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Fourier theory of linear gain media

Hans Olaf Hågenvik, Markus E. Malema, and Johannes Skaar*

Department of Electronics and Telecommunications, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
(Received 1 July 2014; published 15 April 2015)

The analysis of wave propagation in linear, passive media is usually done by considering a single real frequency
(the monochromatic limit) and also often a single plane-wave component (plane-wave limit). For gain media,
we demonstrate that these two limits generally do not commute; for example, one order may lead to a diverging
field, while the other order leads to a finite field. Moreover, the plane-wave limit may be dependent on whether
it is realized with a finite-support excitation or Gaussian excitation, eventually of infinite widths. We consider
wave propagation in gain media by a Fourier-Laplace integral in space and time, and demonstrate how the
correct monochromatic limit or plane-wave limit can be taken, by deforming the integration surface in complex
frequency–complex wave-number space. We also give the most general criterion for absolute instabilities. The
general theory is applied in several cases, and is used to predict media with novel properties. In particular, we
show the existence of isotropic media which in principle exhibit simultaneous refraction, meaning that they
refract positively and negatively at the same time.
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I. INTRODUCTION

Fourier theory makes it possible to consider single fre-
quencies and plane-wave components separately, in describing
electromagnetic wave propagation in linear, passive media.
This leads to huge simplification in analysis and interpretation,
especially for dispersive (and/or spatially dispersive) media.
Nevertheless, we must have in mind that real physics happens
in the time-spatial domain, not in frequency-wave-number
space; the monochromatic and plane-wave limits can never be
realized in practice. The monochromatic limit is approached
by turning on the excitation at some time t = 0 [1], and waiting
a sufficiently long time until the transients have died out. The
plane-wave limit is approached by letting the width of the
excitation be sufficiently large.

For active media (gain media), it is clearly of large interest
to use the same Fourier theory, by decomposing the field
into frequency components and/or plane waves. There are,
however, a number of obstacles. The most obvious one is that
active media are inherently nonlinear due to gain saturation [2].
In practice, this can be dealt with by verifying that the
magnitude of the solution is less than the threshold for gain
saturation. If it is not, then the excitation must be reduced
accordingly, or the solution must be rejected. If there are
divergences associated with the linear solution, the solution
must be rejected in any case.

Another problem is that the Fourier transform does not
necessarily exist. A remedy is to use the Laplace transform,
decomposing the time-domain fields into exponentially in-
creasing functions exp(−iωt) for Im ω > 0 (see Sec. II). Once
the solution has been found, it can often be continuated towards
real frequencies, enabling simpler interpretation (Sec. III). One
may argue that the Fourier transform should be sufficient
for the relevant situations since diverging solutions must
be rejected anyway. However, this strategy is dangerous, as
imposing Fourier transform analysis may give the impression
of false, stable solutions.
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An extensively discussed problem in the context of active
media is the determination of the sign of the longitudinal wave
number kz. This problem is far from trivial, even, e.g., in the
context of total internal reflection from a weakly amplifying
medium [3–6]. More recently, the problem has been discussed
in the context of the wave vector or refractive index of more
advanced active media including active metamaterials [7–10].

We are not going to focus on this problem here, as it
now seems to be agreed that the sign of the longitudinal
wave number must be determined by ensuring it is analytic
in some upper half-plane of complex frequency, and such
that kz → +ω/c for ω → ∞ [8–12]. Here, ω is the (possibly
complex) frequency and c the vacuum light velocity. However,
we will take the analysis one important step further: by
considering a double Fourier-Laplace transform with respect
to space and time. Clearly, for realistic situations, the fields can
neither have infinite durations nor infinite widths. In addition
to turning the field excitations on at t = 0, it turns out to be
crucial to let them have finite widths, to see how the medium
behaves in practice. Indeed, even though a particular medium
does not show absolute instabilities for plane-wave excitations,
it can support absolute instabilities in the presence of other
excitations.

Once the general theory governing causal finite beam
propagation has been discussed, it is of interest to consider
the monochromatic limit and plane-wave limit. A number
of peculiar but interesting results arise. First of all, the
monochromatic and plane-wave limits do not commute in
general. For very common situations with conventional gain
media, one order leads to finite fields, while the other order
leads to infinite fields. Second of all, the plane-wave limit
may depend on the way it is taken, if it is realized using a
finite-support excitation or a Gaussian excitation, eventually
of infinite widths. Our analysis leads to a better understanding
of the nontrivialities associated with earlier, monochromatic,
and plane-wave analyses of active media. It also can be
used to predict new classes of active media, with novel
responses. For example, we predict the presence of isotropic
media which exhibit simultaneous refraction, i.e., both positive
and negative refraction simultaneously. While this is a novel
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and surprising response, it may be argued that the required
gain is unrealistically high, and makes both realization and
time-domain simulations challenging, at least for the specific
media proposed here.

Previously, Kolokolov [4] and Grepstad and Skaar [6] have
treated the problem of Fourier-Laplace transform analysis of
active media. However, Kolokolov only considered the special
case with weak or no dispersion. Dispersion has important
consequences for the theory, as it turns out to fundamentally
change the method of deformation in the complex frequency–
wave-number space. The dispersion, possibly engineered by
metamaterials, may lead to new classes of active media, as
shown by the different possible behaviors in frequency–wave-
number space. Grepstad and Skaar did not perform a complete
analysis since they did not consider the deformation in
frequency–wave-number space, including the monochromatic
limit for finite beams.

The article is structured as follows. In Sec. II, we state
the problem and discuss the assumptions in detail, before
analyzing the fields using the Laplace transform (in time) and
Fourier transform (in space). In Sec. III, we discuss how we
may approach real frequencies for media without absolute
instabilities. This happens at the expense of deforming the
integration path in the complex wave-number (kx) space. In
Sec. IV, we discuss the plane-wave limit, and the interpretation
of divergences and noncommutativity. The theory is applied
to the understanding of existing media and novel media in
Sec. V. In particular, we show the presence of simultaneous
refraction, before concluding in Sec. VI.

II. LAPLACE AND FOURIER TRANSFORM ANALYSIS

We restrict the analysis to linear, time-shift invariant,
isotropic, homogeneous media without spatial dispersion.
Moreover, we assume the following asymptotic behavior for
the product of relative permittivity ε and relative permeability
μ, as ω → ∞ [13]: ε(ω)μ(ω) = 1 + O(ω−2). Finally, we
assume that the medium does not support superexponential
instabilities [14], meaning that any field solution should not
grow faster with time than an exponential.

In the analysis we consider an infinite or semi-infinite
medium. Considering infinite media helps us understand
the electromagnetic response given solely by the medium’s
properties; effects related to interactions with surrounding
media have been ruled out. Of course, there are no infinite gain
media in practice. However, as long as the smallest distance
from an observation point to the boundary of the medium
is larger than ctmax, where tmax is the maximum duration
of the experiment, the size does not matter and we may as
well assume it is infinite. To approach steady state (or the
monochromatic limit) we will later require tmax to be large.
Then, we must have in mind that the dimensions of the gain
medium must be accordingly large.

We will assume that the medium is dark for t � 0. This
assumption needs some clarification. To establish the active
medium, an energy pump must be turned on before t = 0.
When the system does not support instabilities, we can imagine
that the pump was turned on a long time before t = 0, such that
any transients have died out. If there are instabilities, however,
any disturbance will blow up with time. We could assume that

the pump is turned on slowly before t = 0, sufficiently smooth
such that no significant transients are generated as a result of
the pump, but sufficiently fast such that the (small) transients
do not grow too much before t = 0. We do not consider the
existence of such a tradeoff further; we rather demand that
any transients from the pump or from other perturbations or
fluctuations in the system must be included into the analysis.
This is done by including them into the excitation of the
system, to be defined in the following.

It is also in order to comment on the linearity assumptions
in some detail. The amplitude in any practical medium will be
limited by nonlinear effects such as gain saturation. When we
refer to “diverging fields,” or “instabilities,” it strictly means
that the fields grow until they are limited by gain saturation.
Clearly, in such cases the linear analysis is only accurate for
a limited duration. In the absence of instabilities, the analysis
is clearly accurate for all times, provided the excitations are
sufficiently weak.

For simplicity, we limit the discussion to propagation in
two dimensions x and z and transversal electric (TE) fields.
Let E(x,z,t)ŷ be the physical electric field, pointing in the y

direction ŷ. Since the medium is active, the field may diverge
with time t . We have limited our attention to active media
and sources that lead to fields growing at most exponen-
tially. Moreover, we assume that the electric field is square
integrable (finite energy) with respect to x (for the complete
assumptions, see Appendix B). The electric field is Laplace
transformable:

E(x,z,ω) =
∫ ∞

0
E(x,z,t) exp(iωt)dt (1)

for Im ω > γ , where γ is a sufficiently large positive number
characterizing the maximum growth of the field. Furthermore,
E(x,z,ω) is Fourier transformed wrt x, to obtain the plane-
wave spectrum

E(kx,z,ω) =
∫ ∞

−∞
E(x,z,ω) exp(−ikxx)dx. (2)

The inverse transform can be written

(2π )2E(x,z,t)

=
∫ iγ+∞

iγ−∞

∫ ∞

−∞
E(kx,z,ω) exp(ikxx − iωt)dkxdω

=
∫ ∞

−∞

∫ iγ+∞

iγ−∞
E(kx,z,ω) exp(ikxx − iωt)dω dkx, (3)

where, in the last equality, we have interchanged the order of
integration (see Appendix B).

We consider a source in the plane z = 0 (Fig. 1) in-
finitely thin, but possibly of infinite width. In general,
we may have sources everywhere; in that case, we would
have to superpose the fields resulting from the differ-
ent sources. For z �= 0, Maxwell’s equations mean that
(d2/dz2 − k2

x + εμω2/c2)E(kx,z,ω) = 0. Furthermore, the
transversal (x component) of the magnetic field is given
by −iωμμ0H (kx,z,ω) = dE(kx,z,ω)/dz, where μ0 is the
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FIG. 1. An excitation is located at z = 0 in a homogeneous
medium. In the figure, the special case with finite width 2σ is shown.

permeability in vacuum. Hence, we can express

E(kx,z,ω) = A(kx,ω)eikzz + B(kx,ω)e−ikzz, (4a)

H (kx,z,ω) = − kz

ωμμ0
[A(kx,ω)eikzz − B(kx,ω)e−ikzz]

(4b)

for z < 0, and

E(kx,z,ω) = C(kx,ω)eikzz + D(kx,ω)e−ikzz, (5a)

H (kx,z,ω) = − kz

ωμμ0
[C(kx,ω)eikzz − D(kx,ω)e−ikzz]

(5b)

for z > 0. Here,

k2
z = εμ

ω2

c2
− k2

x. (6)

The four functions A(kx,ω), B(kx,ω), C(kx,ω), and D(kx,ω)
are connected by the electromagnetic boundary conditions,
which in turn are dependent on the source. For a current
source, E(kx,z,ω) is continuous across the source plane, while
H (kx,0+,ω) − H (kx,0−,ω) = J (kx,ω), where J (kx,ω) is the
(Fourier-Laplace transformed) surface current source. With
reflection symmetry about the plane z = 0, this means that

A = D, (7a)

B = C, (7b)

2kz

ωμμ0
(A − B) = J (kx,ω). (7c)

Clearly, both unknown functions A and B cannot be found
from (7). Moreover, since the medium potentially is active, we
cannot use principles like requiring the source to do positive
work, or field decay as z → ∞. We must invoke the principle
of causality in its most fundamental form.

First, we note that the sign of kz can be chosen arbitrarily
in (4) and (5); a change of sign means only that the functions
C and D (and A and B) are interchanged. Since ε(ω) and μ(ω)
are analytic for Im ω > γ , and tend to unity as ω → ∞ there,
we choose the sign such that for a fixed kx ,

kz(kx,ω) is analytic for Im ω > γ, and

kz(kx,ω) → +ω/c as ω → ∞ in the region Im ω > γ. (8)

Assuming that the medium and the source are dark for
t < 0, the fields as described by (5) are causal, and we can
use a version of Titchmarsh theorem for diverging functions
(Appendix C) to prove that in (4) and (5), we have

A = D = 0, (9a)

B = C = −μμ0ω

2kz

J (kx,ω). (9b)

Moreover, in Appendix A we prove that the function kz(kx,ω)
is zero free in a region Im ω > γ ; thus, B is analytic there.1

We now consider the usual situation described by the
Fresnel equations, where we have different media on each
side of the plane z = 0, and there is no source at z = 0 but
rather somewhere in the medium on the left-hand side (z < 0).
Clearly, we can use the identical causality argument on the
right-hand side (z > 0) to obtain (8) and D = 0. The elec-
tromagnetic boundary conditions E(kx,0+,ω) = E(kx,0−,ω)
and H (kx,0+,ω) = H (kx,0−,ω) then give the reflection and
transmission coefficients

B

A
= μ2k1z − μ1k2z

μ2k1z + μ1k2z

, (10a)

C

A
= 2μ2k1z

μ2k1z + μ1k2z

, (10b)

where k2
iz = εiμiω

2/c2 − k2
x . Here, subscripts 1 and 2 stand

for the medium to the left and right, respectively. Throughout
this paper, we will for simplicity assume that medium 1 is
vacuum or a passive medium.

We will consider sources in the product form u(x)v(t),
with transform U (kx)V (ω). For the situation with a current
source plane, we set J (kx,ω) = −U (kx)V (ω)/cμ0, and for the
situation with an incident wave, we set A(kx,ω) = U (kx)V (ω).
For later use, we sum up by writing the electric field solutions
for z > 0 for the current source plane and the Fresnel situation,
respectively:

E(kx,z,ω) = μωeikzz

2kzc
U (kx)V (ω), (11a)

E(kx,z,ω) = 2μ2k1ze
ik2zz

μ2k1z + μ1k2z

U (kx)V (ω). (11b)

Here, kz is given by (6) and (8). It is important to note that these
results have been derived for Im ω > γ . In Sec. III, we will
consider the possibility of continuating the solutions towards
real frequencies.

III. TOWARDS REAL FREQUENCIES

To facilitate interpretation and computation, it is useful
to examine if we can move the inverse Laplace transform
contour (Bromwich path) in (3) down to the real ω axis,
such that it describes an inverse Fourier transform. This is

1If we had chosen the opposite sign for kz in (8), we would have
obtained B = C = 0. If we had chosen the sign in another, arbitrary
way, we would have obtained A = D = 0 for some frequencies, and
B = C = 0 else. Such choices are inconvenient (but perfectly valid)
as kz and the four functions A, B, C, and D get nonanalytic.
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desirable, as steady-state harmonic excitations and solutions
are convenient to interpret physically. For the active media
and systems where this is possible, we have only convective
instabilities [15,16]: Then, nondiverging excitations lead to
nondiverging fields for every fixed point (x,z). This means
that any growing wave must be convected away. On the other
hand, if the Bromwich path cannot be moved down to the
real axis due to singularities or cuts, the transform can be
described as an inverse Fourier transform plus integrals around
the nonanalytic points. Since the latter integrals diverge with
time, we have absolute instabilities, meaning that the fields
diverge even at fixed points in space.

For a wide range of active media of interest, it turns out to
be possible to move the Bromwich path in (3) down to the real
axis, at the expense of deforming the integration path in the kx

domain [16]. This is what we will consider in the following.
The clue here is to realize that the integrand is analytic in
both kx and ω, so integration paths can be deformed until they
reach singularities. To this end, we assume that εμ does not
have singularities or zeros for Im ω � 0; situations with zeros
in the upper half-plane will be discussed later. Under these
conditions,

√
εμ is analytic and zero free for Im ω � 0. We

consider the evaluation of the physical field in the spatial and
time domain, according to (3), but along a possibly deformed
surface � in the (kx,ω) domain:

(2π )2E(x,z,t)=
∫

�

E(kx,z,ω) exp(ikxx − iωt)dkxdω. (12)

Here, E(kx,z,ω) is given by (11). Apparently, the integrand is
analytic in both kx and ω, except at the branch cuts arising from
the square root kz = √

εμω2/c2 − k2
x , and also if kz = 0 for

the case (11a), or if μ2k1z + μ1k2z = 0 for the case (11b). The
last possibility will be ignored in the following; we simply
assume that two involved media are chosen such that these
singularities do not disturb the deformation of �. Examples
will be given later. From the theory below it will also become
clear how to generalize to account for such singularities.

Consider Figs. 2(a) and 2(b), showing the original integra-
tion paths in the ω and kx domains. For all ω in the indicated
domain Dω, the branch points of kz, i.e., kx = ±√

εμω/c, are
located in the domain Dkx

. Now, consider the short piece of the
integration path that lies in Dω. For these ω values, the idea is
to deform the corresponding kx integration path, as shown in
Fig. 2(c). This can safely be done since kz(kx,ω) and therefore
E(kx,z,ω) are analytic wrt kx away from the branch cuts.

The next step is to interchange the order of integration.
For each kx in the path in Fig. 3(b), we can deform the
short piece of the ω path, obtaining the path in Fig. 3(a).
Repeating the procedure for two neighboring pieces of the
ω-integration curve, we obtain the situation in Fig. 4, generally
with two different integration curves in the kx domain. In
simple situations such as the one in the figure, we could use
a single, common integration curve in the kx domain for both
pieces in the ω domain. In general, to get rid of the vertical
integration curves between the two domains in Fig. 4(a), we
must require the existence of a common integration curve in
the kx domain detouring the interface between the neighboring
domains [Fig. 4(c)]. If this is always the case, we can continue
the deformation in the ω domain until the integration curve

Dω

(a)

(c)

Im kx

Im kx

Dkx

(b)
Re kx

Re ω

Re kx

Im ω

γ

FIG. 2. The dashed lines correspond to the integration paths
in (3): (a) ω domain; (b) kx domain; and (c) deformed path in the
kx domain for the ω indicated by a circle in (a). The domain Dkx

corresponds to the set of values kx = ±√
εμω/c for ω ∈ Dω. The

open circles in the kx plane correspond to the open circle in the
ω plane. The dotted vertical lines indicate branch cuts for kz(kx,ω)
for the particular ω as indicated by the open circle. We proved in
Appendix A that kz(kx,ω) is analytic wrt kx , for Im ω = γ and real
kx ; thus, the branch cuts must avoid the real kx axis. In the figure, we
take them to be vertical, starting at the circles.

Im ω

(a)
Re ω

Im kx

Re kx

(b)

γ

FIG. 3. Deformation in the ω domain. For each kx in the path in
(b), the integration path in Dω can be deformed (a).
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Im ω

(a)
Re ω

γ

Im kx

Re kx

(c)

Im kx

Re kx

(b)

FIG. 4. (Color online) Deformation of two neighboring pieces of
the ω-integration curve (dashed black and solid blue lines) (a) and the
associated kx-integration curves (b). For ω values along the vertical
integration curves between the neighboring domains in (a), one can
use a common kx-integration curve (c).

coincides with the real axis:

E(x,z,t) = 1

2π

∫ ∞

−∞
E(x,z,ω) exp(−iωt)dω, (13)

where

E(x,z,ω) = 1

2π

∫
κ(ω)

E(kx,z,ω) exp(ikxx)dkx. (14)

Here, κ(ω) is the deformed path in the kx domain, for
each ω. Since Im ω = 0 in (13), the resulting field will not
diverge with time. Thus, in these situations, there are no
absolute instabilities, and (14) can be interpreted as the usual
frequency-domain field for real ω. The possible appearance of
complex kx’s in the integration path κ(ω) means that the field
may grow with x.

We have required the existence of a common kx integration
curve for any two neighboring ω’s. To this end, consider
the trajectories of kz’s branch points, kx = ±√

εμω/c, as
we reduce Im ω from γ to zero. It is necessary that for
two neighboring values of Re ω, these two trajectories will
become arbitrarily close as the two Re ω’s approach each
other. A sufficient condition for this is that

√
εμ is analytic

for Im ω � 0.
We have also required that εμ be zero free for Im ω � 0.

While even order zeros give analytic square root, they induce

another problem: At the zero the two branch points in the kx

domain coincide so the integration curve gets “stuck.”
The frequency-domain field E(x,z,ω) is related to the

physical, time-domain field in the so-called monochromatic
limit. From (13),

E(x,z,t) = 1

2π

∫ ∞

−∞

E(x,z,ω)

V (ω)
V (ω) exp(−iωt)dω, (15)

where E(x,z,ω)/V (ω) is the transfer function from the
excitation V (ω) to the resulting field E(x,z,ω), as given
by (11). Note that V (ω) is a factor in E(x,z,ω), so the transfer
function is independent of V (ω). We can, for example, take a
unit-step modulated complex exponential as the excitation:

v(t) = H (t) exp(−iω1t), H (t) =
{

0, t < 0

1, t > 0
(16)

with Laplace transform

V (ω) = i

ω − ω1
. (17)

The inverse transform (15) can be found with the residue
theorem by closing the contour by a large semicircle in the
lower half-plane:

E(x,z,t) =
[
E(x,z,ω)

V (ω)
exp(−iωt)

]
ω=ω1

+ transients(t). (18)

Here, the term transients(t) is a result of the integration around
all singularities and cuts in the lower half-plane, and will decay
exponentially. For later use, we define the monochromatic limit
limω1 E(x,z,t) as the field when the excitation is given by (16),
and for sufficiently large t such that the transients can be
ignored:

lim
ω1

E(x,z,t) = E(x,z,ω1)

V (ω1)
exp(−iω1t), (19)

valid when εμ is analytic and zero free for Im ω � 0. Even
though the monochromatic limit exists in principle, in some
situations (media with large gain and large x or z) the transients
may be extremely strong, which means it may take a very long
time before they have died out.

We now consider the more complicated situation where εμ

is not analytic or zero free everywhere in the upper half-plane
Im ω > 0. For concreteness, we assume εμ has two simple
zeros but is analytic otherwise. Then,

√
εμ has branch cuts,

which we take to be vertical towards −i∞. Since
√

εμ is
analytic everywhere in the upper half-plane except at the
branch cuts, we can use the procedure above to deform the
integration paths, leading to the ω-integration curve depicted
in Fig. 5(a). It is natural to try to deform also the remaining
detours to reach the real ω axis everywhere. To this end, we
let Im ω be reduced from γ to zero, on the left-hand side
and right-hand side of

√
εμ’s branch cut [Fig. 5(b)]. The

corresponding trajectories of kx = ±√
εμω/c are shown in

Figs. 5(c) and 5(d), respectively. Apparently, the result of
the integration in Fig. 5(c) differs from that of Fig. 5(d),
so the integrations up and down in Fig. 5(a) generally do
not cancel. As a result, the detours cannot be omitted. The
necessary presence of complex frequencies exp(−iωt) with
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Im ω

(a)
Re ω

γ

Im kx

Re kx

Im kx

Re kx

Im ω

Re ω

γ

(c)

(d)

(b)

FIG. 5. Deformed integration paths (dashed line) when
√

εμ has
branch cuts in the upper half-plane. The branch points of

√
εμ are

shown by open circles in (a); the cuts go vertically towards −i∞. As
Im ω is reduced from γ to zero along the left and right arrows in (b),
the corresponding trajectories of kx = ±√

εμω/c are shown by solid
lines in (c) and (d), respectively.

Im ω > 0 means that the field will diverge with time, even
at a fixed point in space. This means that the field cannot be
interpreted at real frequencies as in (18); we have an absolute
instability.

IV. PLANE-WAVE LIMIT

We have seen that when there are no absolute instabilities,
it is possible to move the inverse Laplace transform path
down to the real axis, enabling interpretation of the fields (4)
and (5) for real frequencies. However, considering active
media, this has come at a price: The integration curve in
kx must be deformed to include complex values of kx .
As will be demonstrated shortly, this means that it is not
necessarily possible to approach the plane-wave limit any
longer.

Consider an excitation in the form u(x)v(t), with transform
U (kx)V (ω). The function v(t) could be given by (16), while
u(x) could be, e.g., one of the following alternatives:

u1(x) = beam(x/σ ) exp(iKxx), (20a)

u2(x) = exp(−x2/2σ 2) exp(iKxx). (20b)

Here, beam(x/σ ) stands for a function which vanishes for
|x| > σ , is smooth for |x| < σ , and beam(0) = 1. Both
alternatives represent a beam of thickness ∼σ and a bundle
of kx’s around the central transversal wave number Kx . The
wave-number spectra of the excitations are given by

U1(kx) = σ Beam[σ (kx − Kx)], (21a)

U2(kx) =
√

2πσ exp[−σ 2(kx − Kx)2/2]. (21b)

Here, Beam(kx) is the Fourier transform of beam(x). Both
spectra U1(kx) and U2(kx) are entire functions in kx . For real
kx and Kx both functions can be thought of as 2πδ(kx − Kx) in
the limit σ → ∞. However, the two of them are fundamentally
different in the sense that the first goes slowly to zero compared
to the second. Indeed, if the mth derivative of beam(x) is
nonzero at the endpoints, while the lower-order derivatives
vanish, the asymptotic behavior of U1(kx) for large |kx | is

|U1(kx)| ∼ exp(|Im kx |σ )

|kx |m+1σm
, (22)

as can be proved using integration by parts. A similar result
is valid for smooth functions with support [−σ,σ ] (so-called
bump functions), except that the decay along the real kx axis
is faster than 1/polynomial and slower than an exponential.

We will now consider limσ→∞ limω1 E(x,z,t). This limit
can be realized as follows. We pick an excitation width σ and
perform the experiment, waiting a sufficiently long time such
that the electric field has reached the monochromatic limit.
Next, we pick a larger σ and repeat the experiment, waiting a
sufficiently long time (possibly longer than the first time) until
the field has reached the monochromatic limit. After repeating
the experiment several times, with increasing σ , the field will
tend to limσ→∞ limω1 E(x,z,t).

The monochromatic limit is given by (19), so we need
to consider the limit σ → ∞ in (14), expressed at the real
excitation frequency ω1. To this end, we have assumed that
the monochromatic limit exists (no absolute instabilities), i.e.,
εμ has no poles or zeros in the upper half-plane Im ω � 0.
The integration path κ(ω1) in the kx plane, such as that in
Fig. 3(b), involves complex kx . Surprisingly, now the limit
σ → ∞ does not necessarily exist, as U1(kx) diverges for
complex kx . In fact, this will always be the case in practice
since the excitation necessarily must have finite support to be
realizable.

However, from a theoretical perspective it is quite common
to consider Gaussian beams or excitations, so it is interesting
to consider the possibility U2(kx). Surprisingly, even though
the plane-wave limit σ → ∞ did not exist when using U1(kx),
it may exist when using U2(kx) since the Gaussian tends to
zero provided |Im kx | < |Re kx − Kx |. Thus, when the detours
of the kx-integration curve are not too far away from the real
axis, or too close to the excitation wave number Kx , we can
take the plane-wave limit using a Gaussian excitation, but not
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a finite-support excitation. When the limit exists, we can write

E(x,z,ω1) = Ẽ(Kx,z,ω1)

U (Kx)
exp(iKxx) (23)

for some function Ẽ(Kx,z,ω1), expressing the field with a
single wave number Kx . For most media, the part of the
integration in (14) along the real axis is one way, which means
that Ẽ(Kx,z,ω1) = E(Kx,z,ω1). For certain, very special
media, as we will see in Sec. V E, the integration along part
of the real axis will give rise to one more term in Ẽ(Kx,z,ω1).
Equation (23) means that the physical time-domain field in the
monochromatic limit will tend to

lim
σ→∞ lim

ω1

E(x,z,t) = Ẽ(Kx,z,ω1)

U (Kx)V (ω1)
exp(iKxx − iω1t), (24)

as the width of the Gaussian tends to infinity.
The peculiar divergence discussed above can be interpreted

as follows. For certain frequencies ω and wave numbers ±kx ,
the longitudinal wave number kz becomes zero. These modes
correspond to side waves, which propagate in the ±x direction.
If the medium is gainy, and the excitation extends over all x’s,
the field at an observation point x may diverge since the side
waves propagate an unlimited distance before reaching the
point. For the finite-support excitation u1(x), as σ increases,
side waves will have the chance to propagate a larger distance
before reaching the observation point; thus, we expect an
exponential growth. At the same time, the excitation U1(kx)
at the particular kx associated with the side wave becomes
weaker, but only as ∝σ−m. For the Gaussian excitation u2(x),
an increased σ will again give rise to an exponential growth
as a result of the increased distance; however, the excitation
itself at the particular kx associated with the side wave may be
much weaker due to the factor exp[−σ 2(kx − Kx)2/2].

We now consider limω1 limσ→∞ E(x,z,t). This order of
limits is more difficult to realize that the opposite order, but can
be approached by measuring the time response E(x,z,t) for a
fixed-time interval, repeating the experiment for increasing σ .
After convergence, the time interval is shifted to later times,
and the series of experiments is repeated, etc.

Mathematically, limω1 limσ→∞ E(x,z,t) is found most eas-
ily by taking the limit σ → ∞ in (3). Since only real kx’s are
involved in the integral, the limit σ → ∞ always exists, which
leads to

lim
σ→∞ E(x,z,t)= 1

2π

∫ iγ+∞

iγ−∞

E(Kx,z,ω)

U (Kx)
exp(iKxx−iωt)dω.

(25)

Equation (25) has the disadvantage that it is expressed using
complex frequencies. We would like to be able to set γ = 0
in (25) for interpretation at real frequencies. If the integrand
is analytic for Im ω � 0, we can move the integration path to
the real axis. However, as we will see in the following, this is
not always the case, not even for media with analytic and zero
free εμ for Im ω � 0. Since Kx is fixed, we must require that√

εμω2/c2 − K2
x is analytic in the upper half-plane Im ω � 0

to avoid absolute instabilities. Although this can happen, it
is not very common; for Kx �= 0 it is not even the case for
conventional, weak gain media [6,9]: For such media, there is
a branch point slightly above the real ω axis, corresponding

to a side wave with Kz = 0. For plane-wave excitations, this
side wave propagates an infinite distance along the x axis, thus
picking up an infinite amount of gain.

This type of absolute instability is somewhat artificial since
it is induced by an excitation of infinite width. For the case with
finite σ we have seen that the instability is only convective, as
long as the medium has analytic and zero free εμ for Im ω � 0.
This makes sense intuitively since, for finite σ , the side wave
has only propagated a finite distance from the excitation to a
fixed observation point.

In other words, if εμ is analytic and zero free for Im ω � 0,
but

√
εμω2/c2 − K2

x is not analytic there (which is the case,
e.g., for a weak inverted Lorentzian and Kx �= 0),

lim
ω1

E(x,z,t) = finite (26)

for any finite σ , while

lim
ω1

lim
σ→∞ E(x,z,t) = ∞. (27)

However,

lim
σ→∞ lim

ω1

E(x,z,t), (28)

on the other hand, is dependent on the manner in which the
plane-wave limit is taken. If it is taken using an excitation
U1(kx) of finite support, it is infinite, but if it is taken using a
Gaussian U2(kx), it is finite provided |Im kx | < |Re kx − Kx |
along the integration detour. The Gaussian excitation u2(x)
is somewhat unphysical, as it requires an infinitely wide
source even for finite σ . Even though the Gaussian excitation
is unphysical, the fact that it makes it possible to take the
plane-wave limit is interesting. It tells us that the growing side
waves in a gain medium may be reduced by making the source
sufficiently smooth, and will disappear in the limit of a perfect
Gaussian.

Remarkably, and less intuitively, for certain media with
absolute instabilities for finite σ (meaning that εμ is not
analytic and zero free everywhere in the upper half-plane),
it is possible to eliminate the absolute instabilities by letting
σ → ∞. Indeed, if

√
εμω2/c2 − K2

x is analytic for Im ω > 0
while εμ is not analytic and zero free,

lim
ω1

E(x,z,t) = ∞ (29)

for any σ , while

lim
ω1

lim
σ→∞ E(x,z,t) = finite. (30)

For example, this happens for media for which εμω2/c2 − K2
x

has no zeros in the upper half-plane Im ω > 0, while εμ

has two simple zeros there. Such a medium is suggested
in Ref. [6]. Equations (29) and (30) can be interpreted as
follows. Consider the field E(x,z,t) when σ and t are finite.
As σ is made larger, the unstable mode with kz = 0 is excited
more weakly. Thus, a larger t can be tolerated before E(x,z,t)
gets large. If σ → ∞ first, we can let t be infinite as well,
without getting an infinite field. Thus, the monochromatic limit
exists.

We conclude this section by noting that the monochromatic
and plane-wave limits are far from trivial in gain media.
Although it can be argued that these limits are unphys-
ical, since infinite experiment durations or infinite beam
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thicknesses cannot exist, they provide valuable intuition for
experiments with wide beam excitations or long duration.
Apparently, different results may be obtained dependent
on the wideness of the excitation and the duration of the
experiment.

V. MEDIA

The general method from the previous sections is now
applied to analyze a wide range of media of interest, starting
with simple passive and active media, and ending with novel
classes of active media.

A. Passive media

Passive media are simple to analyze, due to the absence
of instabilities. Fourier analysis is therefore sufficient, and
the Fourier components wrt kx and ω can be interpreted
straightforwardly. Although these facts are well known, it is
useful to demonstrate the formalism before moving on to more
complex cases.

A passive medium has Im ε(ω) > 0, Im μ(ω) > 0, and
Im n(ω) > 0 for ω > 0. Here, n(ω) = √

εμ is the refractive
index, which is analytic in the upper half-plane [17]. Due to odd
symmetry of these functions, Im nω/c � 0 for all real ω. Since
Im nω/c is a harmonic function [18], it takes its minimum on
the real axis; thus, Im nω/c � 0 in the closed upper half-plane.
It follows that kz’s branch points, kx = ±nω/c, do not cross
the real kx axis as we reduce Im ω towards zero. In Fig. 6, we
show two different possibilities; a passive medium which will
turn out to show positive refraction (b), and a passive medium
with negative refraction (c). Clearly, in both cases we can
integrate along the real ω and kx axes, and the monochromatic
and plane-wave limits may be taken, leading to fields with
frequency ω1 and wave number Kx . The resulting Kz shows
the behavior of the wave in the medium.

We can find the sign of Kz by tracing arg kz as
kx decreases from +∞ to Kx . For kx → +∞, kz →
+ikx (see Appendix A). As kx decreases, consider
k2
z = ε(ω1)μ(ω1)ω2

1/c
2 − k2

x , with the two zeros shown by the
solid arrow ends in Figs. 6(b) and 6(c). Now, k2

z picks up phase
from the two zeros, but very little if kx is in the regime far away
from the zeros. Since kz(kx,ω) is continuous in kx away from
the branch cuts, it follows that Kz = kz(Kx,ω1) ≈ iKx in the
regime far to the right of the zeros, corresponding to an evanes-
cent behavior in the total internal reflection regime of large Kx .
So far, we have not invoked the properties of the medium; in
other words, the result is valid for all media and situations
where the monochromatic and plane-wave limits exist.

As Kx becomes smaller, we must consider the two
passive media separately. For the positive refractive medium
[Fig. 6(b)], since the right-hand zero is above the real kx axis, as
we pass it on the way from large kx to small kx , the phase arg k2

z

reduces from π through π/2 towards arg{ε(ω1)μ(ω1)}. Again,
since kz(kx,ω) is continuous in kx away from the branch cuts, it
follows that arg kz(kx,ω1) goes from π/2 through π/4 towards
the small number arg{ε(ω1)μ(ω1)}/2. Thus, as expected, we
obtain a damped, propagating wave with wave vector directed
away from the source.

For the negative refractive medium [Fig. 6(c)], the right-
hand zero is below the real kx axis. Thus, we find that arg k2

z

Im ω

(a)
Re ω

γ

Im kx

Re kx

(c)

Im kx

Re kx

(b)

ω1

FIG. 6. As Im ω is reduced from γ to zero (a), kz’s branch points,
kx = ±√

εμω/c, moves along the trajectories in (b) for a passive,
positive refractive medium, and (c) for a passive, negative refractive
medium.

increases from π to almost 2π , and therefore, arg kz increases
from π/2 to almost π . In other words, Kz will be close
to a negative number (negative refraction) in the regime of
small Kx .

B. Weak gain medium

We now consider a weak gain medium, or conventional
gain medium, with |Im ε| 
 1 and |Im μ| 
 1 for all frequen-
cies, and weak dispersion. For example, we can consider a
nonmagnetic medium with ε(ω) = 1 + χ (ω), where Im χ (ω)
is negative at the observation frequency, and |χ (ω)| 
 1 for
all ω. When we reduce Im ω as in Fig. 7(a), the branch
points kx = ±√

εμω/c move according to Fig. 7(b). Thus,
to be able to express the integral (12) with real frequencies
ω, it is necessary to deform the kx integration with detours.
These detours are result of the fact that the system supports
amplifying side waves with kx = ±√

εμω/c.
Having taken the monochromatic limit, we consider the

possibility of approaching plane waves. According to the
discussion in Sec. IV, the limit σ → ∞ does not exist when
using excitation profiles of finite support; then, the side waves
will diverge. However, for the Gaussian excitation profile
u2(x), and provided |Im √

εμω1/c| < |Re
√

εμω1/c − Kx |,
we can take the plane-wave limit since then the side waves
are very weakly excited. By tracing arg kz as kx is reduced
from ∞ (as in Sec. V A), we still obtain Kz ≈ iKx in
the total internal refraction regime of large Kx . Thus, the
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Im ω

(a)
Re ω

γ

Im kx

Re kx

(b)

ω1

FIG. 7. As Im ω is reduced from γ to zero (a), kz’s branch points
kx = ±√

εμω/c move along the trajectories in (b) for a weak gain
medium. The integration path in the kx domain must detour around
these branch points.

behavior remains approximately evanescent there, in agree-
ment with earlier predictions [4] and finite-difference time-
domain (FDTD) simulations [5]. FDTD simulations solve
Maxwell’s equations directly in the time domain, and thus
provide an independent verification of the theory. For small
Kx , since we have passed the zero from below, we get arg Kz ≈
arg{ε(ω1)μ(ω1)}/2. This represents a weakly amplified wave, a
result that is well documented with numerous experiments and
simulations.

As an alternative, we can take the plane-wave limit while
keeping the Bromwich integration path at Im ω = γ , leading
to a single wave number Kx . Then, we can deform the
Bromwich path towards the real axis; however, there will be
branch points close to ω = Kxc, above the real axis. This
means that the system supports absolute instabilities, and
that the real frequencies are not meaningful in general. The
absolute instabilities are again a result of diverging side waves,
being excited infinitely far away from the observation point.
However, as shown in Ref. [6], as long as the excitation
frequency ω1 is far away from Kxc, we can interpret the
field as “quasimonochromatic” up to a certain time, where
the diverging side waves start to dominate.

C. Nonmagnetic negative index medium

If the permittivity and permeability from the negative index
medium in Sec. V A are denoted εp and μp, we let the
permittivity of an active, nonmagnetic medium be ε = εpμp.
Clearly, the behavior of the branch points and the integration
paths becomes identical to that in Fig. 6(c), and we get a
negative refractive index at the frequency shown in the figure.
This type of media was suggested in Ref. [7] and analyzed
in Ref. [8]. When a plane wave is normally incident from
vacuum, a backward wave is excited in the medium, drawing
energy from the medium and propagating energy towards
the interface [8]. However, note that both the phase velocity

0 0.5 1 1.5 2
−10

0

10

 

 

−0.5 0 0.5
−0.5

0

0.5

Re kx

ω

(a)

(b)

Im kx

(c)
Re kx

Im kx

Ren(ω)

Imn(ω)

FIG. 8. Plot (a) shows n(ω) as given by (31). Plot (b) shows the
trajectories of kz’s branch points, kx = ±n(ω)ω/c, as Im ω is reduced
from γ to zero, and Re ω = ω1. The values for ω = ω1 are shown with
solid arrows. The branch cuts in the kx domain, for ω = ω1, can be
taken along the trajectories (b, solid lines); however, it is convenient
to use analytic continuation to deform them into the solid lines shown
in (c). The integration path in the kx domain (dashed line) must detour
around the branch cuts.

and the Poynting vector point backwards, so the medium
is fundamentally different from left-handed negative index
media.

The fact that this type of media exhibits negative refraction
has also been independently verified through time-domain
simulations, e.g., in Ref. [10].

D. Antievanescent medium

Having analyzed previously known media with the ω- and
kx-integration formalism, we now consider how the formalism
can be used to predict novel classes of media. As we reduce
Im ω from γ to zero, the trajectories of kz’s branch points may
be more complicated than in the previous examples.

Consider a medium with refractive index

n(ω) = 1 − Fω2
0

ω2
0 − ω2 − i�ω

, (31)

and F > 0 [see Fig. 8(a)]. This refractive index can be ob-
tained, e.g., by letting ε(ω) = μ(ω) = n(ω). Such Lorentzian
resonances can be realized in metamaterials; however, there are
challenges associated with high gain (see Sec. V E). The same
refractive index can be obtained by setting ε(ω) = [n(ω)]2 and
μ = 1. In the following, we will for simplicity consider this
nonmagnetic realization.

Provided F < 1, the zeros of ε(ω) are located in the
lower half-plane, so the medium does not support absolute
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instabilities. Hence, we may consider the monochromatic
limit. We take F = 0.5 and � = 0.05ω0, and consider the
observation frequency ω1 = 0.71ω0, for which Re n(ω1) = 0
and Im n(ω1) = −i0.072.

The trajectories of kz’s branch points kx = ±n(ω)ω/c, as
Im ω is reduced from γ to 0 while Re ω = ω1, are shown
in Fig. 8(b). For ω = ω1 we can take the branch cuts along
the solid lines in Fig. 8(c), and the integration path along the
dashed line. We let the two branch cuts approach each other.
Considering an incident wave from vacuum, we find with the
help of (11b) and (14)

2π
E(x,z,ω1)

V (ω1)

=
∫ ∞

−∞
U (kx)

2k1ze
ik2zz

k1z + k2z

eikxxdkx

+
∫ kb

−kb

U (kx)

(
2k1ze

ik2zz

k1z + k2z

− 2k1ze
−ik2zz

k1z − k2z

)
eikxxdkx.

(32)

Here, the integration
∫ kb

−kb
is along a vertical path from the

lower to the upper branch point [indicated with solid arrows
in Fig. 8(c)], immediately to the right of the branch cuts.

To interpret (32), we note that k2
2z = n2(ω1)ω2

1/c
2 − k2

x is
negative for real kx and also along the vertical integration
paths in Fig. 8(c). Since k2z → +ikx for kx → +∞, k2z must
be positive imaginary for real kx away from the branch cuts.
Along the imaginary axis, however, k2z becomes negative
imaginary, due to the presence of the right-hand branch cut. We
choose an excitation U (kx) = U1(kx), with Kx = 0 (normal
incidence). Clearly, the plane-wave limit does not exist, as the
second integral in (32) involves complex kx’s for which U1(kx)
diverges as σ → ∞. For a finite, though large σ , the field is
dominated by the second integral in (32). As a result of the two
terms of the second integral, the field contains a superposition
of modes with both signs of kz: evanescent (Im kz > 0) and
antievanescent (Im kz < 0).

The situation is different if we take the plane-wave limit
before the monochromatic limit. If we still assume Kx = 0,
we have K2z = +n(ω)ω/c. Both limits exist, and we end up
with the monochromatic field amplitude

E(x,z,t) = 2K1z

K1z + K2z

eiKxx+iK2zz−iω1t . (33)

For the medium in this example, n(ω) is negative imaginary
at the observation frequency ω = ω1. Thus, we have an
antievanescent behavior.

In other words, let the beam width σ be fixed and
finite. Then, after sufficiently long time, the field will be a
superposition of evanescent and antievanescent modes. On the
other hand, for σ → ∞, and after a long time the field will be
purely antievanescent.

E. Simultaneous refractive index medium

In the previous example, we observed that the evanescent
and antievanescent modes were excited simultaneously. We
will now demonstrate a remarkable result: that there exist

Im ω

(a)
Reω

γ

Im kx

Re kx

Im kx

Re kx

(b)

(c)

ω1

FIG. 9. As Im ω is reduced from γ to zero (a), kz’s branch
points kx = ±√

εμω/c move along the trajectories (b). By deforming
branch cuts and integration paths, we get situation (c). In (b) the
branch cuts are taken to be along the trajectories, while in (c) they are
deformed into the solid lines.

isotropic media exhibiting positive and negative refraction
simultaneously.

Consider the example in Fig. 9. As ω approaches the real
axis, the branch point in the first quadrant moves via the fourth
to the third quadrant. The integration path therefore becomes
zigzag. We consider an incident wave from a passive medium
(medium 1) to the medium under investigation (medium 2),
and calculate the transmitted field using (11b). Using the
integration path in Fig. 9(c), this leads to

2π
E(x,z,ω1)

V (ω1)

=
(∫ −kb

−∞
+

∫ ∞

kb

)
U (kx)

2μ2k1ze
ik2zz

μ2k1z + μ1k2z

eikxxdkx

+
∫ kb

−kb

U (kx)

(
4μ2k1ze

ik2zz

μ2k1z + μ1k2z

− 2μ2k1ze
−ik2zz

μ2k1z − μ1k2z

)
eikxxdkx

+
∫

vertical detours
U (kx)

2μ2k1ze
ik2zz

μ2k1z + μ1k2z

eikxxdkx. (34)

In (34), kb is the real part of the branch point in the first
quadrant, and the last integral represents all vertical integration
paths in Fig. 9(c), letting the up-and-down paths around a
branch cut be infinitely close to each other. In the third line
of (34), k2z is the value along the upper integration path, above
both branch cuts.
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Considering the observation frequency ω1 (monochromatic
limit), we now take the plane-wave limit σ → ∞. Using the
Gaussian excitation U2(kx), the limit exists provided |Im kx | <

|Re kx − Kx | on the integration path. Assuming −kb < Kx <

kb, we end up with

E(x,z,t) =
(

4μ2K1ze
iK2zz

μ2K1z + μ1K2z

− 2μ2K1ze
−iK2zz

μ2K1z − μ1K2z

)
eiKxx−iω1t .

(35)

With an excitation u1(x) of finite support, the limit would not
exist; however, for bounded x and z we may come as close
as we wish to the field (35) by ensuring that the medium has
branch points sufficiently close to the real kx axis.

On the other hand, by taking the limit σ → ∞ without
taking the monochromatic limit, we get

E(x,z,t) = 1

2π

∫ iγ+∞

iγ−∞
V (ω)

2μ2K1z

μ2K1z + μ1K2z

× exp(iKxx + iK2zz − iωt)dω. (36)

However, moving the integration path down to the real ω axis
requires K2z to be analytic for Im ω � 0. Even for weak gain
media, this will not be the case [6], except for the special case
Kx = 0.

If Kx = 0, and both
√

εμ and the Fresnel transmission
coefficient are analytic for Im ω > 0, the integration path can
in fact be moved down to the real ω axis. In the monochromatic
limit, we then get

E(x,z,t) = 2μ2K1z

μ2K1z + μ1K2z

eiKxx+iK2zz−iω1t , (37)

with K2z = +n(ω1)ω1/c. This differs from (35), and once
again the two orders of the monochromatic and plane-wave
limits yield different results.

In other words, consider the case Kx = 0, for a sufficiently
large, but finite σ . In the monochromatic limit t → ∞, the field
will then be approximately given by (35), i.e., a superposition
of waves with wave number +K2z and −K2z in the z direction.
However, if σ → ∞ first, the monochromatic limit leads to a
plane wave propagating in the z direction, with wave number
+K2z. From this, it is understood that simultaneous refraction
is a two-dimensional effect. In the case of a finite σ there
will always be oblique waves with kx �= 0 excited, no matter
how large σ is. After a sufficiently long time t these oblique
waves will somehow establish waves along the z direction with
both signs for K2z. However, if σ → ∞ is taken first, there
will be no oblique waves excited. The simultaneous refracting
waves can thus not be established. This latter situation is one
dimensional, as the excitation u2(x) is constant for all x, and
Kx = 0.

Trajectories for kz’s branch points, similar to those in
Fig. 9(b), can be achieved using a medium with the same
refractive index (31) as in the previous example, but at a
slightly higher observation frequency ω1 = 0.853ω0. At this
frequency, and for sufficiently small |Kx |, we have |Im kx | <

|Re kx − Kx | on the integration path [Fig. 9(c)]. Then, the
limit σ → ∞ exists, and we end up with the field (35) for the
Fresnel situation, and a similar result for the current source in

the plane z = 0 (then the transmission coefficients 2μ2K1z

μ2K1z±μ1K2z

are replaced by ±μω1/2Kzc).
The time-domain response of a medium with ε(ω) =

μ(ω) = n(ω), where the refractive index n(ω) is given by (31),
was simulated using the FDTD method [19] for Lorentzian
media [20]. In the simulation, the situation with a current
source in z = 0 was implemented. For Kx = 0, ω1 = 0.853ω0,
and a finite, but large σ , the field should describe a partially
standing wave consisting of traveling waves with both signs of
Kz, after sufficiently long time. It turns out, however, that the
time it takes to reach the monochromatic limit is much longer
than what is possible to simulate.

The simulations show that the fields grow rapidly as
they propagate, both in the x and z directions. This rapid
growth is explained as follows. Since the excitation vanishes
for t < 0, it will contain other frequencies than just the
observation frequency. Even though the frequency spectrum
has a large peak at ω1, the frequencies around resonance ω0

will dominate for a very long time, due to extremely high gain
there. Indeed, n(ω0) = 1 − 10i, so at resonance the forward
propagating wave will grow as exp(20πz/λ), where λ is the
vacuum wavelength, as it propagates in the z direction. Also,
the side waves, with kx = ±n(ω0)ω0/c, will grow at this
rate in the ±x direction. Since |Im kx | > |Re kx | these side
waves will be strongly excited. For t → ∞, the excitation
only contains ω1, and the field should eventually describe
simultaneous refraction. However, as can be verified using
frequency-domain simulations, the transients are extremely
strong so it takes a very long time for them to die out.

Due to numerical errors, artificial reflections may happen
during FDTD if the fields become extremely large. If such
artificial reflections occur before the monochromatic limit
is reached, the simulation will never be able to reveal
simultaneous refraction: waves may be reflected back and
forth, being amplified as they propagate, and the solution will
eventually grow with time even at fixed points in space.

Nistad and Skaar showed that negative refraction can occur
at a single observation frequency ω1, with arbitrarily low loss
for all frequencies, if there is a steep drop in Im n(ω) just below
ω1 [14]. It is similarly possible to achieve a negative refractive
index n = √

εμ at arbitrarily low gain through a steep drop
in Im n(ω) just above the observation frequency. For such a
medium, the trajectories of kz’s branch points will in fact be
similar to those in Fig. 9(b) for the frequencies where n(ω) <

0. One such medium, where the maximum gain was reduced
to Im n(ω) = −2, was simulated, but artificial reflections
destroy the validity of the simulation solution before the
transients die out. For FDTD simulations to be able to reveal
simultaneous refraction, media with a significantly lower gain,
while having branch point trajectories as in Fig. 9(b), must be
found.

VI. DISCUSSION AND CONCLUSION

Wave propagation in gain media has been considered
by a Fourier-Laplace integral in space and time. How the
correct monochromatic and plane-wave limits can be taken is
demonstrated by deforming the integration surface in complex
frequency–wave-number space. In some cases, it is possible
to deform the inverse Laplace transform contour down to the
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real ω axis, at the expense of deforming the inverse Fourier
kx-integration path. For active media where this can be done,
the path will contain complex kx , representing amplified waves
as they propagate in the x direction. If such a deformation is not
possible, the inverse Laplace transform will contain complex
frequencies, and the field will therefore grow exponentially
with time, even at a fixed point in space: there is an absolute
instability.

It is shown that the monochromatic and plane-wave limits
generally do not commute; for example, one order may lead
to a diverging field, while the other order leads to a finite
field. The plane-wave limit may be dependent on whether it is
realized by a Gaussian excitation or a finite-support excitation,
eventually of infinite width. This is because amplifying side
waves are less excited by the Gaussian excitation.

The general path deformation theory is applied to analyze
familiar passive and active media, and to predict media
with novel properties. In particular, it is shown that certain
gain media may be simultaneous refracting, i.e., they refract
positively and negatively at the same time. It is argued that
this is a two-dimensional effect, i.e., it will not occur if an
infinitely wide source produces a wave propagating only in
the z direction. The monochromatic plane-wave response of
these media generally depends on which of the limits is taken
first, or the width of the source relative to the duration of the
experiment as both of these parameters tend to infinity.

An example of a simultaneous refracting medium is given.
For a large, but finite width of the source, this medium
is, in principle, simultaneous refracting after a sufficiently
long time, i.e., in the monochromatic limit. In attempt to
visualize the effect, and to independently verify the theory,
time-domain simulations of this medium were performed.
However, the simulations were not able to visualize the
effect, as the monochromatic limit never was reached. The
suggested medium has a very large gain at resonance, so
frequencies of the transients close to resonance will be strongly
amplified as they propagate into the medium. Due to the
occurrence of artificial reflections before these transients
die out, simultaneous refraction is therefore not seen in
the simulations. Similar stability problems are expected for
experimental realizations. It should therefore be investigated
if simultaneous refracting media with significantly less gain
exist.

APPENDIX A: PROPERTIES OF kz(kx,ω)

We here consider the properties of the function kz(kx,ω)
along the real kx axis, and in a region Im ω > γ . The function
is defined by (6) and (8). We prove that kz(kx,ω) is zero free
and analytic in both arguments. Moreover, kz → +ω/c for
ω → ∞ and fixed kx , and kz → +ikx for kx → +∞ and fixed
ω. Initially, we require γ to be large, such that εμ is close to
unity in the region. In Sec. III, we use analytic continuation to
make use of the results in a larger region (i.e., reduce γ ).

First, we consider the zeros of kz(kx,ω), given by kx =
±√

εμω/c (see Fig. 10). None of these is located at real kx

since ω is complex in the region Im ω > γ and εμ is close to
unity there: Consider first a region characterized by a bounded
Re ω. If a zero existed for positive kx , we could just increase
γ (and therefore Im ω) such that

√
εμ gets closer to unity

(a)
Re ω

Re kx

(b)

γ

Im ω

Im kx

FIG. 10. For a fixed ω, with Im ω > γ and Re ω > 0 [indicated
by an open circle in the complex ω plane (a)], the zeros of k2

z =
εμω2/c2 − k2

x are shown in the complex kx plane (b). For large Im ω,
the zeros kx = ±√

εμω/c are located away from the real axis.

and arg ω increases; then the zero would move away from
the real kx axis. Next, consider Re ω → ∞. Since

√
εμ =

1 + O(ω−2), the zeros are located at kx = ±ω/c + O(ω−1).
Thus, kz(kx,ω) has no zeros approaching the real kx axis as
Re ω → ∞.

Second, we argue that kz(kx,ω) is analytic in both argu-
ments. The analyticity in ω has already been established (8),
and the analyticity in kx is immediate from (6) provided there
are no sign changes. Indeed, such sign changes are impossible:
If kz(kx,ω) were discontinuous in kx , we could find a (kx,ω)
and a tiny δ such that kz(kx + δ,ω) ≈ −kz(kx,ω). This leads
to a contradiction since kz(kx,ω) is zero free and continuous
in ω in the region Im ω > γ , and kz(kx + δ,ω) → kz(kx,ω) as
ω → ∞ there.

It is interesting to examine the behavior of kz in the limit of
large kx . The sign of kz for active media in the total internal
reflection regime has been discussed extensively in previous
literature [3,4,6]. For kx = 0, we have kz ≈ ω/c in the region
Im ω > γ . As kx increases along the dashed line in Fig. 10,
the complex argument of k2

z increases according to the zero
configuration in the figure. Since kz is a continuous function
of kx it follows that as kx → +∞, kz → +ikx . This seems to
predict an evanescent behavior in the total internal reflection
regime of large kx ; however, it is important to remember that
we only have considered the complex frequencies with Im ω >

γ . Interpretation at real frequencies is possible under certain
circumstances (Sec. V B) [4,6]; however, for conventional,
weak gain media it turns out to be an instability associated
with amplified side waves.

APPENDIX B: EXISTENCE OF TRANSFORMS AND
INTERCHANGING THE ORDER OF INTEGRATION

Here, we establish the existence of the involved transforms
in solving Maxwell’s equations, and argue that their order
can be interchanged. To establish the existence, we must
make assumptions on the electric and magnetic fields, and
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their derivatives wrt x, z, and t . These assumptions enable
formulating electromagnetics in the (kx,ω) domain by the L2

theory of Fourier transforms, to obtain the solutions (11).
Finally, we verify that the solutions are consistent with the
initial assumptions, making a self-consistent theory.

To limit the amount of writing, we will only consider the
electric field E(x,z,t) here; the other functions can be treated
similarly with some small complications from derivatives. We
will only consider the solution (11a); the other solution (11b)
can be treated similarly. With respect to x the function E(x,z,t)
is assumed to be in the Hilbert space L2 of square integrable
functions. With respect to t , E(x,z,t) exp(−γ t) is assumed to
be in L2, for a sufficiently large, positive γ . Defining

E(x,z,ω) =
∫ ∞

0
E(x,z,t) exp(iωt)dt, (B1a)

E(kx,z,t) =
∫ ∞

−∞
E(x,z,t) exp(−ikxx)dx, (B1b)

we assume that E(x,z,ω) is in L2 wrt x for Im ω = γ , and
E(kx,z,t) exp(−γ t) is in L2 wrt t for real kx . This means
that we can Fourier transform E(x,z,ω) wrt x, or Laplace
transform E(kx,z,t). By solving Maxwell’s equation in the
resulting transform domain (ω,kx) we obtain (11a). Our job
now is to verify all assumptions, after inverse transformation
of (11a).

To this end, we assume that the source u(x)v(t) is
sufficiently smooth such that

U (kx)kp
x ∈ L1 ∩ L2, (B2a)

V (ω)ωp ∈ L1 ∩ L2 (B2b)

for p = 0, 1, and 2. That a function of ω is in L1 ∩ L2, such
as, e.g., V (ω), is to be interpreted as V (ω′ + iγ ) ∈ L1 ∩ L2

viewed as a function of the real variable ω′.
Consider the factor μ exp(ikzz)/kz in (11a). A little thought

shows that this factor is bounded along the integration surface
(−∞,∞) × (iγ − ∞,iγ + ∞) in the (kx,ω) space. Thus,
E(kx,z,ω) ∈ L1 wrt (kx,ω), so with the help of Fubini’s
theorem we can express E(x,z,t) with inverse transforms of
either order (3).

By taking only one of the inverse transforms in (3), we can
write

E(x,z,ω) = 1

2π

∫ ∞

−∞
E(kx,z,ω)eikxxdkx, (B3a)

E(kx,z,t) = 1

2π

∫ iγ+∞

iγ−∞
E(kx,z,ω)e−iωtdω. (B3b)

Clearly, E(kx,z,ω) ∈ L2 both wrt kx and ω, so the functions
E(x,z,ω) and E(kx,z,t) exp(−γ t) are in L2 wrt x and t ,
respectively.

Substituting (11a) into (B3) we obtain

E(x,z,ω) = μV (ω)ω

4πc

∫ ∞

−∞

eikzz

kz

U (kx)eikxxdkx, (B4a)

E(kx,z,t) = U (kx)

4πc

∫ iγ+∞

iγ−∞

μeikzz

kz

V (ω)ωe−iωtdω.

(B4b)

Since the integrals in (B4a) and (B4b) are bounded
wrt ω and kx , respectively, it follows that E(x,z,ω) and
E(kx,z,t) are in L2 wrt ω and kx . After the final inverse
transforms, we therefore obtain a function E(x,z,t) for which
E(x,z,t) exp(−γ t) ∈ L2 wrt t and x.

We have assumed that the excitation u(x)v(t) is sufficiently
smooth, such that U (kx) and V (ω) tend to zero sufficiently
quickly (B2). Considering the source U2(kx), as given by (21),
this is automatically satisfied. For U1(kx), the condition will be
satisfied if u1(x) is three times differentiable at its endpoints,
as evident from (22). For V (ω), as given by (17), the condition
will not be satisfied; however, this can be fixed by slightly
smoothening the onset of v(t) such that it is three times
differentiable. This makes (17) valid for arbitrarily large ω,
before it starts to decay faster. Defining ṽ(t) as the smoothened
excitation, ṽ(t) − v(t) has finite support. Thus, Ṽ (ω) − V (ω)
is an entire function, which means that the smoothening does
not affect the electric field solution in the monochromatic limit.

The reason for doing this analysis in a more rigorous way
than is common in the physics literature is the appearance of
unusual phenomena and the need to go back to first principles
when considering gain media. Nevertheless, this Appendix
shows that the conditions for existence of the transforms are
similar for active and passive media; the only difference is
that the Fourier transform in time (for passive media) must be
replaced with the Laplace transform (for active media).

APPENDIX C: CAUSALITY AND THE TITCHMARSH
THEOREM FOR DIVERGING FUNCTIONS

To prove the causality result (9) from the choice (8),
we employ the Titchmarsh theorem [17,21], formulated for
exponentially diverging functions.

Let f (t) be a causal function

f (t) = 0 for t < 0, (C1)

such that f (t) exp(−γ t) is square integrable for some real γ .
Consider the Laplace transform of f (t):

F (ω) =
∫ ∞

0
f (t) exp(iωt)dt. (C2)

Then,

F (ω) is analytic for Im ω > γ, (C3)

and there is a uniform bound K such that∫ ∞

−∞
|F (ω′ + iγ ′)|2dω′ � K < ∞ for all γ ′ � γ . (C4)

The converse result is also true: Let a function F (ω) be analytic
for Im ω > γ and satisfy (C4) for some K . Then, the inverse
Laplace transform

f (t) = 1

2π

∫ iγ+∞

iγ−∞
F (ω) exp(−iωt)dω (C5)

satisfies (C1) and f (t) exp(−γ t) is square integrable. The
proof is immediate from the Titchmarsh theorem by consid-
ering the function f (t) exp(−γ t) and its Laplace (or Fourier)
transform F (ω′ + iγ ).
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Returning to the electric and magnetic fields for z > 0,
as expressed by (5), we know that the corresponding time-
domain fields are causal (C1). Thus, the fields satisfy (C3)
and (C4). This means that C(kx,ω)eikzz and D(kx,ω)e−ikzz,
separately, satisfy these conditions. From the initial value
theorem and the fact that kzc = ω + O(ω−1), it is intuitively
clear that the factor e−ikzz shifts the beginning of the associated
time-domain response to earlier times by an amount z/c.
Thus, D(kx,ω)e−ikzz can only be compatible with causality
for all z > 0 if D(kx,ω) ≡ 0. A rigorous argument goes as
follows (here, we suppress the kx dependence for clarity):
Since D(ω) exp(−ikzz) is required to satisfy (C4) for all
z, and since kzc = ω + O(ω−1), we have for sufficiently
large γ

∫ ∞

−∞
|D(ω′ + iγ )|2dω′ � 2K(z) exp(−2γ z/c). (C6)

Here, K(z) is independent of γ . If d(t) is the inverse
Laplace transform of D(ω), then d(t) exp(−γ t) is the inverse
Laplace transform of D(ω + iγ ). Thus, from Parseval’s re-
lation,

∫ ∞
0 |d(t)|2 exp(−2γ t)dt = 1

2π

∫ ∞
−∞ |D(ω′ + iγ )|2dω′.

Combination with (C6) yields∫ T

0
|d(t)|2dt � exp(2γ T )

∫ T

0
|d(t)|2 exp(−2γ t)dt

� exp(2γ T )
∫ ∞

0
|d(t)|2 exp(−2γ t)dt

� K(z)

π
exp[−2γ (z/c − T )] (C7)

valid for any z and T , and for sufficiently large γ . Letting
z/c > T , it is apparent that we can make the right-hand side
as small as we wish, by letting γ be sufficiently large. Since
T was arbitrary, d(t) vanishes almost everywhere.
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