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Two-photon absorption and spectroscopy of the lowest two-photon transition in small
donor-acceptor–substituted organic molecules
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We determine the dispersion of the third-order polarizability of small donor-acceptor substituted organic
molecules using wavelength-dependent degenerate four-wave mixing experiments in solutions with varying
concentrations. We find that donor-acceptor–substituted molecules that are characterized by extremely efficient
off-resonant nonlinearities also have a correspondingly high two-photon absorption cross section. The width and
shape of the first two-photon resonance for these noncentrosymmetric molecules follows what is expected from
their longest wavelength absorption peak, and the observed two-photon absorption cross sections are record high
when compared to the available literature data, the size of the molecule, and the fundamental limit for two-photon
absorption to the lowest excited state, which is essentially determined by the number of conjugated electrons and
the excited-state energies. The two-photon absorption of the smallest molecule, which only has 16 electrons in
its conjugated system, is one order of magnitude larger than for the molecule called AF-50, a reference molecule
for two-photon absorption [O.-K. Kim et al., Chem. Mater. 12, 284 (2000)].
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I. INTRODUCTION

The wavelength dependence of the complex third-order
nonlinear optical polarizability (second hyperpolarizability)
of a molecule contains information on the mechanisms of
resonance enhancement of the optical nonlinearity and allows
comparison of the peak two-photon absorption cross sections
to the off-resonant third-order polarizabilities. In this work,
we determine the dispersion of the third-order polarizabilities
in donor-acceptor–substituted small organic molecules that
have shown high off-resonant third-order nonlinearities both
relative to the fundamental limit and relative to their molecular
mass.

Third-order nonlinear optical effects basically mediate the
interaction between four photons, as an example in a process
where three photons interact to generate a fourth one. These
effects are responsible for phenomena such as self-phase
modulation, all-optical switching, or in general four-wave
mixing [1–3]. Organic molecules are attractive as materials for
nonlinear optics because their π -electron conjugation leads to
very large third-order nonlinearities. These large nonlinearities
can be off-resonant and essentially instantaneous compared to
the period of an optical wave, or they can be observed for
photon energies near half the optical excitation energy, when
they deliver large two-photon absorption cross sections.

For a complete characterization of a nonlinear optical
molecule it is important to determine its nonlinear response
in the zero-frequency limit—the off-resonant case when the
energy of the interacting photons is much smaller than the first
optical excitation energy in a molecule—and then to study how
the response changes as the photon energy increases towards
the first optical resonance. The third-order polarizability used
to describe the nonlinear response of a molecule, which is in
general a complex tensor, is real-valued in the zero-frequency
limit and acquires an imaginary part when moving away from
the zero-frequency limit. Thus, a complete spectroscopy of the

nonlinear optical response requires the determination of both
the real and the imaginary part of the third-order polarizability.
For the effects described in this work, the real part describes
self- and cross-phase modulation, while the imaginary part is
related to two-photon absorption.

Full spectroscopy of the complex third-order polarizability
of a molecule is potentially a cumbersome investigation
involving several independent measurements with laser pulses
of many different wavelengths. In this work, we describe a
semiautomatic procedure that allows the efficient determi-
nation of the nonlinear optical spectrum. This procedure is
based on the continuous acquisition of a degenerate four-wave
mixing (DFWM) signal while automatically scanning the
wavelength of a tunable laser. We will show that all the data
necessary to obtain the nonlinear optical spectrum can be
collected in two automated wavelength scans while allowing
the optical energy of the interacting pulses to fluctuate while
tuning their wavelength. The data are then analyzed to obtain
the final spectrum. Such a time-saving automatic procedure is
important in order to allow the rapid characterization of new
compounds.

In the next section we first describe the definitions and
nomenclature we will use throughout this work. This is
followed by a review of the compounds that we will investigate:
three molecules that have previously shown exceptionally high
third-order nonlinear optical properties in the off-resonant
(zero-frequency) limit. Then, in Sec. IV we derive a funda-
mental limit for the lowest energy two-photon absorption cross
section (peak imaginary part of the third-order polarizability)
that will serve as a benchmark to evaluate the efficiency
of each molecule. Next, we devote Secs. V and VI to
the development of the experimental methods: we review
DFWM in the presence of linear and two-photon absorption,
describe the data acquisition system, and discuss the numerical
method used to extract the wavelength dependent real and
imaginary parts of the third-order polarizability from the data
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acquired at different wavelengths and molecular concentra-
tions. Finally, we present and discuss the experimental results
for the dispersion of the complex third-order polarizabilities, in
particular the experimental two-photon cross sections, which
we will compare to the fundamental limit and the size of the
molecules.

II. DEFINITIONS AND CONVENTIONS

The third-order polarization induced in matter by the optical
electric field is written as

P
(3)
i = ε0

3∑
ijkl=1

χ
(3)
ijklEjEkEl, (1)

where ε0 is the electric constant, χ
(3)
ijkl is the third-order

nonlinear optical susceptibility, and the Ei are the components
of the optical electric field vector along the three Cartesian
axes. In this work we use Système International (S.I.) units
throughout and follow the conventions described in Refs. [2]
and [3]. Third-order nonlinear optical effects are described in
bulk materials by a frequency-dependent third-order suscep-
tibility χ

(3)
ijkl(−ω4,−ω3,ω2,ω1) that relates the amplitude of a

third-order nonlinear optical polarization at frequency ω4 and
wave vector k4 to the amplitudes of three interacting optical
electric-field components at frequencies and wave vectors
ωi and ki [1]. Examples of such nonlinear optical effects
include third-harmonic generation, self-action phenomena
like self-focusing and nonlinear absorption (optical limiting),
information transfer from one optical wave to another (all-
optical switching), and four-wave mixing [1–3].

The magnitude of the third-order susceptibility
χ

(3)
ijkl(−ω,−ω,ω,ω) of a material consisting of a number

density N of nonlinear optical molecules is

χ
(3)
ijkl(N ) = f 4Nγijkl, (2)

where f is a local field factor (f = [n2 + 2]/3 in the Lorentz
approximation, with n the refractive index of the material) and
γijkl is the third-order polarizability tensor of a molecule in
the same coordinate system as χ

(3)
ijkl . For randomly oriented

molecules in solution the contribution of the molecular third-
order polarizability to a diagonal element χ

(3)
1111 is given by

the scalar orientational average, γrot, of the corresponding
molecular tensor [4]. The third-order susceptibility of a low-
concentration solution of molecules is then

χ
(3)
1111(C) = χ

(3)
1111(0) + f 4ρNAγrotC/M, (3)

where χ
(3)
1111(0) is the third-order susceptibility of the solvent,

ρ is the mass density of the solvent, NA is Avogadro’s number,
C is the concentration of molecules expressed as the mass of
the solute divided by the mass of the solution, and M is the
molar mass.

The nonlinear absorption of a single optical wave is related
to an intensity-dependent change in absorption constant α that
can be described as

α(I ) = α(0) + βI, (4)

where I is the light intensity and β is the two-photon absorp-
tion coefficient. Using the third-order nonlinear polarization

created through χ
(3)
1111(−ω,−ω,ω,ω) as a source term in the

wave equation for a linearly polarized wave shows that [3]

β = 3ω

2ε0c2n2
Im

[
χ

(3)
1111

] = 3π

ε0cn2λ
Im

[
χ

(3)
1111

]
, (5)

where n is the refractive index of the material in which the wave
propagates and λ is the vacuum wavelength corresponding
to ω. The two-photon coefficient β is related to a molecular
two-photon absorption cross section σ by β = Nσ , where N

is the density of molecules. For randomly oriented molecules
(i.e., in solution) σ must be understood as an orientational
average. It can be expressed in terms of the imaginary part of
γrot by inserting χ

(3)
1111 = Nf 4γrot [from Eq. (2)] into Eq. (5) to

obtain

β = Nσ, (6)

σ = f 4 3ω

2ε0c2n2
Im[γrot], (7)

where σ has units of m4/W, or cm4/GW. One often defines
a two-photon absorption cross section σp = �ωσ which is
given in terms of a photon flux instead of power, and has
units of m4 s per photon, or of GM = 10−50 cm4 s/photon
(GM after Göppert-Meyer [5]). Unfortunately, the molecular
two-photon absorption coefficient defined in this way depends
on the refractive index of a hypothesized material in which the
molecules are embedded. This is one drawback of using the
two-photon absorption cross section σ instead of the imaginary
part of the third-order polarizability, but the prevailing use
of σ in the literature prompts us to use it in this work,
too.

Finally, it is useful to compare the third-order polarizability
of a molecule to both the size of the molecule itself and a
fundamental limit that is essentially determined by the number
of conjugated electrons [6–8]. Such a comparison can be
made for each molecule by deriving its intrinsic third-order
polarizability γI [9] and its specific third-order polarizability
γ̃ [10,11]. γI is defined as the ratio between the experimentally
determined rotational average of the third-order polarizability,
γrot, and a value γK (see Sec. IV) representing the fundamental
limit [9]. The specific third-order polarizability γ̃ is obtained
by dividing the same experimental γrot by the mass of the
molecule [10,11], and it describes the potential of obtaining
large bulk third-order susceptibilities if the molecules can
be combined into a dense supramolecular assembly [11–14].
Similar definitions for assessing two-photon absorption will
be discussed in Sec. IV.

III. MOLECULES

The molecules studied in this work are shown in Fig. 1.
They are all characterized by efficient off-resonant third-order
nonlinearities [10–13,15] that have been shown to be very high
compared to both the off-resonant fundamental limit and the
size of the molecule.

Molecule 1—TDMEE [10]—is the smallest molecule in
the series, with the highest specific and intrinsic third-order
polarizability [10]. Molecule 2—DDMEBT [12,13,16]—is
a variant of molecule 1 that is nonplanar and forms high
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FIG. 1. Chemical structure of the molecules investigated in this work. From left to right, molecules 1 (TDMEE in Ref. [10]), 2 (DDMEBT
in Ref. [12]), and 3 (3c in Ref. [15]).

quality thin films by vapor deposition [12]. Such films have
been successfully used to create ultrahigh speed all-optical
switches on the silicon photonics platform [17,18]. Finally,
molecule 3 [15] is part of a different family. The absorption
spectrum of each of these compounds is shown in Fig. 2.
The double-peaked spectrum of molecule 3 is related to
the fact that, in contrast to molecules 1 and 2, it has two
comparable charge-transfer transitions from either of the two
dimethylamino donor groups to the cyano acceptors [15]. Since
all these molecules are noncentrosymmetric, the first excited
state reached by linear absorption can also be reached by
two-photon absorption and the wavelength of the maximum
two-photon absorption in these molecules is expected to
correspond to twice the peak wavelength λmax for the longest
wavelength linear optical absorption.

The very efficient off-resonant nonlinearities of the com-
pounds in Fig. 1 [10,12,13,15,16], and their demonstrated
significance for applications [12,17–19], motivate a more
complete characterization of the behavior of their nonlinear
response when the optical wavelengths start approaching the
first two-photon absorption resonance.
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FIG. 2. (Color online) Spectrum of the linear molar extinction
coefficient, in units of cm−1 M−1, of molecules 1, 2, and 3. The
excitation energies to the first optically accessible excited state, E10,
are 2.09, 2.36, and 2.04 eV respectively. The estimated energies
representative of the next higher electronic excited state, E20, are
estimated to be 3.60, 4.45, and 3.16 eV.

IV. FUNDAMENTAL LIMIT FOR TWO-PHOTON
ABSORPTION

A fundamental upper limit to the nonlinear optical po-
larizabilities of a molecule has been developed by Kuzyk
[6–8,20,21]. For third-order effects, the off-resonant funda-
mental limit is given by the fourth power of the maximum
dipole transition matrix element divided by the third-power of
the first optical excitation energy E10 [7],

γk = 1

ε0

[
e2

�
2Nπ

2m2E10

]2 1

E3
10

= e4
�

2

ε0m2

N2
π

E5
10

, (8)

where ε0 is the electric constant that is part of the definition of
the polarizability in the S.I. system, the term in square brackets
is the square of the maximum dipole transition matrix element
as determined by sum rules [7], e is the elementary charge,
m is the electron mass, and Nπ is the number of conjugated
electrons in the molecule. Here we extend Kuzyk’s derivation
of a fundamental limit for resonant two-photon absorption [20]
to the case of the molecules and experiments discussed in this
work.

For third-order effects like self-phase modulation or de-
generate four-wave mixing, two-photon absorption is the
first resonant excitation encountered when raising the photon
energy from the zero-frequency limit. For noncentrosymmetric
molecules this is a two-photon transition to the same first
excited state that is seen as a one-photon transition in linear
absorption spectra. The largest term in the sum-over states
expansion for the third-order polarizability that becomes
resonant in this case has the form [22]

γ ∝ μ2
02μ

2
12

(E20 − �ω − i�20)2(E10 − 2�ω − i�10)
, (9)

where μnm = 〈n | p̂ | m〉 is the dipole transition matrix el-
ement between state n and m, Ei0 is the energy difference
between excited state i and the ground state, and �i0 is
the corresponding damping constant, responsible for a finite
linewidth.

We are interested in the fundamental limit for the lowest en-
ergy two-photon absorption in a system where E10 < E20 and
for which a two-photon resonance occurs for a photon energy
of �ω = E10/2 (this excludes the possibility of a concurrent
one-photon resonance). This description is appropriate for the
noncentrosymmetric molecules studied here, but it differs from
that used in Ref. [20]. It follows that we cannot directly use
the results of Ref. [20] for the resonant fundamental limit, but
must instead derive the appropriate expression for the case of
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a two-photon transition that goes from the ground state to the
lowest energy excited state.

Following Kuzyk [20], we start by considering the dif-
ference between resonant and off-resonant values of the
term in Eq. (9). Assuming (E20,E10) � (�20,�10), the ratio
between the imaginary part and the real part of Eq. (9) in the
zero-frequency limit is

Im[γ0]

Re[γ0]
= �10

E10
+ 2

�20

E20
, (10)

and the ratio between the imaginary parts of resonant and
off-resonant third-order polarizabilities is

Im[γ res]

Im[γ0]
=

[
E20

E20 − E10/2

]2[
�10

E10

]−1[
2
�20

E20
+ �10

E10

]−1

.

(11)
Multiplying Eq. (10) with Eq. (11) gives the ratio between
the peak imaginary part at resonance and the off-resonant real
part,

R = Im[γ res]

Re[γ0]
= E10E

2
20

(E20 − E10/2)2 �10
. (12)

It is worth pointing out at this stage that, even though this ratio
applies to the case of a two-photon resonance at �ω = E10/2,
we prefer to not make this substitution in Eq. (12) and all the
other expressions derived below. This avoids giving them the
appearance of frequency-dependent quantities, which they are
not.

Since the ratio (12) is also valid for the case where the third-
order polarizability is at its fundamental limit, one can obtain
a fundamental limit for the peak imaginary part on-resonance
by multiplying R with the fundamental off-resonant limit γK

[see Eq. (8)]. The final result for the fundamental upper limit
to the imaginary part of the third-order polarizability on the
peak of the two-photon resonance (�ω = E10/2) is then

Im
[
γ res

k

] = γkR = γk

E10

�10

[
1 − 1

2

E10

E20

]−2

, (13)

where we have rewritten the ratio R of Eq. (12) to highlight the
fact that E10/�10 < R < 4E10/�10. Thus, the fundamental
limit to the imaginary part of γ on resonance is essentially
given by the off-resonant limit multiplied by the ratio between
the resonance energy and the linewidth (this corresponds to
the value reached when the second excited state is far away
from the first excited state). The limit can then become four
times larger when the excited states have energies close to each
other.

Inserting Eq. (13) for Im[γrot] into Eq. (7) delivers the
fundamental limit σK (or σ

p

K = �ωσK ) to the two-photon
absorption cross section:

σ
p

K = γkf
4 3

2�ε0c2n2

[
E10

2

]2
E10

�10

[
1 − 1

2

E10

E20

]−2

, (14)

where we used �ω = E10/2 on the peak of the two-photon
resonance. Note that in both Eqs. (13) and (14), γK from
Eq. (8) contains a factor 1/E5

10, which, when the first and
second excited states are far away from each other, implies
that σ

p

K is inversely proportional to the square of E10 (while

σK and Im[γ res
K ] are inversely proportional to the third and

fourth powers of E10, respectively).
The result of Eqs. (13) and (14) follows the treatment in

Ref. [20], but we repeat that in the present derivation we
assumed two-photon absorption to the lowest of the two states,
i.e., the case of �ω = E10/2 and E10 < E20, while Ref. [20]
calculated instead the fundamental limit for a two-photon
transition to the upper state. The absence of the possibility of
a double resonance in our result is a reflection of the condition
that E20 > E10, which keeps the denominator in Eqs. (13)
and (14) positive and far from zero. Instead, the equivalent
expression in Ref. [20] has a pole for E20 = 2E10 [20].

V. DEGENERATE FOUR-WAVE MIXING

In this section we review the dependence of the DFWM
signal on the third-order susceptibility under conditions where
either linear absorption or two-photon absorption start to
affect the results. This is important when using DFWM
for spectroscopy, which requires us to properly assess the
effects of linear and nonlinear absorption when the wavelength
approaches a two-photon resonance or the onset of linear
absorption.

The complex amplitude P (3)(ω,k) of the nonlinear optical
polarization responsible for the DFWM signal is

P
(3)
i (ω,k4) = 3

2
ε0

∑
j,k,l

χ
(3)
ijklEj (k1)Ek(k2)El(k3)∗, (15)

where the Ej (kn) are the amplitudes of the three interacting
fields (the “pump” waves) with different wave vectors, the
superscript asterisk denotes complex conjugation, ε0 is the
electric constant, and we define the time-dependent fields
Ej (r,t) as the real part of Ej (kn) exp(ikn · r − iωt). The wave
vector of the third-order polarization is k4 = k1 + k2 − k3.

In the following we calculate the DFWM signal strength
when the three pump waves suffer from either linear or non-
linear absorption, leading to a dependence of their amplitude
from the propagation distance inside the sample.

We first consider the case of linear absorption, for which
the amplitudes of the pump waves have a spatial dependence
given by Ej (kn,z) = E0

j (kn) exp(−αz/2), where α is the
linear absorption constant. In a DFWM experiment where
the three interacting beams enter the sample from the same
side with a small angle between each other, the z depen-
dence of the induced third-order polarization is P (3)(z) =
P (3)(0) exp(−3αz/2). Inserting this polarization as a source
term into the wave equation, and using the slowly varying
amplitude approximation to eliminate second-order space
derivatives, results in

2ik4
∂

∂z
E4(z) − k2

4E4(z) + ω2n2

c2
E4(z) + ik4αE4(z)

= −ω2

c2

3

2
χ (3)E1E2E

∗
3e−3αz/2, (16)

where E4 is the amplitude of the radiated signal wave. For a
phase-matched four-wave mixing configuration with the wave
vector of the radiated wave equal to the wave vector of the
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third-order polarization, this equation simplifies to

∂

∂z
E4(z) = i

k4

2n2
4

3

2
χ (3)E1E2E

∗
3e−3αz/2 − α

2
E4(z), (17)

which can be solved for E4(z) to give

E4(z) = −i
k4

2n2
4

3

2
χ (3)E1E2E

∗
3

[
1 − e−αz

α
e−αz/2

]
. (18)

It follows that the intensity of the radiated signal wave depends
on the intensity of the three pump waves and on the interaction
distance z as

I4 ∝ z2

n1n2n3n4
I1I2I3

∣∣∣∣3

2
χ (3)

∣∣∣∣
2

A2, (19)

where here A = Aα and

Aα = 1 − e−αz

αz
e−αz/2 (20)

is an attenuation factor. A2
α tends to (1 − 2αz) for αz → 0, and

can also be well approximated by exp(−2αz). For a sample of
thickness z, this is equivalent to saying that the signal intensity
I4 is proportional to z2I1I2I3 with all intensities taken in the
middle of the sample. An example of the prediction of Eqs. (19)
and (20) is shown in Fig. 3 (dashed curves). The DFWM signal

FIG. 3. (Color online) Comparison of the relative effects of
different pump beam depletion mechanisms on the growth of the
amplitude of the DFWM signal with interaction length z. The dashed
curves are for the case of linear absorption, the solid curves are for
the case of two-photon absorption, and z is normalized in such a way
that the transmission in both cases becomes 0.5 at z = 1. The figure
shows both the z dependence of the transmittivity of a pulse (curves
labeled “Transmission”), and the corresponding z dependence of the
DFWM signal amplitude (curves labeled “DFWM”). The dotted line
is the linear z dependence of the DFWM signal amplitude that occurs
in the absence of any pump depletion. The labels on the solid curves
for the DFWM signal amplitude give the ratio between the two pump
pulses with the highest intensity in the case where the third pump
pulse is negligibly weak. The curve labeled “0” corresponds to the
square root of Eq. (19) with A given by Eq. (31). The curves with
labels 0.1-0.2-0.4 are obtained by numerical integration of Eq. (28).

amplitude reaches a maximum for αz = ln(3), when the linear
transmission through the sample equals 1/3, and then falls to
zero as the thickness increases and more and more linear losses
occur.

Next, we consider the case of pump waves that are affected
by two-photon absorption, which leads to an attenuation of
light intensity described by dI (z)/dz = −β[I (z)]2, where β

is the two-photon absorption coefficient. The resulting space
dependence of the intensity is

I (z)

I (0)
= 1

1 + βI (0)z
. (21)

In a practical experiment, the intensity I (0) that is incident on
a sample is modulated in both space and time. We assume
a collimated beam with a Gaussian spatial and temporal
intensity-profile (beam waist w0, pulse duration τ ) described
by

I (z = 0,r,t) = I0e
−2r2/w2

0−t2/τ 2
, (22)

where r is the lateral distance from the beam axis and I0 is the
peak intensity, given by

I0 = 2

π3/2w2
0τ

Ep(0), (23)

where Ep(0) is the experimentally determined pulse energy
incident on the sample. The pulse energy after a propagation
distance z is obtained by integrating the intensity given by (21)
over space and time [23],

Ep(z) =
∫ ∞

−∞

∫ ∞

0
2πr

I (r,t)

1 + βI (r,t)z
drdt (24)

= πw2
0

2βz

∫ ∞

−∞
ln

[
1 + βI0ze

−t2/τ 2]
dt, (25)

from which one can define a nonlinear transmittivity TNL =
Ep(z)/Ep(0):

TNL = 1√
πβI0zτ

∫ ∞

−∞
ln

[
1 + βI0ze

−t2/τ 2]
dt. (26)

It is useful to note that for a continuous wave (cw) collimated
Gaussian beam the equivalent expression for the nonlinear
transmittivity would be [23]

T
(cw)
NL = 1

βI
(cw)
0 z

ln
[
1 + βI

(cw)
0 z

]
, (27)

where I (cw) = 2P (cw)/(πw2
0), with P (cw) the beam power. As

long as the transmittivity does not become too small, Eq. (27)
can be used for a pulsed laser as a simpler approximation to
Eq. (26) if one substitutes I

(cw)
0 = 0.7I0, where I0 is the peak

intensity (23) of the pulse. One can show that this delivers a
nonlinear transmittivity too small by only ∼5% when reaching
an attenuation TNL = 0.5. Similarly, one can also show that
even the simple expression (21) can approximate Eq. (26) with
the substitution I (0) = 0.35I0, but this approximation breaks
down earlier, giving a transmission too small by 5% already
for TNL = 0.75. When calculating the nonlinear transmission
for a collimated pulsed beam we will later use Eq. (27) with
I

(cw)
0 = 0.7I0.
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For DFWM experiments with three pump beams, nonlinear
absorption as described above leads to an interaction length
between the pump waves that is shorter than the sample
thickness, and to a DFWM signal that becomes saturated
at higher pump intensities, higher nonlinear absorption, or
thicker samples. By neglecting the influence of pump beams
on each other, one can approximate the evolution of the signal
wave amplitude, in a simple plane-wave approximation, by
using Eq. (21) to obtain the spatial profile of the nonlinear
polarization responsible for the DFWM signal (nonlinear
absorption will be irrelevant for the generated signal wave,
which has a much lower intensity). The resulting wave
equation would be

∂

∂z
E4(z) = i

k4

2n2

3

2
χ (3)E1E2E

∗
3

×
[

1

(1 + βI1z)(1 + βI2z)(1 + βI3z)

]1/2

, (28)

where the Ii are the intensities of the three “pump” beams that
create the nonlinear polarization. But it is worth repeating that
when the three intensities are similar, this does not take into
account cross-interaction effects between the three beams. A
more complete analysis would require to model the full space
and time dependence of the laser pulses and their nonlinear
interaction. We consider instead a situation where one of the
three pump beams has an intensity significantly larger than the
others. In such a case the DFWM signal is affected only by
the attenuation of the strongest beam. This can be modeled
using

∂

∂z
E4(z) = i

k4

2n2

3

2
χ (3)E1E2E

∗
3

[
1

(1 + βI3z)

]1/2

, (29)

which has the analytical solution

E4(z) = i
k4

2n2

3

2
χ (3)E1E2E

∗
3 [

√
1 + βI3z − 1]

2

βI3
. (30)

The corresponding expression for the DFWM signal intensity
is then again given by Eq. (19), but with

A = A
I3�I1,I2
T PA = 2(

√
1 + βI3z − 1)

βI3z
. (31)

The square of this factor tends to 1 − βI3z/2 for βI3z � 1,
and in this case (31) can be well approximated by (21) taken
at a distance z/2, which again means that when nonlinear
absorption is low the DFWM signal intensity I4 is proportional
to z2I1I2I3 with all intensities taken in the middle of the
sample, similar to the case of linear absorption. An example
of the prediction of Eqs. (19) and (31) is shown in Fig. 3 (solid
curves).

Figure 3 highlights how the effect of nonlinear attenuation
on the DFWM signal is qualitatively different from that of
linear absorption, which causes a much stronger depletion of
the DFWM signal amplitude as the thickness of the sample
increases. There are two reasons for this. One is that nonlinear
absorption does not affect the weak signal beam and therefore
only influences the pump beams, while linear absorption also
directly causes depletion of the signal beam. The other is
that the depletion of the pump beams caused by nonlinear
absorption is accompanied by a corresponding enhancement

of the DFWM signal, which is always proportional to the
absolute value of the third-order susceptibility [Eq. (19)]. The
two effects work against each other, and the DFWM signal
amplitude still keeps growing (albeit in a strongly sublinear
way) when the imaginary part of the third-order susceptibility
becomes very large or when nonlinear attenuation becomes
extreme at high intensities. This can be clearly seen by
inserting (31) into (19) and noticing that in the limit of large
β when the imaginary part of the third-order susceptibility
dominates and when βI3z � 1, the DFWM signal intensity
becomes independent from I3 and proportional to β (while it
would be proportional to |β|2 when the imaginary part of the
third-order susceptibility is dominant but βI3z � 1).

Figure 3 also explores the regime of validity of Eqs. (19)
and (31), which can be assessed by comparing their prediction
with the result of a numerical integration of (28), the next
better, if imperfect, approximation. This is done in Fig. 3 for
I1 � I2 and different ratios I2/I3 between 0.0 and 0.4. The
figure shows that the simpler expression (31) already gives
a useful picture of the effect of nonlinear absorption. But
for sample thicknesses such that the strongest pump beam is
attenuated by 50%, Eq. (31) gives a DFWM signal amplitude
too high by ∼10% already when I2 = 0.2I3 (while keeping
I3 constant and I1 � I2). It follows that under circumstances
of significant nonlinear attenuation the use of (31) should be
limited to experiments where I3 is at least five times larger than
the intensities of the other two pump beams. Finally, we note
that we will use (31) only to model how an increase in β will
cause a relative deviation of the DFWM signal amplitude from
its value in the absence of nonlinear attenuation (see later), but
not to model the absolute value of the DFWM signal itself. It
is therefore not necessary, in this context, to precisely evaluate
how the intensity I3 used in (31) relates to the actual peak
intensity of a pulsed beam.

VI. EXPERIMENT

We use 1-ps duration light pulses [described by Eq. (22)
with τ = 0.43 ps] at a repetition rate of 1 kHz, obtained from
a Light Conversion TOPAS (traveling-wave optical parametric
amplifier system) pumped by a Clark-MXR CPA 2101 laser.
For most of the experiments presented here, we use the signal
wave of our TOPAS, tuning its wavelength between 1080 and
1680 nm.

We perform DFWM experiments using the forward con-
figuration depicted in Fig. 4, with the components of the
interacting wave vectors in the plane of the sample positioned
at the opposite corners of a square for beam 1 and 2, and in
one of the other corners for beam 3. The wave vector of the
DFWM signal (beam 4) then points to the remaining corner.
As mentioned above, we taylor our DFWM experiments to
realize the case where nonlinear absorption remains a small
perturbation that can be well approximated by Eqs. (29)
and (31), even near two-photon resonances. We do this by
choosing the intensity of beam 3 to be much larger than that
of the other beams. We then simultaneously monitor both the
energy of the DFWM signal pulse as well as the transmission
of beam 3 through the sample. Since the strongest beam will
be the first to experience the effects of nonlinear absorption,
beam 3 essentially serves as a “canary in the gold mine”
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FIG. 4. (Color online) Illustration of the forward DFWM geom-
etry used in this work. The incident beams with wave vectors k1,
k2, and k3 overlap in the sample in such a way that the third-order
nonlinear optical polarization they induce radiates a signal beam with
wave vector k4 = k1 + k2 − k3 in a phase-matched way.

to alert that the DFWM signal can be depleted because of
nonlinear absorption of the pump waves. The data from the
transmission of beam 3 therefore serves to model and control
the onset of two-photon-induced attenuation of the DFWM
signal, and close to a resonance it provides additional data
on the imaginary part of the third-order susceptibility and its
wavelength dependence.

All beams are focused by 1-m focal length lenses to a
beam waist of ∼110 μm (at 1180 nm). The arrival times of
the pulses in the sample are controlled by translation stages.
When pulse 1 is delayed with respect to the others, the DFWM
signal is sensitive to any population grating left behind by
the interference of pulses 2 and 3, a fact that can be used to
observe the dynamics of excited states, including those created
by two-photon absorption. For all samples and wavelengths
investigated here, the DFWM signal obtained when all pulses
passed through the sample at the same time was always more
than 100 times larger than any remnant signal obtained when
the third pulse was delayed by a few pulse durations and
diffracted off the grating written by the two other pulses.

Compared to other experimental techniques that are sen-
sitive to the third-order susceptibility, DFWM offers several
advantages, such as a backgroundless signal, better sensitivity
at low intensities (allowing experiments using weakly focused
beams), and the ability to observe excited-state absorption and
excited-state lifetimes by delaying one of the three interacting
pulses. In addition, in a DFWM experiment the imaginary part
of the third-order susceptibility can contribute significantly to
the detected signal, as described by |χ (3)|2, without causing
any signal depletion as long as βIz � 1 (see the previous
section). In such a case the only direct effect of an imaginary
part of the susceptibility in DFWM is an additional phase
shift of the generated signal wave. This is different than for,
e.g., Z scan, where the imaginary part of the third-order
susceptibility is necessarily given by the attenuation of the
transmitted wave [24].

We determine the wavelength dependence of molecular
third-order polarizabilities by measuring the third-order sus-
ceptibilities of molecular solutions with different concentra-
tions at different wavelengths and modeling the results to

separately extract the real and imaginary part of the third-order
polarizability.

The solutions are prepared in d = 1-mm-thick fused silica
spectroscopy cells. The solvent is dichloromethane (CH2Cl2,
DCM), with refractive index n = 1.42 and density ρ =
1.3266 g/cm3. The third-order susceptibility of the solution
is described by Eq. (3). Absolute values for the third-order
susceptibility of the solutions are obtained by comparing their
DFWM signal to that obtained in a reference measurement
that established the χ

(3)
1111(0) for a 1-mm cell filled with the

pure solvent to be 6 ± 1 times larger than for a 1-mm-
thick fused silica sample, for which we used a third-order
susceptibility of 1.9 × 10−22 m2 V−2. This fused-silica value
corresponds to the weighted average of the values given in
Refs. [25–28] taking into account dispersion, as well as the
different nonlinear processes used in the different references.
All values used in the average are within 10% of each
other.

At wavelengths such that no linear or nonlinear absorption
takes place (βId � 1), the third-order susceptibility of the
solution is obtained from the ratios between the DFWM
signal at a given concentration and at zero concentration,
|χ (3)

1111(C)|/χ (3)
1111(0), and Eq. (19) with A = 1. When linear

absorption starts to slightly deplete the pump waves respon-
sible for the DFWM signal, we use Eq. (19) with A given by
Eq. (20). Near two-photon resonances, when the concentration
of molecules or the intensity are so high that βId starts
becoming comparable to 1, we extract |χ (3)

1111(C)| from the
data by using Eq. (19) with A given by Eq. (31).

The concentration dependence of the DFWM signal am-
plitude is determined by the concentration dependence of
the third-order susceptibility via (3), and it is linear with
concentration as long as the third-order polarizability of the
dissolved molecules is real-valued. But since the molecular
contribution to the third-order susceptibility adds coherently
to the real-valued third-order susceptibility of the solvent,
the concentration dependence of |χ (3)

1111(C)|/χ (3)
1111(0) becomes

nonlinear as a two-photon resonance is approached. This
allows us to obtain both the real and imaginary part of
γrot by fitting Eq. (3) to the data. At higher intensities or
concentrations, nonlinear attenuation becomes detectable on
the transmission of beam 3, and the corresponding data,
modeled with Eqs. (27) and (6) and (7), can also be taken
into account to improve the accuracy of the imaginary part of
γrot and its wavelength dependence.

An example of DFWM and nonlinear transmission data,
collected at four intensities in the region where two-photon
absorption starts to affect the pump pulses, is shown in Fig. 5
for molecule 1. At the wavelength of 1180 nm used in this
experiment the third-order polarizability has a large positive
imaginary part and a large negative real part. The DFWM
signal obtained in the solution is normalized to the signal at
zero concentration and its square root is plotted as a function of
concentration in the top panel. The data for the transmission
of beam 3 collected at the same concentrations is given in
the bottom panel. The whole data set can be modeled using
the procedure described above, involving Eq. (3), Eq. (19)
with A given by Eq. (31), Eq. (27), and Eqs. (6) and (7).
The different curves in the top panel of Fig. 5 give the results
of a fit of the model to the DFWM data for every intensity,
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FIG. 5. (Color online) Concentration dependence of DFWM sig-
nal amplitude and transmission measured near the two-photon
resonance (wavelength of 1180 nm) of molecule 1 for a range of
intensities where two-photon-induced attenuation of the pump waves
is significant. Top panel: Experimental DFWM signal amplitude ob-
tained in a 1-mm-thick solution at different molecular concentrations
and four different pump intensities. Normalized relative intensities
are given in the legend for three of the data sets. The highest intensity
corresponded to ∼1015 W/m2. The data set represented by the open
circles was obtained in a completely different setup using a 10-Hz
repetition rate and 20-ps-long pulses, but gives essentially the same
concentration dependence as the other experiments. The data points
are accompanied by the result of a simultaneous least-squares fit with
Eqs. (28) and (3) that delivered γrot = [(−31 ± 5) + i(29 ± 5)] ×
10−48 m5 V−2. Bottom panel: Transmission of the strongest individual
pump beam (I3), measured simultaneously with the DFWM signal
displayed in the upper panel. Only the data set taken at the highest
intensity is shown. The curves are obtained from Eq. (27) using the
same parameters that fit the DFWM data in the upper panel and the
experimental intensity. The highest intensity curve is compatible with
the data within the error bars.

while the prediction of the same model for the transmission
of beam 3 is given in the bottom panel. In the limit where
two-photon-induced attenuation is not important, the square
root of the DFWM signal is proportional to the absolute value
of the third-order susceptibility of the solution. In the experi-
ment of Fig. 5, the DFWM signal is clearly more and more
attenuated as the concentration of the molecule and the
imaginary part of the third-order susceptibility of the solution

increase (such an attenuation can be avoided in an experiment
using either thinner solutions or less focused beams). But the
model can take this into account fairly well, especially at lower
concentrations and lower intensities. In addition, the prediction
of the same model matches well the experimental transmission
data that was measured at the highest intensity (bottom panel
in the figure), demonstrating that the attenuation of the DFWM
signal at higher concentrations and higher intensities is indeed
related to the decrease in transmission caused by two-photon
absorption, plotted in the bottom panel.

The fitted values for Re[γrot] and Im[γrot] obtained from
the DFWM data in Fig. 5 agree with the other measurements
that will be presented below. We also note that in the low
intensity limit the real part of the third-order susceptibility of
the solution becomes negative for concentrations higher than
∼0.35% when Re[γrot] ∼ −30 × 10−48 m5 V−2. The negative
susceptibility leads to self-defocusing, which we confirmed
by a Z-scan experiment performed at the resonant two-photon
absorption wavelength [29].

The methodology explained above can be used to analyze
data that are acquired in an automatic wavelength scan to
obtain a spectrum of both the real and the imaginary part
of the third-order polarizability. To do this, we prepare
seven identical spectroscopy cells containing seven different
concentrations in the range from 0% up to ∼2% concentration
in mass. Then, each of the seven cells is used in a DFWM
experiment where the wavelength of the interacting beams is
automatically scanned while data are collected, taking care
not to change anything in the adjustment of the experiment
when moving from one concentration to the next. As long as
pump beam attenuation caused by two-photon absorption is
not significant (limit of thin samples and low intensity), the
relative ratios between the DFWM signals obtained at different
concentrations (including zero concentration) are insensitive to
variations in laser output power, or to slight misadjustments of
the setup, that occur while the wavelength is scanned over the
wavelength interval of interest. This is the important feature of
the DFWM measurement that allows for computer-controlled
scanning of wavelength and capturing of data without operator
intervention.

The details of the measurement program are as follows.
During a typical computer-controlled wavelength scan, the
data acquisition program scans the wavelength emitted by
the TOPAS over the range between 1080 and 1680 nm.
Concurrently, it controls the delay time �t between pulse 1
and the other pump pulses and collects the DFWM signal
at each wavelength both for �t = 0 and for �t = −1.5 ps,
when pump pulse 1 reaches the sample more than one pulse
width before the other two pump pulses. The strength of the
DFWM signal is obtained from the difference between the
measurement taken at �t = 0 and the measurement taken at
�t = −1.5 ps, which eliminates any effect from drifts of signal
background. In addition, the energy of pulse 3 transmitted
by the sample is also measured. Both the DFWM signal
and the transmission signal as a function of wavelength and
concentration are stored for subsequent analysis.

The numerical analysis of the data is based on a multidimen-
sional least-squares fit of the data using a model that predicts
both the DFWM signal strength and the transmission of beam 3
from the wavelength-dependent real and imaginary part of the
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third-order polarizability. While we have already described all
the calculations required to do this, we repeat here the full set of
equations used for the analysis. Starting from the third-order
polarizability, we arrive at the two measured quantities: T3,
the transmission of pump beam 3 through the sample, and
S = √

I4(C)/I4(0), the square root of the ratios between the
DFWM signals for a solution with mass concentration C and
for the pure solvent,

χ
(3)
1111 = χ (3)(0) + f 4ρNAγrotC/M, (32)

β = 3π

ε0cn2λ
Im

[
χ

(3)
1111

]
, (33)

Aα = 1 − e−αz

αz
e−αz/2, (34)

AT PA = 2(
√

1 + βI3z − 1)

βI3z
, (35)

T3 = ln[1 + βI3d]

βI3d
, (36)

S =
∣∣∣∣ χ

(3)
1111

χ (3)(0)

∣∣∣∣A, (37)

where A = AT PA is used in wavelength ranges where two-
photon-induced nonlinear attenuation of the pump beams
is known to take place, and A = Aα is used at shorter
wavelengths where linear absorption starts having an effect.
If the linear absorption is due to the diluted molecules,
then the absorption constant can be directly calculated from
α = ln(10)ερC/M , where ε is the extinction coefficient. I3

is calculated as 0.7 times the result of Eq. (23), which is
determined from the beam waist of beam 3 at the sample
and the corresponding pulse energy.

The above set of equations determines the experimental
DFWM signal (S) and the experimental transmission of beam 3
(T3) from the real and imaginary part of the rotational average
of the third-order polarizability γrot. A least-squares fit of
the predicted S and T3 to the wavelength-dependent data
then delivers the wavelength dependence of γrot, which is
represented by two smoothly varying adjustable functions of
the wavelength for the real and the imaginary part, respectively.
To allow maximum flexibility, the two smoothly varying
functions are defined using a Bezier curve with N control
points, giving a total of 2N fitting parameters. We find that the
best compromise between smoothing out random noise in the
data and having enough resolution to describe the wavelength
dependence is obtained for N between 10 and 12 for our
wavelength interval between 1080 and 1680 nm. The fit is
also facilitated by the fact that for the noncentrosymmetric
molecules we investigated the functional form of the imaginary
part of the third-order polarizability, due to two-photon
absorption, can be expected to follow, at half the photon energy,
the lowest energy peak of the linear absorption. The final
results of the analysis are two curves describing the dispersion
of γrot, and the associated errors of the fitting parameters.

Figure 6 shows a plot of the wavelength-dependent third-
order polarizability as obtained in this way for molecule 1.
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FIG. 6. (Color online) Spectrum of the third-order polarizability
γrot in molecule 1 (TDMEE) as obtained from the DFWM data in
a wavelength region that includes both zero-frequency limit and the
first two-photon resonance. The solid line that overlaps with the band
representing the allowed values for the imaginary part of γrot is a plot
of the linear absorbance taken at twice the wavelength, and scaled to
fit the imaginary part of γrot.

In this and in other plots presented later, the spectra that are
extracted from the data are given by ribbonlike bands whose
vertical extension represents the experimental uncertainty.

The result in Fig. 6 shows an imaginary part of the third-
order polarizability that follows the expected trend predicted
by the linear absorption at twice the energy. The real part, on
the other hand, is basically free from resonance enhancement
as the energy approaches the two-photon transition from
the zero-frequency limit. There is the possibility of a small
enhancement of the positive real part of γrot around 1300 nm,
but it is within the experimental error. The main effect that
we observe is for the real part to start decreasing from
its zero-frequency value as the photon energy approaches
the two-photon resonance, and then to go strongly negative,
reaching its largest negative value at a wavelength slightly
shorter than the peak of the imaginary part.

To confirm the results obtained with this method based
on DFWM, we also investigated the wavelength dependence
of the imaginary part of the third-order polarizability of
molecule 1 using additional experiments that are directly
sensitive to the amount of two-photon absorption.

The first such experiment is simply the measurement of the
transmission of a single pulse through the sample as a function
of intensity and/or concentration, as presented in Fig. 5 (lower
panel). The imaginary part of γrot can be extracted by fitting
Eq. (36) to the data to obtain the concentration dependent
two-photon absorption cross section β(C), which is related to
the imaginary part of χ (3) by Eq. (33). Such data are already
incorporated in the fitting procedure that delivered the result
in Fig. 6. Both the amount of nonlinear transmission and its
wavelength dependence is consistent with the plot in Fig. 6.

Another experiment that is highly sensitive to the amount
of two-photon absorption is the detection of the amplitude
of laser-induced ultrasound using a transient grating variant
of DFWM. In this experiment, when molecules that have
been brought into an excited state by two-photon absorption
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relax back to the ground state rapidly and nonradiatively, they
lead to a sudden heating of the liquid, predominantly in the
regions of maximum intensity in the interference pattern. This
in turn leads to thermal expansion and the later establishment
of a spatially modulated strain pattern that will then oscillate
elastically as an ultrasound wave [30–32]. The corresponding
refractive index modulation causes Bragg diffraction of the
delayed third pulse in DFWM. A measurement of the strength
of this Bragg diffraction in a pump and probe measurement is a
natural extension of DFWM, with the only requirement being
that the probe pulse must be delayed by several nanoseconds,
the time required to establish a strain pattern. We have used
a second DFWM setup equipped with a longer delay track
for one of the beams to measure the time dependence of
the diffraction efficiency caused by the oscillating ultrasound
standing wave in a solution of molecule 1. The result of
a typical measurement is shown in the inset of Fig. 7. By
keeping the energy of the pulses constant while changing
the wavelength, we obtained the relative variation in the
density of photoexcited molecules from the amplitude of the
ultrasound wave detected by DFWM (which is proportional
to the square root of the peak diffraction efficiency). From
this, we derive the wavelength dependence of the two-photon
absorption coefficient for the solution [29]. The data obtained
in this way are shown as triangles in Fig. 7, and it matches the
wavelength dependence of the imaginary part of the third-order
polarizability that was determined in DFWM experiments. We

FIG. 7. (Color online) Spectrum of the third-order polarizability
of molecule 1 (TDMEE), as collected from several independent
experiments using different methods. The dashed ribbons are from
Fig. 6. The small black triangles where obtained from the amplitude
of laser-induced ultrasound (the inset gives the time dependence of
the amplitude of the laser-induced ultrasound wave as detected by a
transient grating experiment). The large hollow data points are the real
(circles) and imaginary (squares) parts of the third-order polarizability
as obtained in individual DFWM and nonlinear transmission experi-
ments, including a measurement at 1500 nm that established a real-
valued γrot = (8 ± 2) × 10−48 m5 V−2, a measurement at 1180 nm
that gave γrot = [(−25 ± 10) + (37i ± 5)] × 10−48 m5 V−2, and a
measurement at 960 nm that resulted in γrot = [(−10 ± 6) + (7i ±
7)] × 10−48 m5 V−2.

have also confirmed that the amplitude of the laser-induced
ultrasound does indeed grow as the square of the pulse
energy [29], as expected for two-photon absorption.

Finally, in Fig. 7 we also add data points that have been
determined through multiple individual measurements at 960,
1180, and 1500 nm. We note that for the DFWM measurement
below ∼1050 nm, the linear absorption from this molecule
starts to become significant, while the nonlinear two-photon
absorption is not as important anymore. In this shorter
wavelength range, we used Eq. (20) to model the DFWM
data, as described above. Figure 7 shows that the third-order
polarizability data obtained at various wavelengths and with
various methods are consistent with the same underlying
spectrum.

We conclude this section with a note about the relationship
between linear absorption and two-photon absorption. All our
results for the wavelength dependence of the imaginary part of
γrot are compatible with the statement that the two-photon
absorption spectrum taken at frequency ω is proportional
to the linear absorption spectrum taken at frequency 2ω in
noncentrosymmetric molecules. This is to be expected for
an isolated lowest excited state that can be reached both by
one-photon and by two-photon transitions. Because of this,
for the noncentrosymmetric molecules we have investigated
it is possible to use the known linear absorption spectrum at
a wavelength λ/2 to aid in the extraction of the imaginary
part of γrot from the DFWM data at a wavelength λ. In other
words, one can use the known wavelength dependence of
the absorption near λ/2 as a constraint for the wavelength
dependence of the absolute value of the imaginary part of
γrot near λ. And this in turn aids in the determination of
more precise values for the real part of γrot, leading to
a numerically stable and robust result, with a physically
satisfactory transition from larger complex values to purely
real values of γrot. This procedure is especially useful in
the regions where the real part of γrot goes through a zero
crossing, and the imaginary part is small (for example, this
occurs between 1300 and 1400 nm for molecule 1; see Fig. 7).
In such wavelength regions, the concentration dependence of
χ

(3)
1111(C) in DFWM is fairly flat and featureless, which would

otherwise lead to a large uncertainty in the determination of
γrot.

VII. RESULTS

We applied the methods described in the previous sections
to determine the dispersion of the complex third-order polar-
izability of the molecules presented in Fig. 1. The result for
molecule 1 (TDMEE) has been shown in Fig. 7. The results
for molecules 2 (DDMEBT) and 3 are shown in Figs. 8 and 9,
respectively.

In general, the spectra that we obtained follow the broad
qualitative description that is predicted by a single oscillator
response. Equation (9) alone, which does not take into account
vibrational broadening and neglects the contribution from
higher excited states, is too crude an approximation to be used
for accurate modeling of the observed dispersion, but it can be
useful to identify the broad features of the expected behavior of
the third-order polarizability near the two-photon resonance:
the imaginary part of γrot peaking in correspondence with
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FIG. 8. (Color online) Spectrum of the third-order polarizability
of molecule 2. Measurements at 1500 nm (given by round and square
data points for real and imaginary part, respectively) established a
value of γrot = (6 ± 2) × 10−48 m5 V−2. The peak of the two-photon
resonance is expected to occur at λ = 1052 nm.

resonant two-photon absorption, with the real part starting
with a finite positive value near zero frequency, increasing
when approaching the resonance, and then transitioning to
negative in coincidence with the two-photon resonance. For all
three molecules discussed in this work, the resonant behavior
of the imaginary part of γrot is the expected one. However,
the maximum in the positive real part on the low-frequency
part of the resonance is very shallow or nonexistent in our
molecules, while the real part transitions to negative already
at wavelengths longer than the center wavelength of the
two-photon resonance and achieves a very large negative
minimum at a wavelength only slightly shorter than the peak
of the two-photon resonance. The molecule that shows the
highest (positive) resonance enhancement of the real part
of γrot is molecule 3, where the measured value of γrot =
9 × 10−48 m5 V−2 at 1500 nm is distinguishably larger than
the off-resonant value observed at longer wavelengths. The
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FIG. 9. (Color online) Spectrum of the third-order polarizabil-
ity of molecule 3. A previous measurement of γrot = (9 ± 2) ×
10−48 m5 V−2 at 1500 nm (given by round and square data points
for real and imaginary part, respectively) is included for comparison.

TABLE I. Properties and figures of merit for the molecules
in Fig. 1. The five sections of the table give the parameters
of each molecule, the derived fundamental limits, the exper-
imental third-order polarizability at a wavelength of 1.5 μm,
the experimental peak imaginary part of the third-order polarizability
on the two-photon resonance, and the experimental ratio between
imaginary part on resonance and real part off-resonance, as defined
in Eq. (12). The first section lists the molar mass M in units of
g/mol, the number of π electrons Nπ , the position of the longest
wavelength optical transition λmax in nm, the extinction coefficient
at λmax in units of cm−1 M−1, and the optical transition energies E10

and E20 (estimated) in eV. All third-order polarizabilities are in units
of 10−48 m5 V−2. The experimental values are accompanied by the
figures of merits we derive from them: the specific γ̃rot in units of
10−23 m5 kg−1 V−2, and the intrinsic γI (dimensionless), which are
given both for the real-valued third-order polarizabilities at 1.5 μm
and for the imaginary parts of the third-order polarizability on the
peak of the two-photon resonance.

1 2 3

M 246.27 416.47 448.24
Nπ 16 26 26
λmax 591 526 608
ε(λmax) 36990 45262 35065
E10 2.09 2.36 2.04
E20 3.60 4.45 3.16

γk 662 976 2014
Im[γ res

k ] 11082 17103 36182
R = Im[γ res

k ]/γk 16.6 17.5 17.8

γrot(1.5 μm) 8 ± 2 6 ± 2 9 ± 2
γ̃ 1.96 0.87 1.21
γI = γrot/γk 0.0121 0.0061 0.0045

Im[γ res
rot ] 35 ± 10 25 ± 10 10 ± 5

Im[γ̃ res
rot ] 8.56 3.61 1.3435

γ res
I = γ res

rot /γ
res
k 0.0032 0.0015 0.0003

Rex = Im[γ res
rot ]/γ ω→0

rot 5 4 1.6

spectrum in Fig. 9 confirms this, showing at this wavelength
an enhancement of the real part, together with a still negligible
imaginary part.

The data on the wavelength dependence of the third-order
polarizability that we have obtained also allow us to determine,
for each investigated molecule, the peak two-photon absorp-
tion cross section as well as the long-wavelength region for
which the real part of the third-order polarizability becomes
wavelength independent, taking on its off-resonant value in
the zero-frequency limit.

We list the main properties of each molecule in Table I,
together with the figure of merits that can be derived from
them (i.e., the specific and intrinsic values of the third-order
polarizability in the zero-frequency limit and on the peak of
the two-photon resonance) and some experimental values of
the third-order polarizability. The fundamental limits to the
off-resonant and resonant third-order polarizability, necessary
to obtain the intrinsic third-order susceptibility values, are
calculated from the linear absorption spectra and the number
of conjugated electrons (estimated as twice the number of
multiple bonds in the conjugated system). Table I also gives
the first and second excited-state energies, E10 and E20, that
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we used to obtain the fundamental limits for two-photon
absorption (together with �10 = 0.25 eV; see below). We note
that the value of the third-order polarizability at 1.5 μm that
is given in this table is off resonant for molecules 1 and
2, but is resonantly enhanced by almost a factor of 2 for
molecule 3. It is interesting to see, from the last section of
the table, that the strength of the peak imaginary part of γrot

and of the off-resonant real value are correlated. This is most
clearly visible for molecules 1 and 2, which are off-resonant at
λ = 1.5 μm and are also closest to the fundamental limit. This
observation validates the approach we used above to derive a
fundamental limit for the imaginary part of the third-order
polarizability. On the other hand, the longest-wavelength
two-photon resonance of molecule 3 is significantly weaker
than in the other molecules, even though it is in the same
spectral region as molecule 1.

We refer to Refs. [10,11,13,15] for a discussion of the
off-resonant responses of the molecules in Table I. In the
following we examine their resonant third-order nonlinearities,
compare their corresponding two-photon absorption values to
the literature, and discuss how off-resonant and on-resonance
third-order polarizabilities relate to both the fundamental
limits and to the size of a molecule.

The two-photon absorption cross sections calculated from
the peak value of the imaginary part of γrot using Eq. (7) and
a refractive index of 1.42 are shown in Table II, together with
the corresponding values for two molecules that have been
specifically developed for two-photon absorption applications,
AF-50 [33] and AF-450 [34]. We chose to compare to AF-50
because it is a molecule not much larger than those we
investigated here, and because it is a compound widely cited
in the literature dedicated to two-photon absorption. It is
important to point out that the two-photon cross section values
that we report here are those that exclude the effects of excited-
state absorption, which is known to deliver overinflated two-
photon absorption cross sections in nonlinear transmission
experiments performed using nanosecond pulses [33]. Table II
also gives the fundamental limits for two-photon absorption
as we calculate them, using (14), for the molecules in Table I
as well as for AF-50 and AF-450. The excited-state energies
used for this calculation are E10 = 3.2 eV and E20 = 4.0 eV
for AF-50, and E10 = 2.98 eV and E20 = 3.14 eV for AF-450.
The constant �10 is related to the width of the absorption band
corresponding to the first excited state, and its influence on
the fundamental limit for resonant two-photon absorption as

given by (14) is essentially that of decreasing the peak value
proportionally to the width of the resonance. Inspection of
the absorption spectra reveals that the width of the lowest
energy absorption line is similar for all molecules that we
have investigated, and also for AF-50 and AF-450 [33,34]. To
simplify comparisons, we used a value �10 = 0.25 eV for all
fundamental limit calculations presented here.

We first discuss molecule 3. The data show that this
molecule is the least efficient in its third-order nonlinear optical
properties among those we have investigated. However, this
molecule does show a resonance enhancement of the positive
third-order polarizability near λ = 1.5 μm, with a relatively
high value for γrot that is essentially real valued. Because
of this resonance enhancement, this molecule has a specific
third-order polarizability at 1.5 μm that is 50% larger than
molecule 2, which indicates that χ (3) of a solid-state assembly
of molecule 3 has the potential to exceed that of molecule 2,
whose supramolecular assemblies have been successfully used
for all-optical switching [12,17,18]. At the same time, at
λ = 1.5 μm the imaginary part of γrot remains negligible for
this molecule. Development of molecules with this kind of
resonance enhancement could be interesting for applications
near telecommunication wavelengths. But apart from this
aspect, molecule 3 is relatively weak from all other points
of view, hinting at a fundamental inefficiency in its design
compared to molecules 1 and 2. As an example, molecule 3
has the same number of π electrons (Nπ ) as molecule 2, but a
lower intrinsic γI (because the lower energy of its first optical
transition implies a much larger γk).

Another distinguishing feature of molecule 3 is that it is
the one with two clear optical transitions close to each other
in energy, and the higher energy transition is stronger than the
lower energy transition. The fact that this molecule has two
competing charge-transfer transitions from either of the two
dimethylamino donor groups to the cyano acceptors [15] may
be a factor that leads to its inefficiency. While molecule 2 also
has two almost independent conjugated subsystems caused
by its nonplanar structure, the system that contains the triple
bond clearly dominates its linear and nonlinear properties.
For molecule 3, on the other hand, the two conjugated
subsystems seem to compete with each other. This picture
is also supported by comparing with molecule 1, which
has the best figures of merit overall and the record for
the highest efficiency, and consists of just one conjugated
system.

TABLE II. Comparison of the fundamental limits for two-photon absorption cross sections, experimental values, and two-photon absorption
figure of merits for the molecules studied in this work (Fig. 1) and for two two-photon-absorbing compounds from the literature, AF-50 [33]
and AF-450 [34]. Apart from the experimental cross-section values for the molecule called AF-50 and the molecule called AF-450, which
were taken from the literature [33,34], the theoretical and experimental values of all two-photon absorption cross sections have been calculated
assuming a refractive index of 1.42. The last two columns give the specific and the intrinsic two-photon absorption cross sections.

M λT PA Im[γ res
k ] σ

p

k σ σp σ̃ p σ
p

I

Nπ (g/mol) (nm) (10−45 m5 V−2) (103 GM) (10−20 cm4/GW) (GM) (1025 GM/kg) [10−3]

1 16 246.27 1182 11.1 89.0 1.70 284 69.5 3.19
2 26 416.47 1054 17.0 173 1.36 256 37.1 1.48
3 26 448.24 1216 35.8 272 0.47 76 10.3 0.28
AF-50 32 707.09 796 11.4 213 0.12 30 2.6 0.14
AF-450 90 1916.9 779 156 2537 0.87 222 7.0 0.08
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Molecule 2 has a value of γrot that is approximately 75%
that of molecule 1, both on and of resonance. The difference
between molecule 1 and 2 is mainly related to their relative
sizes: The additional group added to molecule 2 adds mass
and size to the molecule, decreasing γ̃ . Moreover, since we
count all the electrons in the two conjugated subsystems of
molecule 2 despite the fact that the conjugation is broken
by the nonplanar structure, we obtain a larger value for the
quantum limits, leading to a decrease in γI and γ res

I . In other
words, the figures of merit of molecule 2 are worse than
for molecule 1 because of the additional group that gives
molecule 2 a nonplanar structure but does not significantly
add to its nonlinearity, which is basically determined by a
subsystem that is very similar to molecule 1. But at the same
time the nonplanar structure of molecule 2 is the key to its
ability to form high optical quality solid-state assemblies with
a large χ (3) [12,13], which is the very important practical
property that allowed it to be successfully used for all-optical
switching applications [17–19].

The fact that molecule 1 has the highest γI and γ res
I indicates

that this molecule is the most efficient of the three, both in
respect to its off-resonant response, and in respect to its two-
photon absorption. Molecule 1 has a compact, fully conjugated
design and is the smallest of the molecules considered here,
which ultimately means that this molecule is able to use all the
π electrons in its extended conjugated system in an optimum
way, as is also shown by the fact that it has a low value of its first
excited-state energy despite its small size [11]. Unfortunately,
molecule 1 cannot produce high-quality dense assemblies like
molecule 2 [12].

From the point of view of pure two-photon absorption
efficiency, TDMEE and DDMEBT (molecules 1 and 2) have
both the largest specific and the largest intrinsic two-photon
absorption cross sections (see the last two columns of Table II).

But the most striking observation is how much larger the
two-photon absorption properties of these molecules are in
comparison to AF-50, a molecule specifically developed for
two-photon absorption that is representative of a large class
of compounds [33,35,36] and that has been often used as
a benchmark molecule. In particular, molecule 1 (TDMEE)
has a small conjugated system that is about half the size
of AF-50, but it has an almost ten times larger two-photon
absorption cross section, comparable with AF-450 [34], an
even larger molecule. In fact, the two-photon cross sections of
molecules 1 and 2 are comparable, within a factor of ∼4, to
the optimal two-photon absorbers discussed in Ref. [37], even
though molecules 1 and 2 are significantly smaller molecules.

These facts are quantitatively very well described by the two
last columns of Table II, which give the intrinsic and specific
two-photon absorption cross sections obtained by dividing the
experimentally observed values by the quantum limit given by
Eq. (14) and by the molecular mass, respectively. Molecules 1
and 2 dominate the rest of the field by a significant amount.
This reflects both the potential of obtaining large two-photon
coefficients in the solid state (realized for molecule 2), and
also the intrinsic efficiency with which these molecules can
interact with electromagnetic waves in a two-photon process.

The important conclusion that one can draw from all these
observations is that the compounds presented in this work
may represent a new category of two-photon absorbers that

is worth investigating. The noncentrosymmetric substitution
with strong donor and acceptor groups around a compact
conjugated core is the key factor that distinguishes the
molecules of Fig. 1 from other approaches like those described
in Ref. [37]. The fact that in these compounds donor-acceptor
substitution effectively results in the control and reduction of
the energy of the first optical transition [11] may also play
an important role in increasing their two-photon absorption
efficiency.

Further, the ability to obtain large two-photon absorption
cross sections in smaller molecules also has important practical
consequences. The example that clearly illustrates this fact
is molecule 2 (DDMEBT), which has been found to con-
dense from the vapor phase into a dense single-component
supramolecular assembly that is of high optical quality and
has essentially the characteristics of an optical glass [12].
The large specific two-photon absorption cross section of this
molecule directly implies an exceptionally large two-photon
absorption coefficient in the solid-state material obtained in
this way. As a practical rule of thumb, multiplying the specific
two-photon absorption cross sections given in Table II, in
units of 1025 GM/kg, by 0.6242 gives the bulk two-photon
absorption coefficient β in units of cm/GW for a material with
the density of water and a photon energy of 1 eV (wavelength
of 1.24 μm). We estimate the bulk two-photon absorption
coefficient of a DDMEBT molecular assembly [13] to be of
the order of 10–20 cm/GW near 1050 nm, a very large value
which can be compared to the value of 26 cm/GW observed
in GaAs at 1064 nm [38], where it is determined by interband
excitation. By following the design principles embodied in the
DDMEBT molecule, it should therefore become possible to
develop custom-designed two-photon absorbers as powerful
as interband transitions in GaAs, but in an organic material
where the spectral position of the two-photon resonance can
be designed and tuned thanks to the flexibility of organic
chemistry.

VIII. CONCLUSION

We demonstrated a flexible, robust method to automatically
obtain the full dispersion of the real and imaginary parts
of the third-order polarizability of molecules in solution.
Using this method, we determined the third-order nonlinear
dispersion in three molecules that have been investigated
previously only at a wavelength of 1.5 μm. The spectroscopic
data that we obtained by the automatic method is consis-
tent with several other experiments we performed, namely
DFWM, Z scan, nonlinear transmission, and laser-induced
ultrasound.

In the three compounds we studied, we determined the peak
two-photon absorption cross section, and wavelength regions
with enhanced real-valued third-order polarizability between
the zero-frequency limit and the first two-photon resonance.
We also derived an expression for the fundamental limit to
the two-photon absorption cross section for the lowest energy
two-photon transition in noncentrosymmetric molecules, and
we used it to show that the compounds we investigated have
an extraordinary efficiency for two-photon absorption when
compared to other benchmark molecules such as AF-50,
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matching similar results obtained earlier for off-resonant
nonlinearities in the same molecules.

These findings highlight the importance of designs
based on donor-acceptor substitution in small organic
molecules—a principle previously demonstrated for off-
resonant nonlinearities—for the development of two-photon-
absorbing and optical limiting materials. This is particularly
important given the fact that small donor-acceptor–substituted
molecules such as molecule 2 do not only have exceptional
nonlinear optical and two-photon absorption properties, but

they can also be combined in dense supramolecular assemblies
with a high optical quality that can be incorporated in existing
integrated optics technologies [17–19].
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