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Reflective optical limiter based on resonant transmission
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Optical limiters transmit low-level radiation while blocking electromagnetic pulses with excessively high
energy (energy limiters) or with excessively high peak intensity (power limiters). A typical optical limiter absorbs
most of the high-level radiation, which can cause its overheating and destruction. Here we introduce the concept
of a reflective energy limiter which blocks electromagnetic pulses with excessively high total energy by reflecting
them back to space, rather than absorbing them. The idea is to use a defect layer with temperature-dependent loss
tangent embedded in a low-loss photonic structure. The low-energy pulses with central frequency close to that
of the localized defect mode will pass through. But if the cumulative energy carried by the pulse exceeds certain
level, the entire photonic structure becomes highly reflective (not absorptive) within a broad frequency range. The
underlying physical mechanism is based on self-regulated impedance mismatch which increases dramatically
with the cumulative energy carried by the pulse.
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I. INTRODUCTION

The protection of photosensitive optical components from
high incident radiation has applications ranging from mi-
crowave and optical communications to optical sensing [1–3].
As a result, a considerable research effort has focused on
developing protection schemes and materials that provide
control of high-level optical and microwave radiation and
prevent damages of optical sensors (including the human eye)
and microwave antennas [4–9]. Optical limiters constitute an
important class of such protection devices. They are supposed
to transmit low-level radiation, while blocking light pulses
with excessively high level of radiation. A typical passive
optical limiter absorbs most of the high-level radiation, which
can cause its overheating and destruction. The most common
realization of a passive optical limiter is provided by a single
protective layer with complex permittivity ε = ε′ + iε′′, where
the imaginary part ε′′ increases sharply with the radiation
level. For low-level radiation, the absorption is negligible
and the protective layer is transparent. An increase in the
radiation level results in an increase in ε′′, which renders
the protective layer opaque. As a consequence, most of the
high-level radiation will be absorbed by the limiter. If the same
protective layer is incorporated into a certain photonic layered
structure, the entire multilayer can become highly reflective for
high-level radiation, while remaining transmissive at certain
frequencies if the radiation level is low. Such a photonic
reflective limiter can be immune to overheating and destruction
by high-level laser radiation, which is our main objective.

The physical reasons for the sharp increase in ε′′ with
the radiation level can be different. For instance, it can be
photoconductivity, two-photon absorption, heating, or any
combination of the above mechanisms. In our previous
publication [10] we considered the particular case of a strong
nonlinear dependence of ε′′ of the protective layer on light
intensity. This can be attributed, for instance, to a two-photon
absorption. We showed that incorporation of such a nonlinear
layer in a properly designed low-loss layered structure makes

the entire assembly act as a reflective power limiter. In
this paper, we consider a more practical particular case
where the increase in ε′′ is due to heating of the protective
layer. We show that, depending on the pulse duration as
compared to the thermal relaxation time, the properly design
layered structure incorporating such a protective layer can act
as a reflective energy limiter or as a reflective power limiter.
Specifically, for short pulses, such a layered structure acts as
an energy limiter, reflecting light pulses carrying excessively
high energy. By comparison, for sufficiently long pulses, the
same layered structure will act as a power limiter. In either
case, most of the incident radiation will be reflected back to
space, even though a standalone protective layer would act as
an absorptive optical limiter.

The proposed architecture consists of a (protective) defect
layer embedded in a low-loss Bragg grating. In contrast to
the reflective power limiter introduced in Ref. [10], the defect
layer does not have to be nonlinear, but it must display strong
temperature dependence ε′′(T ) of the imaginary part of its
permittivity. If the total energy carried by the pulse is low,
ε′′(T ) remains small enough to support a localized mode and
the resonant transmittance associated with this mode. If, on the
other hand, the energy carried by the pulse exceeds a certain
level, the defect layer becomes lossy enough to suppress the
localized mode, along with the resonant transmittance. The
entire stack turns highly reflective, which is consistent with
our goal. We refer to this limiter as a reflective energy limiter
in order to distinguish it from the nonlinear reflective power
limiter introduced in Ref. [10]. Finally, if the pulse duration
significantly exceeds the thermal relaxation time of the defect
layer, the entire layered structure will again act as a reflective
power limiter with the cutoff light intensity determined by
the thermal relaxation time of the defect layer, not by the
nonlinearity in ε′′, as was the case in Ref. [10].

The organization of the paper is as follows. In Sec. II we
clarify the different mechanisms underlying a reflective energy
limiter (the theme of the present study) and a reflective power
limiter (the theme of Ref. [10]). In Sec. III, a conceptual design
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FIG. 1. (Color online) A schematics of a reflective energy limiter.
Two identical lossless Bragg reflectors are placed on the left and right
of a lossy layer (green [gray]). The value of ε ′′ in the defect layer
is an increasing function of temperature. (a) Field distribution at the
frequency ωr of resonant transmission for an incident pulse with
low energy—the field amplitude at the location of the defect layer is
exponentially higher than that of the incident wave. (b) Transmittance
vs light wavelength for low incident light energy. (c) Field distribution
at the frequency of maximum transmittance for an incident pulse with
high energy—the amplitude of the suppressed localized mode is lower
than that of the incident wave. (d) Transmittance vs wavelength for
an incident pulse with high energy.

for the reflective energy limiter is presented, along with the
mathematical formalism used in our calculations. In Sec. IV,
we analyze the role of thermal conductivity. The latter plays an
important role if the pulse duration is comparable or exceeds
the thermal relaxation time of the defect layer. Our conclusions
are given in Sec. V.

II. BASIC CONCEPTS: REFLECTIVE ENERGY LIMITER
VERSUS REFLECTIVE POWER LIMITER

Before proceeding with our analysis we would like to clarify
the two notions of reflective energy limiter and reflective
power limiter. In both cases, the limiter structure consists of
a defect layer with complex permitivity εd = ε′

d + iε′′
d which

is embedded in a Bragg grating; see Fig. 1. However, as we
will explain, the basic principle behind the limiting action is
completely different for these two type of limiters.

Let us start with the power limiter considered in our
previous publication [10]. In this case, the key assumption
was that, at any moment t , the complex permittivity ε(t)
of the defect layer is a function of the instantaneous value
of the oscillating electric field E(t). It also implies that the
permittivity ε(t) is assumed independent of the field intensity
E(t ′) at t ′ < t . This is a standard assumption in nonlinear
optics, but it fails if heating or some other time-cumulative
effects are significant. Still, the very definition of power
limiter adopted in Ref. [10] is based on this assumption. In
Ref. [10] we have considered, as an example case, that the
main mechanism behind ε′′

d (E) is a two-photon absorption
process i.e., ε′′

d (E) = χ |E|2.
Let us turn from the power limiter to the energy limiter

considered in this paper. The key assumption now is that, at
any moment t , the field intensity E(t) is too small to affect

the instantaneous value ε(t) of the complex permittivity of the
defect layer. In this sense, our system is linear. At the same
time, if the pulse duration is long enough, it can cause heating,
or some other time-cumulative effects resulting in a gradual
change of ε in time. The relative change in permittivity during
the oscillation period should be negligible, which is a very
realistic assumption. This approximation is often referred to
as adiabatic approximation. If all the heat released in the defect
layer stays there, then the system can act as an energy limiter,
because its transmittance is a function of the total energy
carried by the light pulse, rather than just its intensity. Finite
thermal conductivity can affect the result, and we address
this issue too in our analysis below. But in any event, the
transmission characteristic of such a system will depend on
pulse intensity and duration. In this respect, it does not behave
as a simple linear system.

To summarize, in Ref. [10] we assumed a strong instanta-
neous nonlinearity of the defect layer, but no time-cumulative
effects (like heating). This is why the optical limiter in Ref. [10]
is only sensitive to the pulse peak intensity and not to its dura-
tion. In contrast, in this paper we assume a negligible instanta-
neous nonlinearity, while the heating is essential for the perfor-
mance of the limiter. In practice, there might be a combination
of the two mechanisms. The bottom line, though, is that no
matter what causes the rise in ε′′, the layered structure in Fig. 1
will act as a reflective optical limiter. In contrast, a standalone
defect layer would absorb most of the high-level radiation.

We will demonstrate the concept of energy limiter, high-
lighted above, using a simplified model. In our modeling we
will omit any dispersive phenomena of εd originating from
the material considered (temporal dispersion). We did this for
a reason: Indeed, the change in εd due to heating required
for the limiter to perform is usually at least two or three
orders of magnitude, which is much greater compared to the
typical temporal dispersion of optical materials. We will also
assume that the pulse duration is much larger than the carrier
period. This justifies the use of the adiabatic approximation,
which means that the heat release during one carrier period of
oscillation is infinitesimally small. Finally we have assumed a
simplified dependence of ε′′

d from the temperature of the defect
layer. More realistic schemes or dependences will only mask
the demonstration of the concept with unnecessary numerical
complications.

III. PHYSICAL STRUCTURE AND
MATHEMATICAL MODEL

We consider two identical lossless Bragg reflectors con-
sisting of two alternating layers. Each mirror consists of forty
layers which are placed at −L � z � 0 and d � z � L + d.
For the sake of the discussion we assume that the layers consist
of Al2O3 and SiO2 with corresponding permittivities ε1 = 3.08
and ε2 = 2.1. These values are typical for these materials at
wavelengths λ ∼ 1 μm. The width of layers is assumed to
be d1 = 151 nm and d2 ≈ 183 nm respectively. At 0 � z � d

we introduce a defect lossy layer with complex permittivity
εd = ε′

d + iε′′
d . We further assume that the imaginary part of the

permittivity of the defect layer depends on the temperature T ,
i.e., ε′′

d = ε′′
d (T ). For simplicity, we assume linear dependence,

i.e., ε′′
d (T ) = c1 + c2T , where c1,c2 are some characteristic

043838-2



REFLECTIVE OPTICAL LIMITER BASED ON RESONANT . . . PHYSICAL REVIEW A 91, 043838 (2015)

constants of the defect. Below we assume that ε′
d = 12.11

(which is a typical value for, say, GaAs at near infrared),
c1 = 10−5 and c2 = 1 while the width of the defect layer is
taken to be d = 151 nm.

The transport characteristics T ,R,A of our setup and the
field profile at any frequency can be calculated via the transfer
matrix approach. Specifically, a time-harmonic electric field
of frequency ω satisfies the Helmholtz equation:

∂2E(z)

∂z2
+ ω2

c2
ε(z)E(z) = 0. (1)

At each layer inside the grating, Eq. (1) admits the solution
E(j ) = E

(j )
f exp(inj kz) + E

(j )
b exp(−inj kz), where nj = √

εj

is the refraction index of the j th layer and k is the wave vector
k = ω/n0c (c is the speed of light in the vacuum and n0 is
the refractive index of air). Imposing continuity of the field
and its derivative at each layer interface, as well as taking into
consideration the free propagation in each layer, we get the
following iteration relation:(

E
(j )
f

E
(j )
b

)
= M(j )

(
E

(j−1)
f

E
(j−1)
b

)
; M(j ) = P

(j )
R Q(j )K (j )P

(j )
L ,

(2)

where

Q(j ) =
(

eiknj dj 0
0 e−iknj dj

)
,

K (j ) =
( nj +nj−1

2nj

nj −nj−1

2nj

nj −nj−1

2nj

nj +nj−1

2nj

)
,

P
(j )
R =

(
e−iknj z 0

0 eiknj z

)
,

P
(j )
L =

(
eiknj−1(z−dj ) 0

0 e−iknj−1(z−dj )

)
. (3)

At the same time the field outside the layered struc-
tured can be written as E−

0 (z) = E−
f exp(ikz) + E−

b exp(−ikz)
for z < −L and E+

0 (z) = E+
f exp(ikz) + E+

b exp(−ikz) for
z > L + d. The amplitudes of forward- and backward-
propagating waves on the left z < −L and right z > L +
d domains are related via the total transfer matrix M =
P

(2N+2)
R K (2N+2)�jM(j ) (where N is the number of layers

on each grating and n2N+2 = n0):(
E+

f

E+
b

)
=

(M11 M12

M21 M22

) (
E−

f

E−
b

)
. (4)

The transmittance and reflectance and the field profile, say for
a left incident wave, can be obtained by iterating backwards
Eqs. (2) and (4) together with the boundary conditions E+

b = 0
and |E+

f | = 1 (due to the linearity of the equations, one can
always impose a value for the outgoing field and calculate via
a backward iteration of the transfer matrices the corresponding
input field [11]). Specifically we have T ≡ |E+

f /E−
f |2; R ≡

|E−
b /E−

f |2. These can be expressed in terms of the transfer

matrix elements as T = | 1
M22

|2;R = |M21
M22

|2. The absorption
coefficient A can then be evaluated in terms of transmittances
and reflectances as A ≡ 1 − T − R.

IV. THEORETICAL ANALYSIS

In the case that the permittivity of the defect layer is replaced
by εd = ε1, the whole structure is periodic and displays a
typical dispersion relation consisting of transparent frequency
windows (bands) where light is transmitted with near-unity
transmittance alternated with frequency windows (gaps) where
the incident light is experiencing almost complete reflection.

When the defect is included in the middle of the grating, for
zero temperature T = 0 corresponding to permittivity εd ≈ ε′

d,
the layered structure supports a localized resonant defect mode
[see Fig. 1(a)] with a frequency lying in a photonic band
gap of the Bragg grating [see Fig. 1(b)]. For the specific
setup that we consider here, we find that a resonant mode is
located in the middle of the gap at wavelength λr ≈ 1060 nm.
This defect mode is localized in the vicinity of the defect
layer and decays exponentially away from the defect [see
Fig. 1(a)]. In the vicinity of the localized mode frequency
ωr , the entire layered structure displays a strong resonant
transmission due to the excitation of the localized mode [see
Fig. 1(b)]. In other words, the transmittance is T (ωr ) ≡ Tr ≈ 1
while the reflectance and the absorption in the absence of any
losses areR(ωr ) ≡ Rr ≈ 0 andA(ωr ) ≡ Ar ≈ 0 respectively.
This picture is still applicable even in the presence of small
(but nonzero) dissipative permittivity ε′′

d �= 0 [see Figs. 1(a)
and 1(b)].

An alternative expression for the absorption coefficient A
can be given in terms of the permittivity and the field intensity
|E(z)|2 inside the defect layer. The resulting expression is
derived by subtracting the product of Eq. (1) with E∗(z) from
its complex conjugate form and then integrating the outcome
over the interval −L � z � L. We get(

E∗ dE

dz
− E

dE∗

dz

)z=L

z=−L

+ 2ik2
∫ L

−L

ε′′(z)|E(z)|2dz = 0.

(5)

Substituting in Eq. (5) the expressions of the electric field at
z = −L and z = L respectively we get

A ≡ 1 − T − R = k

|E−
f |2

∫ L

−L

dz|E(z)|2ε′′(z). (6)

Furthermore, we assume that ε′′(z) is zero everywhere inside
the layered structure apart from the interval 0 � z � d where
the defect layer is placed. In this interval it takes a uniform
value ε′′(0 � z � d) = ε′′

d (T ). These simplifications allow us
to express the absorption coefficient of Eq. (6) in the form

A(T ) = ρ(T )ωε′′
d (T ), (7)

where ρ(T ) = Id/|E−
f |2 is the ratio of the integral of light

intensity Id = ∫ d

0 dz|E(z)|2 at the lossy layer and the incident
light intensity. It is obvious from Eq. (7) that A(T ) depends
on both the dissipative part of the permittivity and the value of
the electric field inside the defect layer. Although the former
increases monotonically with the temperature T and thus with
the duration time of the incident pulse, this is not true for
ρ(T ). The latter, which is a unique function of the permittivity,
remains approximately constant up to some value of ε′′

d above
which it decreases, leading eventually to a total decrease of the
absorption coefficient together with a simultaneous increase

043838-3



ELEANA MAKRI, TSAMPIKOS KOTTOS, AND ILYA VITEBSKIY PHYSICAL REVIEW A 91, 043838 (2015)

of the reflectivity of the structure. This is related to the fact
that the increase of ε′′

d spoils the resonant localized mode
[see Fig. 1(c)], which is responsible for high transmittance.
Specifically, when the losses due to ε′′

d overrun the losses
due to leakage from the boundaries of the structure, the
resonant mode ceases to exist [see Fig. 1(c)] and the structure
becomes reflective, i.e., R ≈ 1, and T ≈ 0 [see Fig. 1(d)].
As a consequence we have that A = 1 − T − R ≈ 0 and
the system does not absorb the high incident energy of the
incoming light source but rather reflects it back in space.

In fact, the nonmonotonic shape of the envelope of the
scattering field in Fig. 1(c) is a direct consequence of the fact
that the structure becomes reflective R ≈ 1; T ≈ 0. One has
to realize that in the case where both Bragg gratings on the
left and right of the defect layer are finite, the field inside each
half-space is written as a linear combination of two evanescent
contributions with exponentially decreasing and exponentially
increasing amplitudes. Their relative weight is determined by
the boundary conditions E(z = −L) = E−

0 (−L) and E(L) =
E+

0 (L) = E−
f

√
T at the two outer interfaces of the layered

structure. In the case of reflective structures these boundary
conditions lead to the relation E(−L) = E−

f ∼ O(1) and
E(L) ≈ 0. It can be shown rigorously that in this case, the field
on the left half-space of the structure is dominated originally by
the exponentially decaying component while after some turn-
ing point z0 the exponentially increasing component becomes
dominant up to the defect layer. After that the field decays
exponentially as in the resonant case. Similar scattering field
profiles have been found in cases of active (gain) defects [12].

One can use a simple qualitative argument to estimate the
condition under which A(T ) continues to increase. As we
discuss previously, we assume that the electromagnetic energy
losses occur in the lossy defect layer. The dissipated power can
be estimated from Eq. (7) to be Q̇ ∝ A|E−

f |2 = ωε′′
dId. Due to

the energy conservation, the rate of energy dissipation cannot
exceed the energy supply provided by the incident wave. The
latter is Sin ∝ c|E−

f |2. Taking this constraint into account we
get the following upper limit on the field intensity at the defect
layer location:

c

ωε′′(T )d
|E−

f |2 � |Ed|2. (8)

Above we have made the additional approximation that Id ∼
|Ed|2d, where Ed is a typical value of the field inside the defect
layer.

Next we recall that a resonant mode with a frequency
ω inside the bandgap has a Bloch wave number which
is imaginary k = ik′′. The electric field inside the layered
structure can be expressed as a pair of evanescent modes, one
of which is decaying with the distance z and another one which
is growing, i.e., E(z) = Ef exp(−k′′z) + Eb exp(k′′z). To the
left of the defect (−L < z < 0), the electric field is dominated
by the rising evanescent mode E(z) ≈ Eb exp(k′′z) while to
the right of the defect (0 < z < L), the dominant contribution
is provided by the decaying mode E(z) ≈ Ef exp(−k′′z) [13].

The field Ed at the location of the defect layer is provided by
the rising evanescent mode evaluated at z = 0, i.e., Ed ∼ Eb.
Therefore, the value of this evanescent mode at the left stack
boundary at z = −L is

E(−L) ∝ Ed exp(−k′′L). (9)

Comparing Eqs. (8) and (9) we can conclude that if

c

ωε′′(T )d
exp(−2k′′L) 
 1 (10)

then the amplitude of rising evanescent mode E(z = −L) at
the left stack boundary is much less than amplitude of the
incident wave

|E(z = −L)|2 
 |E−
f |2. (11)

The latter condition, Eq. (11), implies that the energy density
inside the left grating is much smaller than the energy density
of the incident wave, and hence only a small portion of
the incident light energy SI ∝ c|E−

f |2 will cross the stack
boundary at z = −L. In other words, the condition Eq. (10)
automatically implies high reflectivity at the stack interface.
The condition Eq. (10) for high stack reflectivity (and hence
low transmittance and absorption) will always be satisfied if
the loss tangent ε′′(T ) of the defect layer is large enough and/or
if the number of layers in the Bragg grating is large enough.

Next, we want to quantify the above arguments. To this
end, we calculate explicitly the transport characteristics of
our grating structure for an incident laser pulse. Although the
analysis can be generalized for any incident pulse shape, in our
numerical simulations below, we have assumed for simplicity
that the incident laser pulse has a train form [14]

WI (t) = 0 for t � 0

= w0 for 0 � t � tf

= 0 for t � 0. (12)

We want to calculate the total energy transmitted, reflected,
and absorbed during the duration of the pulse. These can be
expressed in terms of the time-dependent transmittance T (t),
reflectance R(t), and absorption A(t), which are the main
quantities that we analyze below. All other observables can be
easily deduced from them. For example, the integrated (over
the period of the pulse) absorption Ā can be defined as

Ā =
∫ ∞
−∞ dtA(t)WI (t)∫ ∞

−∞ dtWI (t)
, (13)

while similar expressions can be used for calculating the total
(over the period of the pulse) transmittance T̄ and reflectance
R̄.

Our starting point is the “rate” equation

d

dt
T (t) = 1

C
[A(T )WI (t) + κ(T0 − T )] (14)

that describes the heating rate of the defect layer.
Above, C is the heat capacity, WI (t) ≡ |EI (t)|2 =
| ∫ dωE(ω) exp(iωt)dω|2 is the incident light intensity, and
κ is the thermal conductance of the defect layer. The first term
in Eq. (14) describes the heating process of the lossy layer
while the second one corresponds to heat dissipation from the
defect layer to the mirror (if any) or to the air. To further
simplify our calculations, we assume that the temperature
changes are within a domain where both thermal conductance
and heat capacity are constants and independent of temperature
changes.
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FIG. 2. (Color online) (a) The imaginary part ε ′′
d of permittivity

as a function of pulse duration tf . The solid line corresponds to
the layered structure in Fig. 1, while the dashed line corresponds
to the standalone lossy layer. (b) The absorption coefficient Ar (tf )
(black solid line), reflectance Rr (tf ) (red [light gray] solid lines),
and transmittance Tr (tf ) (blue [dark gray] solid line) of the layered
structure in Fig. 1 vs pulse duration associated with the resonance
frequency mode. For longer pulse duration (and larger cumulative
energy of the pulse), the absorption Ar is suppressed and the setup
becomes highly reflective (Rr ≈ 1). The dashed lines show the
respective values (associated with the resonance frequency mode)
for the standalone lossy layer, in which case the absorption for pulses
with longer duration (and larger cumulative energy) is much higher,
while the reflectivity is much lower than those of the layers structured
in Fig. 1.

Substitution of the absorption coefficient from Eq. (7) into
Eq. (14) leads us to the following equation:

d

dt
T (t) = 1

C
[ωε′′

d (T )ρ(T )WI (t) + κ(T0 − T )], (15)

which expresses the temporal behavior of the temperature T (t)
in terms of the given profile WI (t) of the incident pulse.
Everything else, e.g., ε′′

d (t), A(t), T (t), and R(t), can be
directly and explicitly expressed in terms of T (t).

In case that κ = 0, one can further show that the out-
comes can be written in terms of the total incident energy
Uf = ∫ tf

0 WI (t)dt . Furthermore, using Eq. (15) we get that

Tf = ∫ Uf

0 A(U )dU/C. The associated total absorption is

Ā = (
∫ Uf

0 A(U )dU )/Uf , while similar expressions can be
derived for the other transport characteristics.

In Fig. 2 we report the outcomes of a direct integration of
Eq. (15) for κ = 0. In this case, the incident thermal energy
does not dissipate outside of the defect layer, i.e., the thermal
relaxation time is infinite. Therefore, time-cumulative effects
are important and thus our structure acts as an energy limiter. In
Fig. 2(a) we report the temporal behavior of permittivity ε′′

d as
a function of the pulse duration tf . Notice that for train pulses
the pulse duration tf is directly analogous to the total incident
energy Uf . We will therefore alternate, in our presentation
below, the dependence of ε′′

d , T ,R,A from the pulse duration
with the (more natural parameter for an energy limiter) total
incident energy of the pulse.

Originally ε′′
d is essentially unaffected by the incident en-

ergy and the same is true for the resonance mechanism (via the
defect mode) that is responsible for high transmittance in the

10-4 10-3 10-2 10-1 100 101 102 103

10-5
10-4
10-3
10-2
10-1
100

A BG
R BG
T BG
A single
R single
T single

10-4

100 BG
single

pulse duration tf (a.u.)

εd''(tf)

FIG. 3. (Color online) The same as in Fig. 2 but now in the
presence of thermal exchange between the defect layer and its
surroundings (κ = 0.05). For longer pulse duration, a steady-state
regime is reached, which corresponds to a crossover from energy
limiting regime to a power limiting regime.

absence of losses. In this domain Tr ≈ 1, Rr ≈ 0 while there
is a slow increase of the absorption Ar , as it can be seen from
Fig. 2(b) (solid lines). Once the incident energy (pulse duration
time) exceeds some critical value, there is a rather abrupt
increase in ε′′

d which results in the destruction of the resonance
mode. Subsequently, the incident energy does not resonate into
the structure, leading to a decaying absorption Ar ≈ 0, while
the same is true for the transmittance Tr ≈ 0. At the same time,
there is a noticeable growth of the reflectance, which becomes
approximately equal to unity Rr ≈ 1. For comparison we also
plot at the same figure the results of the standalone layer. We
find that for large incident energies (pulse durations tf ) the
absorption Ar (tf ) is higher by more than two orders of mag-
nitude as compared to the case of the reflective energy limiter.

We have also performed the same analysis for the case
where the thermal conductance κ is different from zero. In
Fig. 3 we report the results of the numerical integration
of Eq. (15) in the presence of thermal conductivity. For
long pulse duration we find a steady-state behavior of the
transport characteristics of the reflective energy limiter. The
physical nature of the steady-state regime is quite obvious. It
corresponds to the situation when the heat released in the defect
layer is completely carried away by thermal conductivity. At
this point, the temperature of the defect layer stabilizes and the
time derivative dT (t)/dt in Eqs. (14) and (15) vanishes. The
latter condition determines the steady-state values of the defect
layer temperature as a function of the incident light amplitude.
In this limiting case our structure acts as a power limiter. For
comparison, the results of the standalone lossy layer are also
reported in this figure. We find that in the steady-state regime
our structure performs superbly, resulting in absorption values
which are more than two orders of magnitude smaller than the
ones achieved by the standalone lossy layer.

V. CONCLUSIONS

At infrared and optical frequencies, the reflectivity of
known uniform materials is well below 90%, especially so
when the incident light intensity is dangerously high. So,
if we want to build a highly reflective optical limiter, we
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have to rely on photonic structures which would support
some kind of low-intensity resonant transmission via slow
or localized modes at photonic bandgap frequencies. If the
incident light intensity increases, the respective localized mode
must disappear, and the entire photonic structure will behave
as a simple Bragg reflector. Here we considered the so-called
dissipative mechanism of the localized mode suppression.
At first glance, it seems counterintuitive, because the high
reflectivity and low absorption are caused by the increase in
the loss tangent of the defect layer in Fig. 1. A qualitative
explanation for such a phenomenon is that the large value of
ε′′ in the defect layer results in decoupling of the left and
the right Bragg reflectors in Fig. 1. Of course, there might
be other ways to suppress resonant transmittance when the
incident light intensity, or the total energy of the pulse, grow
dangerously high. Still, the presented “dissipative” mechanism
seems simple and practical.

A key physical requirement to the constitutive materials
of the reflective photonic limiter is that the dielectric layers
of the Bragg reflectors in Fig. 1 must be lossless and linear.
Indeed, if at high-level radiation the Bragg reflector layers
also become lossy, the optical limiter will still perform, but it
will not be a reflective limiter anymore, because a significant
portion of the high-level radiation will be absorbed by the
grating. Fortunately, at visible and infrared frequencies there
are plenty of available optical materials with negligible losses
and nonlinearities that can be used for the construction of the
Bragg mirrors.
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