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Phase spectroscopy of topological invariants in photonic crystals
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We propose a method of measuring topological invariants of a photonic crystal through phase spectroscopy.
We show how the Chern numbers can be deduced from the winding numbers of the reflection coefficient phase.
An explicit proof of the existence of edge states in a system with a nonzero reflection phase winding number is
given. The method is illustrated for one- and two-dimensional photonic crystals of nontrivial topology.
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I. INTRODUCTION

The presence or absence of topologically protected states at
the edge of a material is determined by the topology of its bulk
Bloch states [1]. This topology can be characterized by integer
invariants, which determine whether the material is topologi-
cally trivial or nontrivial. Thus, the development of methods to
measure the topological invariants is one of the most important
problems in the field. The topological invariants of the electron
gas in an external magnetic field (Chern numbers) are directly
related to the quantized Hall conductivity [2]. Determining
the topological invariants in various recently proposed coun-
terparts of this system [3] is, however, more complicated.
Particularly, the time-of-flight images were demonstrated to
contain information about topological invariants of a cold-
atom system [4–6]. A theoretically predicted possibility to
extract Zak phase, Chern numbers, orZ2 topological invariants
from semiclassical dynamics of a wave packet [7–13] was
recently experimentally realized for cold atoms in one- and
two-dimensional optical lattices [14,15]. Photonic systems are
more preferable for the realization of different measurement
schemes due to easier optical access to microscopic properties
as compared to conventional electronic topological insulators
or cold-atom systems. The methods to measure the topological
numbers by tracing the individual edge states fingerprints
in transmission spectra [16] or by manipulating the single
unit cell and directly measuring the Bloch function [17]
were proposed for a lattice of coupled ring waveguides. The
winding number of the scattering matrix eigenvalues was
shown to determine the number of edge states and topological
invariants [18–22], although no clear way to measure them
has been proposed yet. Recently, the relation between the
surface impedance and Zak phase for a centrosymmetric one-
dimensional photonic crystal was revealed [23]. In this work
we show that the topological indexes of a photonic system can
be measured via the phase of the reflection coefficient, which
is accessible in simplest optical experiments. We consider both
one-dimensional (1D) Aubry-André-Harper (AAH) photonic
crystal [24–27] and two-dimensional (2D) lattice of tunneling-
coupled resonators with synthetic magnetic field [28,29]. The
direct correspondence between (i) the winding numbers of
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the reflection coefficient, (ii) the Chern numbers, and (iii) the
presence of the edge states is proven. This provides the general
recipe to access the edge states and topological indexes from
outside the structure by optical means.

II. TOPOLOGICAL INDEXES IN 1D PHOTONIC CRYSTAL

First, we explain the proposed method for the 1D photonic
crystal inspired by the AAH model [24,27]. We consider the
stack of alternating layers A and B [see Fig. 1(a)], where all
the layers A have the same width dA, while the width of the
layers B is periodically modulated as [24]

dB,n = d̄B[1 + η cos (2πbn + �)]. (1)

Here, d̄B is the width of unmodulated layers, and η, b, and
� are the modulation strength, frequency, and phase; we
focus on the rational frequency case b = P/Q, where P and
Q are the integers with no common factor. The difference
between the dielectric constants of the layers εA and εB leads
to the Bragg reflection of the normally propagating light.
Namely, in the absence of modulation the system forms an
elementary photonic crystal with the period d = dA + d̄B and
the Bragg gaps in the energy spectrum around the integer
multiples of ωB = πc/(

√
εAdA + √

εBd̄B). The modulation
(η �= 0) enlarges the unit cell size and the period from d to
D = Qd, and drastically modifies the spectrum by splitting
each Bragg gap into Q gaps. Importantly, the system exhibits
cyclic evolution when the modulation phase � is continuously
changed by 2π . In the real system, it might be possible to
realize this continuous variation if the modulation is induced
by a running acoustic wave. This cyclic behavior allows one to
map the 1D system to a 2D one, and introduce the topological
indices—Chern numbers [25,26].

The considered 1D photonic system is completely charac-
terized by the dependence of the dielectric function ε�(z) on
the coordinate along the growth axis z, and on the external
parameter �. In the case of normal light incidence the wave
equation at the frequency ω for the electric field component
E(z) perpendicular to the z axis reads

d2

dz2
E(z) + ω2

c2
ε� (z) E(z) = 0. (2)

The properties of the eigenstates of Eq. (2) can be most
conveniently analyzed in the reciprocal space. Performing the
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FIG. 1. (Color online) The color map of the squared amplitude (b) and the phase (c) of the reflection coefficient from the left edge of a
semi-infinite 1D photonic crystal (a) as a function of light frequency ω and the parameter �. Solid curves show the real part of the left-edge
state frequency. The subplots in panel (c) show the cross sections of the phase map at different frequencies. The calculation parameters are
b = 1/3, η = 0.5, nA/nB = 2, and dA/dB = 0.2.

spatial Fourier transform we obtain the system of coupled
equations for the harmonics EK−G with the wave vectors
K − G,

−K2EK + q2
∑
G

εG,�EK−G = 0, (3)

where G = 2πg/D (g = 0, ±1, . . .) is the reciprocal lat-
tice vector, q = ω

√
ε0,�/c, εG,� = (1/D)

∫ D

0 dz ε� (z)e−iGz,
εG,� = εG,�/ε0,� . In the case dA � dB the quantity ε∗

G,�

reduces to the structure factor, ε∗
G,� ∝ ∑

i exp(iGzi), where
zi are the positions of the layers A inside the unit cell.
The light with the wave vector q close to some reciprocal
lattice vector G/2 exhibits Bragg diffraction, leading to the
formation of a stop band at the corresponding frequency.
In the spectral vicinity of this stop band we can use the
two-wave approximation [30] valid in the regime of relatively
weak spatial modulation of the dielectric function ε�(z),
which means either dA � dB,n or |εA − εB| � εA,εB, so that
|εG,� | � 1. We take into account in Eq. (3) only the two
harmonics, E = (EK,EK−G), with the wave vectors K ≈ q

and K − G ≈ −q, coupled by the structure factor component
εG,� , and neglect all other harmonics. This yields the equation

dK,� ·σ E = [q2 − K2 + G(K − G/2)]E, (4)

where

dK,� = [−q2 Re ε∗
G,�, −q2 Im ε∗

G,�,G(K − G/2)], (5)

and σ is the vector of Pauli matrices. Introducing the di-
mensionless energy E = 4q/G − 2 � 1 and the wave vector
p = 4K/G − 2 � 1, Eq. (4) can be simplified to a Dirac-like
form, [

p −εG,�

−ε∗
G,� −p

][
EK

EK−G

]
= E

[
EK

EK−G

]
, (6)

where the structure factor εG,� plays the role of mass. Equation
(6) yields the dispersion relation E2 = p2 + |εG,� |2, describing
the presence of the stop band of the width cG|εG,� |/(2

√
ε0,� )

centered at the frequency cG/(2
√

ε0,� ).

The topological properties of the problem are hidden in
the dependencies on the modulation phase �. Particularly,
when � changes from 0 to 2π , the system characteristics
continuously vary and for � = 2π they are the same as for
� = 0. Hence, the phase � can be treated as a wave vector in an
auxiliary direction. This provides the correspondence between
the 1D problem and the 2D one [25,31], where the Bloch
eigenstates depend on two wave vectors, K and �. Hence, we
introduce the Chern numbers of the allowed bands in a stan-
dard way as

∫ 2π

0 d�
∫ π/D

−π/D
dK (∂KA� − ∂�AK ) /(2πi), where

AK = ∫
dz

√
ε�(z) E∗(K,�)∂K

√
ε�(z)E(K,�), E(K,�) is the

normalized solution of the wave equation (3) with
the wave vector K , and A� is obtained replacing ∂K by ∂� .
Using the Dirac approximation (6), valid in the vicinity of the
stop band, we calculate this stop band contribution to the Chern
number of the above- and the below-lying allowed bands. The
results differ only by sign and are given by the solid angle
swept out by dK,� when K and � are varied divided by 4π

[1]. This angle equals the winding number of ε∗
G,� , i.e., the

divided by 2π phase that ε∗
G,� gains when � is changed from

0 to 2π . Thus, the allowed band is characterized by a Chern
number given by the winding number of the structure factor in
the above-lying stop band minus that in the below-lying stop
band. Conversely, the winding number of the structure factor
is a topological invariant of the stop band. Indeed, this number
cannot be changed without ε∗

G,� turning to zero for some �,
which would mean eliminating the considered stop band.

Now we show that the winding number of the structure
factor ε∗

G,� coincides with that of the reflection coefficient r∞
from the semi-infinite structure for the incident light frequency
lying inside the corresponding stop band. To this end the field
inside the structure is expanded as a sum of Bloch waves and
the field outside (z < 0) as a sum of incoming (∝eiqz) and
reflected (∝e−iqz) waves. We apply the boundary conditions
at the interface z = 0 with the surrounding medium with
the dielectric constant ε0 and at z → ∞. In the two-wave
approximation, Eq. (6), the resulting reflection coefficient is
equal to the ratio of left- and right-going waves in the corre-
sponding eigenstate of Eq. (6), r∞(ω) = EK−G/EK [32,33],
where the wave vector K should correspond to the spatially

043830-2



PHASE SPECTROSCOPY OF TOPOLOGICAL INVARIANTS . . . PHYSICAL REVIEW A 91, 043830 (2015)

decaying eigenstate with p = i
√|εG,� |2 − E2. This relation

directly links the measurable quantity, reflection coefficient, to
the topological properties of the Bloch states in the bulk. Using
the Hamiltonian (6) we can obtain the reflection coefficient

r∞(ω) = − ε∗
G,�

E + i
√|εG,� |2 − E2

. (7)

We see that for the energy E lying inside the stop band we
have full reflection, |r∞| = 1, and the phase of the reflection
coefficient is determined by the phase of structure factor ε∗

G,� .
Thus, the winding number of structure factor is equal to that of
the reflection coefficient, and they both can be used to calculate
the Chern numbers.

III. PHASE SPECTROSCOPY OF TOPOLOGICAL STATES

We have shown that from the phase of the reflection
coefficient one can deduce the winding numbers of stop zones
and, thus, the Chern numbers of allowed bands. Figure 1
illustrates an application of this technique to the semi-infinite
1D photonic crystal illuminated from the left. Panel (b)
presents the absolute value of reflectivity, while panel (c)
shows the phase of the amplitude reflection coefficient r∞(ω).
Following the theory above, we characterize each stop band
by a winding number, i.e., the extra phase divided by 2π

that the reflection coefficient r∞(ω) gains when the parameter
� is varied from 0 to 2π while ω remains inside the stop
band. If we measure the phase in some interval (e.g., from
−π to π , as in Fig. 1) the winding number is equal to the
number of phase cuts that cross the considered band gap,
taking into account their sign. Each cut connects two phase
branching points. These phase branching points are the zeros
of the reflection coefficient and can be located only in the
allowed bands, since in the stop band |r(ω)| = 1. Unless the
gap closes, its winding number is invariant as there exists
no way to eliminate a cut but annihilating the corresponding
branching points, which is impossible while they are separated
by the stop band. Comparing this result with the definition of
the winding numbers through the phase of reflection spectra
we find that the Chern number of a band equals the number
of phase branching points (zeros) of the reflection coefficient
that are located inside this allowed band, taking into account
their sign.

Now we examine the bulk-boundary correspondence, i.e.,
we prove that the stop-band possesses edge states for any �,
provided that the corresponding winding number is nonzero.
To this end, we analyze the analytical behavior of the winding
number

w(ω + iγ ) = 1

2πi

∫ 2π

0

∂ ln[r∞(ω + iγ,�)]

∂�
d� (8)

in the complex plane of frequencies. Here, we have expressed
the winding number via the reflection coefficient from the
semi-infinite structure and introduced the imaginary part of
the complex frequency γ . At the first stage of the proof we
demonstrate that for every ω lying inside the stop band there
exist some γ > 0 and � such that r∞(ω + iγ,�) = 0. Indeed,
at γ = 0, by definition w(ω) �= 0. On the other hand, for γ →
+∞ the phase factors exp[(iω − γ )dA,B

√
εA,B/c], describing

the propagation through the layers, are quenched and only

the infinitely small front part of the structure contributes to the
reflection coefficient. This part is � independent so the winding
number vanishes. Since w(ω) �= 0, limγ→∞ w(ω + iγ ) = 0,
and the winding number is integer, we conclude that there
exists a jump of the winding number at certain γ . Such a
discontinuity can only be caused by the singularity of the
integrand in Eq. (8), which can be either a zero or a pole of the
reflection coefficient r∞(ω + iγ,�). The poles of the reflection
coefficient for γ > 0 are forbidden by the causality principle
so the singularity corresponds to r∞(ω + iγ,�) = 0.

To finalize the proof we use the identity |r∞(ω)|2 = 1
valid for the real values of ω lying inside the stop band.
Being analytically continued onto the entire complex plane
it turns into r∞(ω + iγ )r∗

∞(ω − iγ ) = 1. Hence, the zero of
the reflection coefficient at ω + iγ enforces the pole at ω − iγ .
Such a pole means the presence of the radiative edge state with
the frequency ω and decay rate γ [27].

The real part of the left-edge state frequency is shown in
Fig. 1(c) by solid curves. The points where the left-edge state
appears or disappears as � is varied match the branching points
of the reflection coefficient phase.

All the above conclusions remain valid if we introduce
some coating layers at the border of the photonic crystal with
vacuum. Indeed, since the coating cannot close the stop band,
the corresponding winding number remains unaffected and
can be still used for the calculation of Chern numbers and the
determination of the presence of edge states. This reflects the
topological protection of the considered states.

IV. APPLICATION TO A 2D SYSTEM

Finally, we show how the phase spectroscopy can be used to
measure the topological invariants in 2D systems. As described
above, in the 1D Aubry-André lattice the topological properties
follow from the dependence of the reflection coefficient phase
on the modulation parameter �. Now we demonstrate that in
a 2D system the same topological invariants can be obtained
by measuring the phase of the reflection coefficient from the
edge of the system as a function of the wave vector along the
edge.

We consider a 2D square optical lattice with one site
per unit cell [see Fig. 2(a)]. Its realization using the ring
resonators linked by waveguides was studied theoretically and
experimentally in Refs. [28,29]. The nontrivial topology is
induced by the synthetic magnetic field that stems from the
specially engineered asymmetry of link waveguides that cou-
ple the neighboring sites. The direction of the magnetic field
is opposite for the clockwise and counterclockwise resonator
modes. For adiabatic links these modes are uncoupled, so in
what follows we consider only one of them. The tight-binding
Hamiltonian for the given mode reads

Ĥ = −J
∑
n,m

(â†
n,mân−1,m + â†

n,mân,m−1e
2πibn) + H.c.,

where J is the coupling constant, ân,m and â
†
n,m are the photon

annihilation and creation operators at the site (n,m), and 2πb

is the phase acquired when hopping around the unit cell. We
have chosen the gauge in such a way that for rational b = P/Q

the magnetic unit cell has the shape Q×1.
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FIG. 2. (Color online) Panels (a) and (d) show two proposed schemes of measuring of topological invariants. Panels (b) and (c) show
the calculated color map of the squared amplitude and the phase of the reflection coefficient in the multiport scheme for the rectangular
Nx×Ny = 15×15 lattice, with b = 1/3, κ/J = 1, γ /J = 0.01. Panels (e) and (f) show the squared amplitude and the phase of the reflection
coefficient in the single port scheme for the same parameters except for κ/J = 0.01 and Nx×Ny = 21×21.

Figure 2(a) shows the proposed scheme of measuring the
topological numbers. We couple the probing waveguides to
the sites on the left and right edges of a rectangular sample.
The input waveguides on the left edge are all simultaneously
coherently excited at the frequency ω in such a way that the
phase difference between the adjacent sites is equal to �.
As shown in Fig. 2(a), this can be easily realized by using
the same light source for all input waveguides and gradually
changing the length of the input waveguide from site to site.
Evidently, such an excitation scheme simulates an incident
oblique plane wave with the wave vector � along the structure
edge. The reflection and transmission signals are collected
from the output waveguides at the left and the right edges of
the structure, respectively. The reflected and transmitted waves
are given by the sum of the field over all the output waveguides
at the corresponding edge, with the phases corresponding to
the wave vector � along the edge, which can be again realized
by a proper tuning of the length of output waveguides.

In the linear regime where 〈ân,m〉 = an,m the system is
described by the equation set

−iωan,m = − iHn,m;n′m′an′,m′

− (κn,m + γ )an,m − √
2κn,mEn,m, (9)

where Hn,m;n′,m′ = 〈0|ân,mĤ â
†
n′,m′ |0〉, κn,m = κ(δn,1 + δn,Nx

)
describes the light coupling to the probing waveguides, i.e.,
κn,m = κ if a probing waveguide is connected to the site (n,m)
and κn,m = 0 if not; En,m = δn,1e

i�m is an incident field in
the input waveguides on the left edge of the structure, which

corresponds to the wave vector � along the vertical edge; and γ

takes into account the on-site losses. The reflection coefficient
for the discussed geometry of detection reads

r(�) =
Ny∑

m=1

(1 +
√

2κa1,me−i�m)/Ny. (10)

The reflection coefficient intensity as a function of frequency
and wave vector along the edge � is shown in Fig. 2(b). One
can distinguish two band gaps, where the reflectivity is close to
unity. Figure 2(c) shows the phase of the reflection coefficient.
Clearly, the winding numbers of the band gaps and the Chern
numbers of the allowed bands follow from the phase map in
Fig. 2(c) in exactly the same way as for the 1D system.

Formal correspondence with the 1D Aubry-André case is
attained when the twist boundary conditions are introduced
on the upper and lower edges of the system. Particularly, we
roll the rectangular lattice into a cylinder as shown by the
dashed arrow in Fig. 2(a). The additional links with the twist
phase −�Ny , describing the flux of an effective magnetic field
through the cylinder, are inserted between the corresponding
sites on the upper and lower edges. These twist links are
described by the extra terms

∑Nx

n=1 a
†
n,1an,Ny

e−i�Ny + H.c. in
the Hamiltonian. Then the Fourier transform along the y axis
shows that the only component excited is that with the wave
vector �. This reduces the 2D system to a 1D one, similar to
one described in the first part of the work. Importantly, for
large enough Ny the boundary conditions do not affect the
result of the measurement. Thus we can omit the twist links
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and consider the unrolled rectangle geometry, as was done for
the calculation shown in Figs. 2(b) and 2(c).

The multiport scheme shown in Fig. 2(a) can be transformed
into a scheme with single input and output [see Fig. 2(d)],
which is expected to be easier in realization. The phase �

that corresponds to the wave vector along the edge is now
introduced by tuning the length of the input and output
waveguides between the neighboring lattice sites in such a
way that it corresponds to the phase delay � for the input
waveguide and −� for the output waveguide. The scheme is
still described by Eq. (9), where En,m = δn,1Em + δn,Nx

E′
m

and

Em = Em−1e
i� +

√
2κa1,m (1 � m � Ny), (11)

E′
m−1 = E′

me−i� +
√

2κa1,m−1 (1 � m � Ny), (12)

E0 = 1, E′
M = 0. (13)

The reflection and transmission coefficients are equal to the
fields ENy

and E′
0, respectively. In the linear by κ regime one

can neglect the multiple tunneling of the light between the
input or output waveguide and the lattice. Then the scheme
presented in Fig. 2(d) reduces to that shown in Fig. 2(a).
The squared amplitude and the phase of the reflection
coefficient in the single input (output) configuration are shown

in Figs. 2(e) and 2(f). One can see that the reflection phase in
this configuration is similar to that shown in Fig. 2(c) and can
be also used to determine the topological indexes.

V. SUMMARY

To summarize, we have shown that the Chern number of a
photonic structure can be deduced from the winding number
of the reflection phase. We have demonstrated that the nonzero
winding number in a certain stop band gives rise to the topo-
logical edge states. In the 1D Aubry-André-Harper photonic
crystal the winding number of the reflection coefficient in the
stop band is equal to that of the structure factor characterizing
the strength of the corresponding Bragg diffraction peak.
To determine topological numbers of a 2D system one can
use the reflection phase measured in the single- or multiport
configurations corresponding to oblique excitation.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with E. L.
Ivchenko and S. Ganeshan. This work was supported by the
Russian Foundation for Basic Research Grant No. 15-32-
20866, Russian President Grant No. MK-6029.2014.2 and
the “Dynasty” Foundation. M.H. acknowledges the support
of NSF PFC at the Joint Quantum Institute, MURI-ARO and
AFOSR.

[1] B. A. Bernevig, Topological Insulators and Topological Super-
conductors (Princeton University Press, Princeton, NJ, 2013).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[3] L. Lu, J. D. Joannopoulos, and M. Soljačlć, Nat. Photon. 8, 821
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