonian.
The dynamics of the system can then be separated into an
adiabatic part and a diabatic part using the adiabatic states
as the basis. The adiabatic motion describes the evolution of
the system along the adiabatic states, whereas the diabatic
motion describes the transition between the adiabatic states.
In solids, this same separation is achieved in the Houston
states, which are the instantaneous eigenstates (adiabatic
states) of the system, as shown in Eq. (15). Since the adiabatic
states are time dependent themselves, the adiabatic evolution
generates nontrivial dynamics by itself (the Bloch oscillation,
see Appendix B). Similarly, the interband dynamics can also
be understood as diabatic transitions between adiabatic states,
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the same as in a two-level system. Note that besides these two
descriptions, a third commonly used description for a two-level
system is the Floquet states, which are the true eigenstates of
the laser-dressed system. The counterpart for this description
in a solid is the Floquet-Bloch theory and it has been well
studied in [24,61].

IV. NUMERICAL DIFFICULTY OF THE HOUSTON BASIS

As a matter of practice, numerical models are more
trustworthy if convergence can be achieved with respect to
all of the parameters in the model. In the present case, the
number of bands would seem to be such a parameter, along
with the number of k points and time-step size. In calculations
using the Houston basis, however, we find that the numerical
results converge poorly if we include more than three bands in
our model. In this section, we discuss the numerical difficulty
of including more bands in the Houston basis, which raises
questions about the validity of the Bloch oscillation picture
for higher bands.

As we include more bands in the Houston model, the gap
between neighboring bands becomes very small, and the X

matrix elements in Eq. (20) increase rapidly. In fact, the X

matrix grows approximately exponentially as a function of
the number of bands for our current parameters, as shown in
Fig. 7(a). Since the X matrix is responsible for the interband
transitions, in order to have the TDSE numerically converged,
we must have a time step that is small enough to resolve its
largest matrix element. Apart from resolving the X matrix,
the time step must also be small enough to resolve the largest
gap energy in the band structure. As we increase the number
of bands, the requirement by the X matrix of the time step
becomes the dominant one. For example, to include seven
bands, the X matrix requires a million time steps per laser
cycle, which is much more than that required to resolve the
highest-energy difference in the system.

Another numerical difficulty in the Houston basis is the
near discontinuity in the momentum operator matrix elements
for higher bands. As we go to higher bands, the band structure
will have sharp turning points at the band center and band
edge. These turning points result in an almost discontinuous
behavior of the momentum operator matrix element as shown
in Fig. 7(b). This discontinuous behavior can also be expected
from the relationship between the momentum operator and the
derivative of the band structure [Eq. (B6)].

units of  

FIG. 7. (Color online) The maximum matrix element of the X

matrix increases rapidly as we include more bands. The diagonal part
of the P matrix is approaching discontinuous as the bands get higher.
The parameters used here are the same as in Fig. 2.

These numerical difficulties suggest that separation of the
interband and intraband dynamics may not be an optimal
picture for an electron in the higher bands where Zener
tunneling between the neighboring bands is so large that an
electron never performs solely intraband motion. Instead, it
tunnels through the avoided crossing almost like a free electron
[21]. The artificial separation of a Bloch oscillation motion
from the almost free-electron motion complicates the physical
picture as well as makes the numerical calculation difficult.
This separation is the underlying cause of the problematic
behaviors of the p and X matrices shown in Fig. 7. This is also
a general problem for studying strongly driven systems using
an adiabatic basis. In these systems, the avoided crossings
between the adiabatic states are so small that the transitions
between them blow up. In those conditions, the true eigenstates
of the system (the Floquet states) may be a better basis to
work with, although it is difficult to apply these methods to
broadband driving pulses.

V. SUMMARY

We have studied high-harmonic generation in a model
transparent solid using a 1D single-electron model and found
that this system presents rich nonlinear dynamics. In the
laser-induced current, we see a high-harmonic spectrum with
multiple plateaus. Using the numerically robust Bloch basis,
we have shown that the primary plateau is due to transitions
between the valence band and the lowest conduction band,
whereas the secondary plateau and more generally higher
frequencies in the spectrum are due to contributions from
higher-lying bands. We find that the cutoff of the primary
plateau scales linear with the field strength, in agreement with
current experiment [10], and we predict that this cutoff also
scales linearly with the driving wavelength.

We have also shown that the dynamics of our model system
can be expressed in either the Bloch basis or the Houston
basis, and solutions in these two bases are connected through
a unitary transformation. The Houston basis allows for an
intuitive separation of intraband and interband dynamics, and
we found that for moderate intensities the harmonic radiation
is due primarily to interband dynamics, in agreement with
the prediction in [18]. At higher intensities, though, this
artificial separation becomes more problematic as more bands
are strongly coupled to each other which manifests itself in
the numerical calculation becoming unstable. By limiting
the dynamics in the Houston basis to just the conduction
band, we found that for these high intensities, an alternative
interpretation of the extended spectral range is provided by
driven conduction band Bloch oscillations that traverse the
entire Brillouin zone. Our Houston basis calculations also
suggested that, in general, the cutoff in the harmonic spectrum
is tied to interband dynamics through the time dependence of
the population in the valence and conduction bands.

Finally, we showed that in the regime where the intraband
and interband dynamics can be clearly separated, they have
very different time-frequency signatures, and we proposed
that this could be harnessed to experimentally characterize
the harmonic generation dynamics.
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APPENDIX A: UNITARY TRANSFORMATION OF
SOLUTIONS IN THE BLOCH AND HOUSTON BASES

In this Appendix, we show that the solution of the TDSE in
the Bloch state basis is connected to that in the Houston basis
by a unitary transformation. In the Bloch state approach, we
solve the TDSE in the velocity gauge, and the equation reads
as

i�
∂

∂t

∣∣ψB
k0

(t)
〉 =

[
p2

2m
+ V (x) + eA(t)

m
p

] ∣∣ψB
k0

(t)
〉
, (A1)

where k0 labels the single lattice momentum channel that we
consider since different channels are independent. We then
express the solution in the basis of Bloch states, which are the
eigenstates of the field-free Hamiltonian∣∣ψB

k0
(t)

〉 =
∑

n

cn(t)|φnk0〉, (A2)

where cn’s are the time-dependent energy band amplitudes that
this model solves for.

In the Houston approach, TDSE reads as

i�
∂

∂t

∣∣ψH
k0

(t)
〉 =

{
[p + eA(t)]2

2m
+ V (x)

} ∣∣ψH
k0

(t)
〉
. (A3)

The wave function is expressed in the Houston states

|ψH
k0

(t)〉 =
∑

n

ank0 (t)|φ̃nk0 (t)〉. (A4)

The Houston states are related to the Bloch states by

|φ̃nk0 (t)〉 = e−iex̂A(t)/�|φnk(t)〉. (A5)

We can then match the wave function in these two bases, and
get the unitary transformation matrix between the expansion
coefficients. Since |ψB

k0
〉 and |ψH

k0
〉 satisfy the Schrödinger’s

equations that differ by a time-dependent A2 term, they must
be related by a phase factor∣∣ψB

k0
(t)

〉 = e−ie�/�
∣∣ψH

k0
(t)

〉
, (A6)

where

� = − e

2m

∫ t

0
A2(t ′)dt ′. (A7)

Substituting Eq. (A2) and (A4), we finally come to

ank0 (t) = eie�/�
∑
n′

cn′k0 (t)〈φnk(t)|eiex̂A(t)/�|φn′k0〉, (A8)

which is the unitary transformation we are seeking. Note that
this unitary transformation is very similar to the Kramers-
Henneberger transformation in the atomic case, where a spatial
transformation shifts the system into the accelerated frame,
corresponding to the motion of a charged particle in the
electric field [62]. The Kramers-Henneberger transformation
is a transformation in space, whereas the transformation here
is in momentum space.

APPENDIX B: CONNECTION OF THE SINGLE-BAND
MODEL TO THE INTRABAND MOTION

In this Appendix, we show that if we prevent the interband
dynamics, we essentially come back to the single conduction
band model used in [10,19]. If the interband dynamics is not
allowed, then the interband transition matrix X vanishes in
Eq. (19), and the population on each band stays the same as
the initial condition. The solutions for Eq. (A3) are exactly the
Houston states apart from a phase

ank0 (t) = ank0 (0)e− i
�

∫ t

0 εn(k(t ′))dt ′ , (B1)

∣∣ψH
k0

(t)
〉 = e−ieA(t)x̂/�

∑
n

ank0 (t)|φnk(t)〉. (B2)

Substituting ank0 into Eq. (21) the total current is

jtot = − e

m

∑
n

|ank0 (0)|2〈φnk(t)|p̂|φnk(t)〉. (B3)

If we consider the same situation as in [10,19] where initially
only the lowest conduction band is populated and other bands
are empty, then the total current reduces to

jtot = − e

m
〈φck(t)|p̂|φck(t)〉. (B4)

This then reduces to the single conduction band model used
in [10,19], where the semiclassical current is derived from a
group velocity

jtot = −evg = − e

�

∂εc

∂k

∣∣∣∣
k=k(t)

(B5)

since the diagonal elements of the momentum operator are
related to the band structure by

〈φnk|p̂|φnk〉 = m

�

∂εn

∂k
. (B6)

The proof of the last step can be found in many textbooks. For
example, see Chap. III in [63] or Appendix E in [64].
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(1996).
[55] J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. Lett.

68, 3535 (1992).
[56] F. I. Gauthey, B. M. Garraway, and P. L. Knight, Phys. Rev. A

56, 3093 (1997).
[57] V. Krainov and Z. Mulyukov, Laser Phys. 4, 544 (1994).
[58] H. Park, Z. Wang, H. Xiong, S. B. Schoun, J. Xu, P. Agostini,

and L. F. DiMauro, Phys. Rev. Lett. 113, 263401 (2014).
[59] W. V. Houston, Phys. Rev. 57, 184 (1940).
[60] U. Lindefelt, H.-E. Nilsson, and M. Hjelm, Semicond. Sci.

Technol. 19, 1061 (2004).
[61] H. Hsu and L. E. Reichl, Phys. Rev. B 74, 115406 (2006).

043839-10

http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1126/science.1059413
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1038/nature05648
http://dx.doi.org/10.1038/nature05648
http://dx.doi.org/10.1038/nature05648
http://dx.doi.org/10.1038/nature05648
http://dx.doi.org/10.1103/PhysRevLett.103.123005
http://dx.doi.org/10.1103/PhysRevLett.103.123005
http://dx.doi.org/10.1103/PhysRevLett.103.123005
http://dx.doi.org/10.1103/PhysRevLett.103.123005
http://dx.doi.org/10.1038/nature11567
http://dx.doi.org/10.1038/nature11567
http://dx.doi.org/10.1038/nature11567
http://dx.doi.org/10.1038/nature11567
http://dx.doi.org/10.1038/nphoton.2014.48
http://dx.doi.org/10.1038/nphoton.2014.48
http://dx.doi.org/10.1038/nphoton.2014.48
http://dx.doi.org/10.1038/nphoton.2014.48
http://dx.doi.org/10.1038/nphys1847
http://dx.doi.org/10.1038/nphys1847
http://dx.doi.org/10.1038/nphys1847
http://dx.doi.org/10.1038/nphys1847
http://dx.doi.org/10.1126/science.1088654
http://dx.doi.org/10.1126/science.1088654
http://dx.doi.org/10.1126/science.1088654
http://dx.doi.org/10.1126/science.1088654
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1038/nphys541
http://dx.doi.org/10.1103/PhysRevLett.99.143901
http://dx.doi.org/10.1103/PhysRevLett.99.143901
http://dx.doi.org/10.1103/PhysRevLett.99.143901
http://dx.doi.org/10.1103/PhysRevLett.99.143901
http://dx.doi.org/10.1038/nphys775
http://dx.doi.org/10.1038/nphys775
http://dx.doi.org/10.1038/nphys775
http://dx.doi.org/10.1038/nphys775
http://dx.doi.org/10.1088/1367-2630/10/2/025016
http://dx.doi.org/10.1088/1367-2630/10/2/025016
http://dx.doi.org/10.1088/1367-2630/10/2/025016
http://dx.doi.org/10.1088/1367-2630/10/2/025016
http://dx.doi.org/10.1103/PhysRevB.77.075330
http://dx.doi.org/10.1103/PhysRevB.77.075330
http://dx.doi.org/10.1103/PhysRevB.77.075330
http://dx.doi.org/10.1103/PhysRevB.77.075330
http://dx.doi.org/10.1088/0268-1242/13/2/001
http://dx.doi.org/10.1088/0268-1242/13/2/001
http://dx.doi.org/10.1088/0268-1242/13/2/001
http://dx.doi.org/10.1088/0268-1242/13/2/001
http://dx.doi.org/10.1103/PhysRevLett.113.073901
http://dx.doi.org/10.1103/PhysRevLett.113.073901
http://dx.doi.org/10.1103/PhysRevLett.113.073901
http://dx.doi.org/10.1103/PhysRevLett.113.073901
http://dx.doi.org/10.1103/PhysRevA.85.043836
http://dx.doi.org/10.1103/PhysRevA.85.043836
http://dx.doi.org/10.1103/PhysRevA.85.043836
http://dx.doi.org/10.1103/PhysRevA.85.043836
http://dx.doi.org/10.1038/nphoton.2013.349
http://dx.doi.org/10.1038/nphoton.2013.349
http://dx.doi.org/10.1038/nphoton.2013.349
http://dx.doi.org/10.1038/nphoton.2013.349
http://dx.doi.org/10.1103/PhysRevA.91.013405
http://dx.doi.org/10.1103/PhysRevA.91.013405
http://dx.doi.org/10.1103/PhysRevA.91.013405
http://dx.doi.org/10.1103/PhysRevA.91.013405
http://dx.doi.org/10.1103/PhysRevLett.73.902
http://dx.doi.org/10.1103/PhysRevLett.73.902
http://dx.doi.org/10.1103/PhysRevLett.73.902
http://dx.doi.org/10.1103/PhysRevLett.73.902
http://dx.doi.org/10.1088/1367-2630/15/2/023003
http://dx.doi.org/10.1088/1367-2630/15/2/023003
http://dx.doi.org/10.1088/1367-2630/15/2/023003
http://dx.doi.org/10.1088/1367-2630/15/2/023003
http://dx.doi.org/10.1103/PhysRevA.56.748
http://dx.doi.org/10.1103/PhysRevA.56.748
http://dx.doi.org/10.1103/PhysRevA.56.748
http://dx.doi.org/10.1103/PhysRevA.56.748
http://dx.doi.org/10.1103/PhysRevB.86.165118
http://dx.doi.org/10.1103/PhysRevB.86.165118
http://dx.doi.org/10.1103/PhysRevB.86.165118
http://dx.doi.org/10.1103/PhysRevB.86.165118
http://dx.doi.org/10.1103/PhysRevLett.113.213901
http://dx.doi.org/10.1103/PhysRevLett.113.213901
http://dx.doi.org/10.1103/PhysRevLett.113.213901
http://dx.doi.org/10.1103/PhysRevLett.113.213901
http://dx.doi.org/10.1103/PhysRevB.84.081202
http://dx.doi.org/10.1103/PhysRevB.84.081202
http://dx.doi.org/10.1103/PhysRevB.84.081202
http://dx.doi.org/10.1103/PhysRevB.84.081202
http://dx.doi.org/10.1063/1.881353
http://dx.doi.org/10.1063/1.881353
http://dx.doi.org/10.1063/1.881353
http://dx.doi.org/10.1063/1.881353
http://dx.doi.org/10.1016/S0370-1573(02)00142-4
http://dx.doi.org/10.1016/S0370-1573(02)00142-4
http://dx.doi.org/10.1016/S0370-1573(02)00142-4
http://dx.doi.org/10.1016/S0370-1573(02)00142-4
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1103/PhysRevLett.96.053903
http://dx.doi.org/10.1103/PhysRevLett.96.053903
http://dx.doi.org/10.1103/PhysRevLett.96.053903
http://dx.doi.org/10.1103/PhysRevLett.96.053903
http://dx.doi.org/10.1038/ncomms4843
http://dx.doi.org/10.1038/ncomms4843
http://dx.doi.org/10.1038/ncomms4843
http://dx.doi.org/10.1038/ncomms4843
http://dx.doi.org/10.1209/epl/i2006-10301-8
http://dx.doi.org/10.1209/epl/i2006-10301-8
http://dx.doi.org/10.1209/epl/i2006-10301-8
http://dx.doi.org/10.1209/epl/i2006-10301-8
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1088/0034-4885/67/6/R01
http://dx.doi.org/10.1088/0034-4885/67/6/R01
http://dx.doi.org/10.1088/0034-4885/67/6/R01
http://dx.doi.org/10.1088/0034-4885/67/6/R01
http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1088/0953-4075/43/12/122001
http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/10.1103/PhysRevB.33.5494
http://dx.doi.org/10.1103/PhysRevB.33.5494
http://dx.doi.org/10.1103/PhysRevB.33.5494
http://dx.doi.org/10.1103/PhysRevB.33.5494
http://dx.doi.org/10.1103/PhysRevB.47.6499
http://dx.doi.org/10.1103/PhysRevB.47.6499
http://dx.doi.org/10.1103/PhysRevB.47.6499
http://dx.doi.org/10.1103/PhysRevB.47.6499
http://dx.doi.org/10.1103/PhysRev.87.807
http://dx.doi.org/10.1103/PhysRev.87.807
http://dx.doi.org/10.1103/PhysRev.87.807
http://dx.doi.org/10.1103/PhysRev.87.807
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1088/1367-2630/6/1/002
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1103/PhysRevLett.112.170404
http://dx.doi.org/10.1103/PhysRevLett.112.170404
http://dx.doi.org/10.1103/PhysRevLett.112.170404
http://dx.doi.org/10.1103/PhysRevLett.112.170404
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1103/RevModPhys.34.645
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1103/PhysRevA.54.R1769
http://dx.doi.org/10.1103/PhysRevA.54.R1769
http://dx.doi.org/10.1103/PhysRevA.54.R1769
http://dx.doi.org/10.1103/PhysRevA.54.R1769
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevA.56.3093
http://dx.doi.org/10.1103/PhysRevA.56.3093
http://dx.doi.org/10.1103/PhysRevA.56.3093
http://dx.doi.org/10.1103/PhysRevA.56.3093
http://dx.doi.org/10.1103/PhysRevLett.113.263401
http://dx.doi.org/10.1103/PhysRevLett.113.263401
http://dx.doi.org/10.1103/PhysRevLett.113.263401
http://dx.doi.org/10.1103/PhysRevLett.113.263401
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1103/PhysRev.57.184
http://dx.doi.org/10.1088/0268-1242/19/8/018
http://dx.doi.org/10.1088/0268-1242/19/8/018
http://dx.doi.org/10.1088/0268-1242/19/8/018
http://dx.doi.org/10.1088/0268-1242/19/8/018
http://dx.doi.org/10.1103/PhysRevB.74.115406
http://dx.doi.org/10.1103/PhysRevB.74.115406
http://dx.doi.org/10.1103/PhysRevB.74.115406
http://dx.doi.org/10.1103/PhysRevB.74.115406


HIGH-HARMONIC GENERATION FROM BLOCH . . . PHYSICAL REVIEW A 91, 043839 (2015)

[62] F. Grossmann, Theoretical Femtosecond Physics: Atoms
and Molecules in Strong Laser Fields, Springer Series
on Atomic, Optical, and Plasma Physics (Springer, Berlin,
2008).

[63] N. F. Mott and H. Jones, The Theory of the Properties of Metals
and Alloys (Dover, New York, 1958).

[64] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Cengage
Learning, Boston, 1976).

043839-11




