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Slowing the probe field in the second window of double-double electromagnetically
induced transparency
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For Doppler-broadened media operating under double-double electromagnetically induced transparency (EIT)
conditions, we devise a scheme to control and reduce the probe-field group velocity at the center of the second
transparency window. We derive numerical and approximate analytical solutions for the width of EIT windows
and for the group velocities of the probe field at the two distinct transparency windows, and we show that the
group velocities of the probe field can be lowered by judiciously choosing the physical parameters of the system.
Our modeling enables us to identify three signal-field strength regimes (with a signal-field strength always higher
than the probe-field strength), quantified by the Rabi frequency, for slowing the probe field. These three regimes
correspond to a weak signal field, with the probe-field group velocity and transparency-window width both
smaller for the second window compared to the first window, a medium-strength signal field, with a probe-field
group velocity smaller in the second window than in the first window but with larger transparency-window width
for the second window, and the strong signal field, with both group velocity and transparency-window width
larger for the second window. Our scheme exploits the fact that the second transparency window is sensitive to
a temperature-controlled signal-field nonlinearity, whereas the first transparency window is insensitive to this
nonlinearity.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is a phe-
nomenon whereby a medium can be switched between states of
transparency and opacity through the controllable application
of a weak probe field [1], and applications of EIT include
slow light [2–4], optical switching [5], and optical quantum
memory [6]. Double EIT extends the notion of EIT from
controllable creation of transparency at a given frequency
to creation of two transparency windows at two different
frequencies [7].

Double-double EIT (DDEIT) extends EIT even further to
the case that each of a signal and a probe field experience
two transparency windows with the transparency window for
the signal controlled by a coupling field and a probe field
and the transparency window for the probe field controlled by
the coupling field and the signal field [8]. DDEIT introduces
the possibility of controlling propagation of and interaction
between two bichromatic fields.

One advantage of controlling light is slowing it down. Slow
light is especially important for optical communication and for
quantum information processing. For optical communication,
slow light enhances light-matter interaction times and thereby
leads to an increase in nonlinear interactions [3,4,9]. In
quantum computing, slow light enables storage of the quantum
state of light for a sufficiently long time to enable quantum
memory [6].

Our main objective is to propose a mechanism to slow the
probe field in the second transparency window of Doppler-
broadened DDEIT. For this slowing to be achieved, we need
to balance two competing requirements. One requirement
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for slowing the probe pulse in Doppler-broadened EIT is to
reduce the driving field intensity because the group velocity is
proportional the driving-field intensity. On the other hand, the
driving-field intensity must be sufficiently large to circumvent
inhomogeneous broadening [10–14].

We derive an analytical expression to enable us to find
a parameter regime where these competing requirements
can simultaneously be satisfied. Our analytical technique is
based on approximating the Maxwell-Boltzmann velocity
distribution for atoms by Lorentzian distributions over the
narrow but relevant domain of small atomic velocities [12]. We
find that the nonlinear interaction between the probe and signal
fields maintains the width of the second window constant
for high Doppler width. This result permits us to lower the
intensity of the signal field further without losing the EIT
transparency window and get lower probe-field group velocity
at the second window compared to the first window. We apply
our scheme to the case of 87Rb under realistic experimental
conditions and show that group-velocity reduction of the probe
field is feasible.

We present our work in the following order. In Sec. II,
we introduce the optical density-matrix element describing
the optical properties of the transition |1〉 → |4〉 and the
resultant atomic susceptibility, and we use these results to
calculate the widths of the Lorentzian-shaped transparency
windows and the corresponding group velocities for the probe
field.

Doppler broadening due to temperature is incorporated
into the expression for susceptibility in Sec. III. We solve
this susceptibility numerically and analytically. Our analytical
solution is based on ignoring quadratic dependence of the
probe-field Rabi frequency and employing a Lorentzian ap-
proximation for a narrow band around the Gaussian Maxwell-
Boltzmann distribution. This approximate expression enables
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an intuition about how to control group velocities’ reduction
at the second window. In Sec. III D, we present the procedure
to reduce the group velocity in the second window. Finally, we
summarize in Sec. IV.

II. STATIONARY-ATOM OPTICAL SUSCEPTIBILITY

Consider the closed � atomic model scheme depicted in
Fig. 1 with electronic level |4〉 coupled to the lower levels
|1〉, |2〉, and |3〉 by three coherent fields, namely, the probe,
coupling, and signal Rabi frequencies �p, �c, �s, respectively.
The |1〉 ↔ |2〉, |1〉 ↔ |3〉, and |2〉 ↔ |3〉 transitions are dipole

forbidden. The three fields are detuned from the electronic
transition frequency ωıj between states |ı〉 and |j 〉 by

δp := ω41 − ωp, (1)

δc := ω42 − ωc, (2)

δs := ω43 − ωp, (3)

respectively.
The analytical steady-state density-matrix element (ρıj )

solution for a stationary atom, to first order in the probe-
field Rabi frequency, can be approximated from the exact
expression [8] as

ρ
(1)
14 ≈ i�p

(ρ11 − ρ44)
(
�43 + 2iδs + |�c|2

�32+2iδsc

)
+ (ρ44 − ρ33) |�s|2

γ3−2iδps(
�43 + 2iδs + |�c|2

�32+2iδsc

) (
γ4 − 2iδp + |�c|2

γ2−2iδpc
+ |�s|2

γ3−2iδps

) , (4)

where

δxy := δx − δy (5)

is the two-photon detuning. Details concerning the derivation
of Eq. (4) appear in Appendix A.

We verified this expression numerically for weak signal and
weaker probe Rabi frequencies, i.e., for the condition

|�c|2 � |�s|2 � |�p|2. (6)

The decay rates in Eq. (4) are

γj :=
∑
ı<j

(γjı + γφj ), (7)

FIG. 1. Four-level tripod electronic structure with high-energy
state |4〉 and lower-energy levels |3〉, |2〉, and |1〉 in order of decreasing
energy. Transitions are driven by probe (p), coupling (c), and signal
(s) fields with frequencies ωx and detunings δx with x ∈ {p,c,s}.
Dephasing rates are γφi for i ∈ {2,3}.

and the coherence decay rate is

�kl = γk + γl. (8)

The dephasing rate between the forbidden transitions is not
zero; therefore, γ2 = γφ2 and γ3 = γφ3.

In our system, we impose the equal-population condition

ρ11 ≈ ρ33 ≈ 0.5. (9)

Condition (9) makes the equations approximately solvable
analytically as the equations of motion for population (A10)
are effectively decoupled from the equations of motion for
coherence (A11). Condition (9) is achieved by incoherent
excitation from ground state |1〉 to the excited state |4〉 with
constant pumping rate. Thus, the diagonal matrix elements are
held constant by conditions (9). See Appendix B1 for details
concerning the atomic population in our scheme. The optical
linear susceptibility for an atomic gas in three dimensions with
N the atomic density and d14 the dipole moment is

χ (1)
p = η

ρ
(1)
14

�p
, η = N |d14|2

ε0�
. (10)

We can substitute Eq. (4) into the numerator for χ (1)
p in Eq. (10),

which is complicated so we express χ (1)
p as

χ (1)
p = iη

2(B1 + 2iB2)

(
1 − C1 + 2iC2

A1 − 2iA2

)
(11)

with the terms A1,2, B1,2, and C1,2 explained in the following.
To simplify Eq. (4), we fix the value ρ44 = 0. This is

always true because the atoms are trapped to the dark state
leaving level |4〉 unpopulated. The population of the other three
levels depends on the Rabi frequency of the driving fields. See
Appendix B1 for more details of the dark-state analysis and
state populations.
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FIG. 2. (a) Absorption and (b) dispersion as a function of the
probe detuning δp, with numerical (dotted line), analytical (solid line),
and approximate linear equations (dashed line) for γ4 = 18 MHz,
γ3 = 10 kHz, γ2 = 40 kHz, �c = γ4, �s = 0.3γ4, �p = 0.05γ4,
δs = 9 MHz, and δc = 0.

The variables in Eq. (11) are

A1 := �43 + |�c|2 �32

�2
32 + 4δ2

sc

, A2 := |�c|2 δsc

�2
32 + 4δ2

sc

− δs,

B1 := γ4 + |�c|2 γ2

γ 2
2 + 4δ2

pc

+ |�s|2 γ3

γ 2
3 + 4δ2

ps

,

B2 := |�c|2 δpc

γ 2
2 + 4δ2

pc

+ |�s|2 δps

γ 2
3 + 4δ2

ps

− δp,

C1 := |�s|2 γ3

γ 2
3 + 4δ2

ps

, C2 := |�s|2 δps

γ 2
3 + 4δ2

ps

. (12)

We now have expressions for the steady-state solution (4) and
the corresponding susceptibilities for the probe field (11).

Expression (11) is used to calculate and plot the suscepti-
bility, whose imaginary part is shown in Fig. 2(a), and whose
real part is shown in Fig. 2(b). This absorption plot clearly
displays the first probe window centered at δp = δc and the
second EIT window centered at δp = δs �= δc.

A. Linewidth and group velocity

The linewidth of each transparency window ı ∈ {1,2} is
given by the half-width at half-maximum (HWHM) �ı . The
half-maximum values 
ı are determined first by finding the
maximum hmaxı

and the minimum hminı
values of window ı as

shown in Appendix C1, and then calculating


ı = hmaxı
+ hminı

2
. (13)

By solving

Im
[
χ (1)

p

] = 
ı (14)

for δpc and δps separately, �1 and �2 are determined, respec-
tively, with δpc = �1 and δps = �2. In Appendix C1, we also
discuss the requirements

|�c|2 � γ2γ4 (15)

and

|�s|2 � γ3γ4 (16)

to overcome homogeneous broadening [15] at the first and
second windows, respectively, and to observe the presence of
the EIT windows.

If conditions (15) and (16) are satisfied, the HWHMs of the
first and second windows are

�1 = |�c|2

γ4 +
√

4 |�c|2 + γ 2
4

, �2 = |�s|2

2
√

γ 2
4 + |�s|2

, (17)

respectively. Probe dispersion is shown in Fig. 2(b). For
detuning δp chosen at the center of each window, dispersion is
zero or close to zero.

For each of windows 1 and 2, group velocity is [7]

vg ≈ 2c

ng
, ng = (ω0 − δp)

∂ Re
[
χ (1)

p

]
∂δp

∣∣∣∣∣
δcen

(18)

for ng the group index, δcen the detuning at the center of each
window (1 and 2), and ω0 the transition frequency between
levels |1〉 and |4〉. Detuning δcen equals δc at the first window
and equals δs at the second window. The partial derivative of
the dispersion in the denominator is determined by

∂ Re
[
χ (1)

p

]
∂δp

∣∣∣∣∣
δcen

= lim
δp→δcen

Re
[
χ (1)

p (δp)
] − Re

[
χ (1)

p (δp = δcen)
]

δp − δcen
.

(19)
Therefore, the partial derivative of the dispersion

∂ Re
[
χ (1)

p

]
∂δp

∣∣∣∣∣
δc

= η|�c|2
(γ2γ4 + |�c|2)2

(20)

at the center of the first window and

∂ Re
[
χ (1)

p

]
∂δp

∣∣∣∣∣
δs

= η |�s|2
(γ3γ4 + |�s|2)2

(21)

at the center of the second window. Equations (20) and (21)
yield the slope of the tangent line to points δp = δcen as shown
in Fig. 2(b).

In Fig. 2(b), the group velocity is shown to be approximately
constant in each of the two EIT windows, which can be seen by
the straight-line tangents. The group velocity scales inversely
with slope so the ratio of group velocities for each EIT window
is the inverse of the ratio of the slopes for each window. From
Eqs. (20) and (21) and from Fig. 2(b), the group velocity at
the first window evidently exceeds the group velocity at the
second window for the given parameters.
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Under conditions (15) and (16), the group velocity reduces
to

vg1
= 2c

η

|�c|2
ω14

(22)

at the first window and to

vg2
= 2c

η

|�s|2
ω34

(23)

at the second window. Hence, for stationary atoms, the group
velocities in both windows are linearly proportional to the
intensities of the respective driving fields.

III. DOPPLER-BROADENED OPTICAL SUSCEPTIBILITY

At nonzero temperature atoms move randomly due to
thermal energy. Thermal atomic motion leads to a spreading
of the absorbed frequency due to the Doppler effect, which
broadens the optical line profile and is known as Doppler
broadening.

In this section, we solve susceptibility numerically and
also derive approximate analytical expressions as a function
of temperature. These results are used to find the widths of
transparency windows and also group velocities of the probe
field in each of the two DDEIT windows. Our approximate
analytical technique is based on approximating the Maxwell-
Boltzmann velocity distribution for atoms by Lorentzian
distributions over the narrow but relevant domain of small
atomic velocities [12]. This approximation is valid as large
velocities are sufficiently detuned so as not to affect the
optics.

In our scheme, the electromagnetic field passes through
a gas of atoms at temperature T . Each atom of mass m

has a velocity v obeying the Gaussian Maxwell-Boltzmann
distribution

f (v) = 1

u
√

π
exp

(
−v2

u2

)
, u =

√
2kT

m
(24)

with v the component of velocity v in the direction of the three
co-propagating signal, probe, and coupling fields.

One effect of moving atoms is detuning of resonant
frequencies due to the Doppler shift, which results in a
velocity-dependent probe-field susceptibility χp(v). For our
Doppler-broadened system, the susceptibility is thus averaged
over the entire velocity distribution according to [16]

χ̄p :=
∫ ∞

−∞
χp(v)f (v)dv. (25)

The velocity-dependent expression for susceptibility is ob-
tained from Eq. (11) by the replacement

δx �→ δx + vωx

c
, x ∈ {p,c,s} (26)

for

ωx =
⎧⎨
⎩

ω14 ≡ ω0, x = p
ω24, x = c
ω34, x = s

(27)

the atomic frequencies and c the speed of light in vacuo.
Our scheme relies on neglecting Doppler effect on

two-photon detuning δxy (5), which is achieved for the

copropagating fields driving approximately equal transition
frequencies:

ω0 ≡ ω14 ≈ ω24 ≈ ω34. (28)

This choice is commensurate with our case of a 87Rb gas. For
this atom, we assign |1〉, |2〉, and |3〉 to the 5S1/2 level with
F = 1, mF = 0 and F = 2, mF = {−2,0}, respectively. Level
|4〉 corresponds to the 5P1/2 level with F = 2 and mF = −1.
Therefore, the quantities {δxy} in Eq. (11) do not change under
Doppler broadening.

Integration of Eq. (25) corresponds to a convolution of
Lorentzian χp with the Gaussian profile, which is known as the
Voigt profile [17]. The Voigt profile can be solved numerically
but is hard to solve analytically [13,16,18,19].

The lack of an exact analytical solution inhibits finding a
simple expression relating the group velocity or width of each
EIT window to Doppler broadening. Instead, we approximate
the Maxwell-Boltzmann distribution by a Lorentzian function
over a narrow velocity domain [12] to obtain an approximate
analytical expression for the optical susceptibility. This ap-
proximation is valid insofar as we are interested in the optical
response near the spectral center.

A. Lorentzian line-shape approximation

In this section, we determine an analytical approximation to
the optical susceptibility for a Doppler-broadened system. Our
approximation uses a Lorentzian fit to the Maxwell-Boltzmann
velocity distribution over a narrow range of velocity. We use
this approximation to show that the first probe transparency
window is independent of the signal-field Rabi frequency and
the second transparency window is nonlinear in the signal-
field Rabi frequency. Furthermore, we derive the connection
between the transparency window and the Doppler broadening
width, which is directly dependent on the temperature.

The Lorentzian line-shape function [11]

L

(
vω0

c

)
= 1√

π

WL

W 2
L + (

vω0
c

)2 (29)

is a function of the atomic velocity with WL the HWHM of
the Lorentzian profile. To see that the Lorentzian (29) approx-
imates the Gaussian (24) well over a narrow domain, we first
write both functions as Maclaurin series. The Gaussian (24) is
approximated by

f

(
vω0

c

)
=

√
ln 2√

πWG
− ω2

0(
√

ln 2)3

c2
√

πW 3
G

v2 + ω4
0(

√
ln 2)5

c4
√

πW 4
G

v5 − · · ·

(30)

with

WG := ω0

c

√
2kT ln 2

m
(31)

the HWHM of the Gaussian profile and

L

(
vω0

c

)
= 1√

πWL
− ω2

0

c2
√

πW 3
L

v2 + ω4
0

c4
√

πW 5
L

v5 − · · · ,

(32)
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FIG. 3. Plot of Lorentzian function (dashed line) and Gaussian
function (dotted line) vs normalized atomic velocity.

for

−1 <
ω0v

cWL
< 1. (33)

The two expansions (30) and (32) are approximately equal
under the conditions that

WL = 1√
ln 2

WG (34)

for

−1 
 ω0v

cWG

√
ln 2 
 1. (35)

Combining Eqs. (31) and (34) yields the connection between
the Lorentzian linewidth and the temperature. These condi-
tions are satisfied near the center of both function profiles as
shown in Fig. 3, where the higher-order terms of Eqs. (30)
and (32) have insignificant influence.

Integration of Eq. (25) using L(v) instead of f (v) has
two terms evaluated with the contour integral using the
residue theorem. The final optical susceptibility, including the
Doppler-broadening effect, is

χ̄p(δp) = I1(δp) + I2(δp) (36)

with δp the detuning (1). The terms on the right-hand side of
Eq. (36) are

I1 = iη

2

√
π

B1 + 2iB2 + WL
(37)

and

I2 = − iη

2

√
π

B1 + WL + 2iB2

C1 + iC2

A1 − WL − 2iA2

− C1 + iC2

A1 + B1 + 2i(B2 − A2)

× iηWL
√

π

W 2
L + 4A2

2 − A2
1 + 4iA1A2

. (38)

The HWHM �̄1 of the first transparency window, and the
group velocity for this window, depend on I1(δp) but not on
I2(δp) over the domain of δp pertaining to the first window.
In the case of the second transparency window for the probe
field, both I1(δp) and I2(δp) are non-negligible for calculating
the HWHM �̄2 and group velocity.

In Fig. 4, we plot the imaginary and real terms of the
susceptibility χ (1)

p as a function of the probe-field detuning

FIG. 4. Plots of Im[χ (1)
p ] and Re[χ (1)

p ] vs probe detuning δp at
different temperatures for γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz,
�c = γ4, �s = 0.35γ4, δs = 9 MHz, and δc = 0. (a), (c), and (e) are
Im[χ̄p] and (b), (d), and (f) are Re[χ̄p]. We set T = (1, 10, 100) K
for (a), (b), (c), (d), and (e), (f), respectively, which is equivalent to
WL = (34.8,110,348) MHz, respectively. The dotted line corresponds
to the analytical solution using the Lorentzian line-shape function,
whereas the dashed line is the numerical solution using the Maxwell-
Boltzmann distribution function.

δp at various temperature values based on the average suscep-
tibility (25) for the Maxwell-Boltzmann distribution function
f (v) and for the approximation using the Lorentzian function
L(v). At low temperatures, for which the broadening is low,
there is a discrepancy between the two functions.

At higher temperatures, for which

W 2
L � γ 2

4 , (39)

the numerical data agree with the analytical data near the center
as seen by comparing the two plots. The plots differ at the tail,
which describes far-off-resonant atoms whose contribution
is negligible. This numerical result validates the Lorentzian
approximation for condition (39) near the center, which leads
to a rather simple form of the inhomogeneously broadened
susceptibility.

Analyzing the numerical result reveals that condition (15)
and condition

|�c|2 > γ2WL (40)

are required to observe the first transparency window. These
conditions (15) and (40) eliminate the homogeneous broad-
ening and reduce the effect of inhomogeneous broadening,
respectively. At a temperature for which the Doppler broaden-
ing satisfies condition (39), and Eqs. (36)–(38) are a valid
approximation, satisfying condition (40) certainly implies
satisfying condition (15).
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As shown in Fig. 4, the width �2 of the second transparency
window is not noticeably affected by varying the Doppler
width WL. The reason for the robustness of �2 is that the
nonlinear interaction in I2, but not in I1, protects the second
window from deleterious temperature effects. Therefore, the
strong-signal-field condition is not required to overcome
Doppler broadening damaging the second transparency win-
dow. In other words, condition

|�s|2 > γ3WL (41)

is no longer mandatory to observe the second window.
Condition (16) is still required to eliminate the homoge-

neous broadening for significant transparency at the second
window; see Appendix C1 for detailed mathematical proofs of
the conditions required to observe the transparency windows.
Furthermore, the relaxation of condition (41) leads to further
reduction of group velocity in Doppler-broadened media,
which was limited by the Doppler width appearing in the
right-hand side of condition (41).

The two terms γ2WL in Eq. (40) and γ3WL in Eq. (41) quan-
tify the inhomogeneous broadening of the two EIT windows.
In other words, the Doppler broadening alone is not the whole
story; rather, the products γ2,3WL incorporating the rates γ2 and
γ3 are the key quantities. In Sec. III B we derive the linewidth
and the group velocity for which the requisite conditions (15)
and (16) for eliminating homogeneous broadening are always
satisfied for both windows.

B. Width of the transparency windows

The EIT width in a three-level Doppler-broadened � system
can be maintained by keeping the temperature of the system
constant while changing the driving field [10–14]. Here, we
follow a different approach by studying the dependence of
the linewidth on temperature while fixing the intensity of the
driving fields. The intensities of the driving fields are chosen
such to eliminate the homogeneous broadening.

The HWHM of the first window for the Doppler-broadened
system is equal to

�̄1 = |�c|2
2

[
(2γ2WL + |�c|2)

2(γ4 + WL)2(γ2WL + |�c|2) − WL(WL + 2γ4)(2γ2WL + |�c|2)

]1/2

. (42)

The width decreases nonlinearly as the Doppler width WL

increases as shown in Fig. 5. The condition |�c|2 � γ2WL

is valid for all WL values in the figure. For a high-intensity
coupling field (40), the width of the first window reduces to

�̄1 = |�c|2
2
√

WL(2γ4 + WL)
. (43)

The formula for HWHM can be further simplified if WL � γ4,
thereby yielding

�̄1 = |�c|2
2WL

. (44)

FIG. 5. Numerical (dashed line) and analytical (dotted line)
solutions of the HWHM (�̄) for the (a) first and (b) second EIT
transparency windows vs Doppler width WL for γ4 = 18 MHz,
γ3 = 10 kHz, γ2 = 40 kHz, �c = γ4, �s = 0.35γ4, δs = 9 MHz, and
δc = 0. Inset: numerical (dashes) and analytical (dots) HWHM of the
second EIT window evaluated for the gain term eliminated.

This result is consistent with the previous result for a three-
level � atom, subject to a high-intensity driving field, for which
the linewidth is proportional to the intensity of the driving field
and inversely proportional to the Doppler width [12].

The HWHM of the second window of the Doppler-
broadened system has a more complicated form than for the
first window:

�̄2 = |�s|2
2

√
(γ4 + WL) + WL

[

̄2(γ4 + WL) − 1

2

]
4WLγ 2

4

[
1
2 − 
̄2(γ4 + WL)

] + |�s|2(γ4 + WL)
,

(45)

where


̄2 = η
√

π

4

{
2γ3WL + �2

s

(γ4 + WL)
(
γ3WL + �2

s

)
+ 2γ3WL(γ4 − WL) + �2

s (2γ4 − WL)

WL
[
γ3W

2
L + (WL − γ4)�2

s

] }
(46)

is the half-maximum value of Imχ̄p of the second window. The
dependence of the HWHM of the second window on Doppler
width is shown in Fig. 5. The width of the second window
slightly decreases as the Doppler width increases.

For large Doppler broadening WL � γ4, 
̄2 depends on the
population difference ρ11 − ρ33. As we set ρ11 ≈ ρ33 ≈ 0.5,

̄2 is always located at Imχ̄p ≈ 0, i.e., where absorption
vanishes. Consequently, the width of the second window
remains approximately constant with respect to Doppler width

�̄2 = |�s|2

2
√

2
√

γ 2
4 + 2 |�s|2

. (47)

This independence Doppler broadening width response of the
second window is due to the gain described by ImI2 of Eq. (36).
Expression (47) reveals that further reduction of the group
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velocity can be achieved by reducing the intensity of the signal
field without losing the transparency window due to Doppler
broadening.

The two EIT windows have the same width at the intercept
point between the two curves as shown in Fig. 5. For all
values of Doppler width, the signal field has lower intensity
than the coupling field. The inset to Fig. 5 shows how the
second window would behave as a function of WL if the
nonlinear contribution I2 were suppressed. This inset makes
clear how important the optical nonlinearity is for achieving
quite different temperature sensitivities of the two transparency
windows for the probe field. Mathematically, an effect of
forcing I2 ≡ 0 is that the HWHM of the second transparency
window is given by a modification of the HWHM of the first
window (42) with the proviso that �c is replaced by �s and γ2

is replaced by γ3.
For atoms copropagating with the probe field, the gain term

suppresses the narrowing of the width results from Doppler
broadening. Generalizing the choice of atomic propagation
direction relative to the direction of the three driving fields
would of course lead to different results [18].

In summary, Eq. (45) is the full expression of the HWHM of
the second transparency window and accounts for the nonlinear
interaction between the probe and the signal field. Its behavior
is depicted in Fig. 5 and shows the insensitivity of the second
transparency window on temperature, which is represented by
width WL. Contrariwise, the first window is sensitive to WL.

C. Group velocities at the transparency windows

From Sec. III A, we have approximate analytical expres-
sions for susceptibilities at the two transparency windows. In
this section, we determine the derivative of the susceptibility
with respect to the detuning δp and use these partial derivatives
of dispersion (19) to calculate the group velocities for the
probe field in each of the two transparency windows. The
response of the partial derivative of dispersion with respect to
Doppler-broadening system is shown in Fig. 6. In this figure,
numerical calculations show constant group velocity at the first
window and a sharply increased group velocity at the second
window.

FIG. 6. Plots of the numerical (dashed line) and analytical (dotted
line) results for the partial derivative of dispersion with respect to
Doppler width for (a) the first window and (b) the second window
for γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, �c = 1.5γ4, �s =
0.5γ4, δs = 13.5 MHz, and δc = 0. Inset: numerical (dashed line) and
analytical (dotted line) results for the partial derivative of dispersion
vs Doppler width at the second window for I2 ≡ 0.

The analytical expression for the group velocity of the
Doppler-broadened system is evaluated using Eq. (18) but
with the Doppler-broadened susceptibility (36) replaced the
free Doppler-broadened susceptibility χ (1)

p [4]. The partial
derivative of Re[χ̄p] at the center of the first window is

∂ Re[χ̄p]

∂δp

∣∣∣∣
δc

= η
√

π |�c|2
(γ2WL + |�c|2)2

(48)

and at the center of the second window is

∂ Re[χ̄p]

∂δp

∣∣∣∣
δs

= 2η
√

π |�s|2 γ4

(γ4 − WL)(γ3WL + |�s|2)2
+ 4η

√
π |�s|2γ4

WL|�s|4 .

(49)

For the first transparency window and for a strong coupling
field (40), the group velocity of the probe field at the center of
the first window has the same group velocity as for the Doppler-
free case (22). The negligibility of the Doppler broadening
effect is due to the intensity of the coupling field being large,
as can be explained from the analytical expression (48).

Figure 6 shows agreement between the analytical expres-
sion (48) and the full numerical result applicable for small
WL. This agreement diminishes slightly as WL increases.
Therefore, the Lorentzian function can be used to study the
Doppler-broadened dispersion response of the � configuration
comprising the three states |1〉, |2〉, and |4〉 provided that
condition (40) is satisfied.

Our analytical expression is reliable in practical parameter
regimes. This agreement between the analytical Lorentzian ap-
proximation and the full numerical result under condition (40)
is presented in Fig. 7 for varying coupling-field Rabi frequency.

We establish reliability of our approximation by comparing
to an approximate Lorentzian expression derived for a � EIT
system [4]. In our notation, their result for group index is

ng ∝ γ4|�c|2
[γ2(γ4 + WL) + |�c|2]2

(50)

with the relation between group index and derivative of
dispersion (48) given by Eq. (18). We can neglect γ4 from (50)
according to the approximation (15). Although result (50) is
derived for a � system and our result (48) for a � system, both
results pertain to an EIT window in a strong-coupling regime,
and the two Lorentzian-based approximations agree.

FIG. 7. Plot of the numerical (dotted line) and analytical (dashed
line) results for the partial derivative of dispersion vs coupling field at
the first window for Doppler width WL = 409 MHz, γ4 = 18 MHz,
γ3 = 10 kHz, γ2 = 40 kHz.
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At the second window, the analytical calculation fits the
numerical solution for all chosen Doppler widths in the figure.
Eliminating I2, (38) leads to an equation for group velocity
at the center of the second window being similar equation to
Eq. (48) but with �c replaced by �s and γ2 replaced by γ3.
Similar dependence on Doppler width is shown in the inset
of Fig. 6.

To achieve matched group velocity for the probe pulse
propagating through the first and through the second window,
a nonzero nonlinearity is required. The nonlinearity I2 is
zero only if the condition ρ44 = ρ33 = 0 is met. This case
for nonlinearity is depicted in the inset of Fig. 6. By fixing
ρ44 = ρ33 = 0 we have the unwanted additional effect of
violating condition (16) and thereby destroying the second
window.

The intercept point between the two curves shown in Fig. 6
reveals the operating temperature for group-velocity matching.
At temperatures exceeding the matched group-velocity case,
the group velocity in the first window is lower than the group
velocity for the second window and vice versa for temperatures
lower than the condition for matched group velocity.

In summary, we demonstrate three important points in
this section. First, the Lorentzian approximation is a useful
and valid approximation for studying the dispersion response
of the probe field as long as the conditions (40) and (41)
for I2 ≡ 0 [Eq. (38)] hold. Second, the second term of
Eq. (36) modifies the optical dispersion at the second window,
which leads to a capacity for group velocity control through
manipulating the temperature. Finally, due to nonlinearity,
a signal-field intensity less than the coupling-field intensity
does not necessarily imply that the probe field has lower
group velocity at the second EIT window than at the first
window.

D. Group-velocity reduction

In the previous Secs. III B and III C, we have studied the
behavior of the width and the group velocity for both EIT
windows of the probe field in Doppler-broadening media. We
have shown that a high-intensity coupling field is required
to overcome inhomogeneous broadening, which represents
an obstacle for group-velocity reduction. The width of the
second EIT window is independent of temperature, which
means that the enhanced group-velocity reduction is superior
to the case that would hold if the width did depend on
temperature as temperature dependence could only worsen this
effect.

In this section, we derive two expressions that relate the
signal-field Rabi frequency �s to the coupling-field Rabi
�c and Doppler width WL. Satisfying the first expression
guarantees that the probe field has the same group velocity in
each transparency window. Satisfying the second expression
guarantees the same HWHM for the two EIT windows.

The relation between �s and �c can be satisfied for a
wide range of temperatures bounded above and below by the
requirements for the analytical approximations to be valid
according to Eqs. (39) and (40). We then use these two
expressions to divide the signal-field intensity to three regimes:
a low-strength regime where the group velocity and EIT width
are lower than the first window, a high-strength regime where

FIG. 8. Plot of the partial derivative of dispersion (dotted-dashed
line) and HWHM (dashed line) for the second EIT window and
HWHM (upper horizontal dotted line) and partial derivative of
dispersion (lower horizontal dotted line) for the first EIT win-
dow vs normalized signal-field Rabi frequency with �c = γ4,
WL = 700 MHz, γ4 = 18 MHz, γ3 = 10 kHz, and γ2 = 40 kHz.

both group velocity and width of EIT window are greater than
for the first window, and a middle regime where the group
velocity is lower and the width is higher than for the first
window.

In Fig. 8, we plot the HWHM and partial derivative of
dispersion for the second EIT window using Eqs. (47) and (49),
respectively. We also plot the HWHM and partial derivative
of dispersion for the first EIT window. Intercepts between
lines show which signal-field Rabi frequencies yield matched
HWHM or group-velocity conditions. Matched HWHM oc-
curs at �sl and matched group velocity occurs at �sh with �sl

lower than �sh , and l and h refer to lower and higher values,
respectively. We can choose values of �s to control which of
the two windows has higher HWHM and group velocity.

We exploit our analytical expressions for the HWHM and
the group velocity at the center of each window to find the
lower and higher boundary values of the signal field. Equating
Eqs. (44) and (47) for real values of �c and �s gives us the
lower boundary value of �s:

�sl = 2
3
4 �c

√
γ4

WL
. (51)

Similarly equating Eqs. (48) and (49) gives us the higher
boundary value of �s:

�sh = 2

3

√
9

2
γ3WL + γ4�2

c

3WL

(
19 + 2γ4�2

c

W 2
Lγ3

)
. (52)

Equations (51) and (52) reveal which signal-field strength
should be selected to achieve either matched width or matched
group velocity, respectively.

At certain Doppler width, the boundary values of �s in
Eqs. (51) and (52) can be tuned by varying the coupling-field
strength �c. Both the matched group velocity and the matched
HWHM have lower value as �c is reduced.

In summary, our four-level atom optical system can be
operated at the second window in three different regimes
depending on the signal-field strength. In the low-strength
regime, the second window has very low group velocity
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compared to the first window but also has a lower EIT width.
However, we can operate in this regime for lower group
velocity as long as the width is resolvable experimentally.
Alternatively, in the high-strength regime, the second window
has a higher group velocity than for the first window. which
makes this high-strength regime less desirable for low group-
velocity experiments.

IV. CONCLUSION

We have achieved our objective of showing that the second
DDEIT window has advantages over first window with respect
to obtaining an enhanced reduction of group velocity. The
presence of a nonlinear interaction between the probe and
signal fields in optical susceptibility plays a crucial role in
enabling temperature-controlled modification of the optical
response. At the second window, this term signifies the ability
to reduce the narrowing of width and thereby yields increases
of the group velocity as the Doppler width increases. The
modified optical response due to nonlinear interaction permits
observing the second window for low intense signal field and
promises for more group velocities’ reduction in the second
EIT window.

By identifying the signal-field boundary values �sl and
�sh , we are able to identify the regime of the signal-field
strength values that could result in slower group velocity than
for the first window. The low-strength regime is the best for
realizing low group velocity, but the EIT window could be
difficult to resolve. The middle-strength regime is more robust
in that the second EIT window is expected to be resolvable and
the group velocity is expected to be low. The high-strength
regime is less interesting as the group velocity is relatively
high.

Our approximate analytical calculation succeeds in de-
scribing the optical response of the Doppler-broadened four-
level optical system and helps in analyzing the system in
the presence or absence of the nonlinear interaction. These
analytical calculations also provide us with intuition of how
the width or group velocities change in a Doppler-broadened
system. Importantly, our analytical expression helps us to study
the relation between the coupling and signal fields and to
achieve matching of either widths or the group velocities of
the two windows. These conditions are not intuitively clear
otherwise, and hence would be difficult to discern using only
numerical calculations.
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APPENDIX A: ATOM-FIELD HAMILTONIAN
AND EQUATIONS OF MOTION

The semiclassical Hamiltonian for the atom-field system
depicted in Fig. 1, within the dipole and rotating-wave
approximations, is

Ĥ (t) = Ĥ0 + Ĥdr(t) (A1)

with the free-atom Hamiltonian being

Ĥ0 = �

4∑
ı=1

ωıσ̂ıı , σ̂ıj := |ı〉〈j |, (A2)

and the driving interaction Hamiltonian is

Ĥdr(t) = �

2

(
�pe

iωpt σ̂14 + �ce
iωct σ̂24 + �se

iωst σ̂34 + H.c.
)
,

(A3)

with H.c. denoting the Hermitian conjugate. In the interaction
picture, with respect to the free-atom Hamiltonian (A2), the
atom-field system Hamiltonian has the form

V̂ (t) = �

2

(
�pe

−iδpt σ̂14 + �ce
−iδct σ̂24 + �se

−iδst σ̂34 + H.c.
)
.

(A4)

The Hamiltonian involves oscillatory terms at different
optical frequencies. Therefore, our next step is to find a
Hermitian operator to transform the interaction Hamiltonian
to a rotating frame in order to eliminate the time dependence.
Thus, we construct the rotating-frame operator

Â = 3δpσ̂11 + (2δp + δc)σ22 + (2δp + δs)σ̂33 + 2δpσ̂44 (A5)

and eliminate time dependence by the following rotating-frame
transformation

Ĥ ′(t) = eiÂt/�V̂ (t)e−iÂt/� − Â. (A6)

The resultant Hamiltonian is given by [8]

Ĥ ′ = Ĥ ′
0 + �

2
(�pσ̂14 + �cσ̂24 + �sσ̂34 + H.c.) (A7)

for

Ĥ ′
0 := δpcσ̂22 + δpsσ̂33 + δpσ̂44 (A8)

and δxy given in Eq. (5).
The resultant Lindblad master equation is [8]

ρ̇ = − i

�
[ρ,Ĥ ′] +

4∑
ı<j

γjı

2
(σıjρσjı − σjjρ − ρσjj )

+
4∑

j=2

γφj

2
(σjjρσjj − σjjρ − ρσjj ) (A9)

for ρ the state in the rotating frame. The Lindblad master
equation includes both spontaneous emission and dephasing,
where γjı is the decay rate of state |j 〉 → |ı〉 and γφı is the
dephasing of state |ı〉.

By substituting Eq. (A7) into (A9), we obtain 10 optical
Bloch equations. Six more optical Bloch equations are ob-
tained from complex conjugates of the six off-diagonal density
matrix expressions presented in the following. The 10 optical
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Bloch equations are

ρ̇12(t) =
(

−1

2
γ2 + iδpc

)
ρ12(t) − i

2
[−�∗

cρ14(t) + �pρ24(t)],

ρ̇13(t) =
(

−1

2
γ3 + iδps

)
ρ13(t) − i

2
[−�∗

s ρ14(t) + �pρ43(t)],

ρ̇14(t) =
(

−1

2
γ4 + iδp

)
ρ14(t)

+ i

2
{�cρ12 + �sρ13 + �p[ρ11(t) − ρ44(t)]},

ρ̇23(t) =
(

−1

2
�32 − iδsc

)
ρ23(t) − i

2
[�cρ43(t) − �∗

s ρ24(t)],

ρ̇24(t) =
(

−1

2
�42 + iδc

)
ρ24(t)

− i

2
{−�pρ21(t) + �c[ρ44(t) − ρ22(t)] − �sρ23},

ρ̇43(t) =
(

−1

2
�43 − iδs

)
ρ43(t)

+ i

2
{−�∗

cρ23(t) + �∗
s [ρ44(t) − ρ33(t)] − �∗

pρ13(t)}.
(A10)

Now, we present the equations of motion for the population
density matrix elements:

ρ̇11(t) = γ21ρ22(t) + γ31ρ33(t) + γ41ρ44(t)

− i

2
[�pρ41(t) − �∗

pρ14(t)],

ρ̇22(t) = −γ21ρ22(t) + γ32ρ33(t) + γ42ρ44(t)

− i

2
[−�∗

cρ24(t) + �cρ42(t)],

ρ̇33(t) = −γ31ρ33(t) − γ32ρ33(t) + γ43ρ44(t)

− i

2
[−�∗

s ρ34(t) + �sρ43(t)],

ρ̇44(t) = −γ4ρ44(t) − i

2
[�cρ24(t) − �∗

cρ42(t) + �sρ34(t)

−�∗
s ρ43(t) + �pρ14(t) − �∗

pρ41(t)]. (A11)

In summary, we reprise the master equation for a single tripod
(�) atom driven by three detuned fields and obtain the requisite
equations of motion for the density-matrix elements to solve
the dynamics.

APPENDIX B: DRESSED-STATE ANALYSIS
AND ATOMIC POPULATION

Here, we analyze the population of the � atom for various
driving-field strengths and different detunings of the probe
field. In Appendix B1, we investigate the atomic population
behavior using the dressed-state analysis and numerical calcu-
lations. We obtain general expressions for atomic populations
in steady state for three cases of probe-field detuning. In
Appendix B2, we introduce an analytical expression for the
case we studied in this paper, corresponding to the signal-
field strength being greater than the probe-field strength. In

Appendix B3, we study the Doppler effect on the atomic
population based on a numerical analysis.

1. General discussion of atomic population

Finding a general analytical expression for the atomic
population using Eqs. (A10) and (A11) is not feasible due to the
difficulties of decoupling the equations of motion of coherence
from those of the population. Therefore, we analyze the
dynamics of atomic population depending on the interpretation
from dressed-state analysis and numerical calculation of the
atomic population.

General expressions for the eigenstates of the Hamiltonian
(A7) are complicated. For simplicity, we choose to find the
eigenstates for the three following tractable cases.

a. δpc = 0

The first case δpc = 0, or, equivalently, δp = δc. We allow
δs to assume any different value. In this case, one of the
eigenvalues λ1 = 0 corresponds to eigenstate

|ψD〉 = − �∗
c√|�c|2 + |�p|2

|1〉 + �∗
p√|�c|2 + |�p|2

|2〉. (B1)

This eigenstate is a dark state as it does not contain a
contribution from state |4〉 and is not coupled to state |4〉.
This is obvious from studying the total dipole moment d4D for
a transition from state |ψD〉 to the bare state |4〉.

If the magnitudes of the coupling field and probe field are
appropriately balanced, the negative sign in the superposition
of |1〉 and |2〉 [Eq. (B1)], which forms the state |ψD〉, causes
the transition moment 〈ψD|d4D|4〉 to vanish. Therefore, if
the atoms are formed in this state there is no possibility of
excitation to |4〉, hence no absorption.

For the case that the coupling field is much stronger than
the probe field (�c � �p), state |1〉 is almost equivalent to
|ψD〉. Thus, atoms decaying to state |1〉 are trapped in this
state and remain there throughout the interaction. The atomic
probability of being in state |1〉

P1 = |〈1|ψD〉|2 = |�c|2
|�c|2 + |�p|2 (B2)

and being in state |2〉 is

P2 = |〈2|ψD〉|2 = |�p|2
|�c|2 + |�p|2 . (B3)

We numerically solve the master equation and plot atomic
populations in Fig. 9. After a time of order of the radiative
lifetime, the atoms should be trapped in the dark state |ψD〉,
which we verify by comparing the populations in Fig. 9
with the calculated dark-state populations. Vanishing of the
probe-field absorption Imρ14 supports the claim that the atom
has decayed into a dark state. Furthermore, state |4〉 does not
become populated.

For Fig. 9(a), the dark state is equivalent to state |1〉
whereas, for Fig. 9(b), it is a superposition of states |1〉 and
|2〉. The atoms are pumped into the state by combined action
of coupling signal and probe field and spontaneous emission
similar to optical pumping mechanism. At steady state, the
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FIG. 9. Populations of states |1〉 and |2〉 represented by ρ11

(dotted line) and ρ22 (dashed line), respectively, and absorption of
the probe field represented by 5 Im[ρ14] (solid line) as a function
of time t evaluated numerically by solving the master equation. (a)
Coupling field is stronger than the probe field with �c = γ4 and
�p = 0.3γ4. (b) Coupling and probe fields have the same strength
with �c = �p = γ4. The system is initially prepared with ρ

(0)
11 = 1

and ρ
(0)
22 = ρ

(0)
33 = ρ

(0)
44 = 0. The chosen parameters are γ4 = 18 MHz,

γ3 = 10 kHz, γ2 = 40 kHz, �s = 0.3γ4, δs = 0.5�c, δp = δc = 0.

distribution of atoms depends mainly on the magnitude of the
driving fields following the rule of Eqs. (B2) and (B3).

The other three eigenstates are

|ψı〉 =
�p|1〉 + �c|2〉 + λı�s

λı−δps
|3〉 + 2λı |4〉√

|�p|2 + |�c|2 + |�s|2|λı |2
|λı−δps|2 + 4|λı |2

(B4)

with eigenvalues λı (ı ∈ 2,3,4) where each {λı} is a root of the
eigenvalue equation

4λ3 − 4λ2(δps + δp) + λ(4δpsδp − |�c|2 − |�p|2 − |�s|2)

+ δps(|�c|2 + |�p|2) = 0. (B5)

In conclusion, detuning plays an important role in the distribu-
tion of atoms; thus when δpc = 0 and after a time of the same
order of atom relaxation time atoms are trapped to the dark
state and their distribution in the bare state |1〉 and |2〉 depends
on the magnitude of �c and �p, although the atoms are not
prepared in the dark state.

b. δps = 0

Now, we study the case that the probe and signal fields
are at the two-photon resonance with a |1〉 ↔ |3〉 transition;
i.e., δps = 0. We allow the coupling detuning δc to assume any
value. In this case, the Hamiltonian (A7) has an eigenvalue

λ′ = 0 with eigenstate

|ψ ′
D〉 = −�∗

s√|�s|2 + |�p|2
|1〉 + �∗

p√|�s|2 + |�p|2
|3〉 (B6)

and eignvalues λ′
ı (ı ∈ 1,2,3) with eigenstates

|ψ ′
ı 〉 =

�p|1〉 + λ′
ı�c

λ′
ı−δpc

|2〉 + �s|3〉 + 2λ′
ı |4〉√

|�c|2λ′2
ı

(λ′
ı−δpc)2 + |�p|2 + |�s|2 + 4λ′2

ı

, (B7)

where each λ′
ı is a root of the eigenvalue equation

4λ′3 − 4λ′2(δpc + δp) + λ′(4δpcδp − |�c|2 − |�p|2 − |�s|2)

+ δpc(|�s|2 + |�p|2) = 0. (B8)

The eigenstate |ψ ′
D〉 is also a dark state as it does not

contain a contribution from state |4〉 and is not coupled to
state |4〉.

Atomic populations for states |1〉 and |3〉 are calculated
numerically and shown in Fig. 10. At steady state the
atoms are trapped in the dark state |ψ ′

D〉 as long as the
coupling field is greater than or equal to the probe and to
signal field. We claim that the atom is trapped in the dark
state because, if instead the atom were in any one of the
bright states of Eq. (B7), the following phenomena would
arise:

(i) We would expect to see some population in states |2〉
and |4〉 whereas, in Figs. 10(a) and 10(b), the populations
of states |1〉 and |3〉 add almost to one, hence making the
combined population of states |2〉 and |4〉 nearly zero.

(ii) For the case that �c � �s > �p as shown in Fig. 10(c),
if the system is in a bright state, then the population in state |3〉
will exceed the population in state |1〉, i.e., ρ33 > ρ11, but the
opposite is true: most of the population has been transferred
to |1〉.

(iii) The absorption would not vanish for a bright state, but,
in Figs. 10(a)–10(c), absorption vanishes; hence, the atoms are
trapped in the dark state |ψ ′

D〉.
At steady state the populations in |1〉 and |3〉 are governed

by the signal- and probe-field Rabi frequencies according
to

P ′
1 = |〈1|ψ ′

D〉|2 = |�s|2
|�s|2 + |�p|2 (B9)

and

P ′
3 = |〈3|ψ ′

D〉|2 = |�p|2
|�s|2 + |�p|2 , (B10)

respectively.

c. δps = δpc = 0

The last case pertains to the three detunings are equal [7]
(δp = δc = δs), which results in zero two-photon resonance.
Two of the eigenstates are degenerate eigenstates with
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FIG. 10. Populations of levels |1〉 and |3〉 represented by ρ11

(dotted line) and ρ33 (dashed line), respectively, as a function of
time t evaluated numerically by solving the master equation. (a)
Signal- and probe-field strengths are of equal magnitude less than
coupling field, with �s = �p = 0.5γ4 while �c = γ4. (b) Coupling-,
signal-, and probe-field strengths are of equal magnitude �c = �s =
�p = 0.35γ4. (c) Signal-field strength is stronger than the probe field,
with �c = γ4, �s = 0.5γ4, and �p = 0.15γ4. Other parameters are
γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, δs = δp = 0.5�c, and
δc = 0. Initial populations are ρ

(0)
11 = 1 and ρ

(0)
22 = ρ

(0)
33 = ρ

(0)
44 = 0.

eigenvalues λ̃1 = λ̃2 = 0:

|ψ̃D1〉 = −�∗
s√|�s|2 + |�p|2

|1〉 + �∗
p√|�s|2 + |�p|2

|3〉,

|ψ̃D2〉 = �c�p|1〉 − (
�2

p + �2
s

)|2〉 + �c�s|3〉√
(|�c|2 + |�p|2 + |�s|2)(|�p|2 + |�s|2)

. (B11)

These two states are dark as neither contains contribution from
state |4〉 nor involve transitions to state |4〉. However, the rest
of the eigenstates retain a component of all the bare atomic
states:

|ψ̃±〉 = �p|1〉 + �c|2〉 + �s|3〉 ± 2λ̃±|4〉√
|�c|2 + |�p|2 + |�s|2 + 4(λ̃±)2

(B12)

with

λ̃± = 1
2

(
δp ±

√
δ2

p + �2
p + �2

c + �2
s

)
(B13)

the corresponding eigenvalues.
The steady-state atomic populations for the case

δp = δs = δc = 0 (B14)

are shown Fig. 11. In all cases, the atomic population is
distributed between states |1〉, |2〉, and |3〉 and excludes |4〉.
This exclusion suggests that, for all cases (a), (b), and (c),
atoms are trapped in the dark state |ψ̃D2〉, but we see now
that this guess could be true for case (a) but not for cases (b)
and (c).

In Fig. 11(b), we have �p,�c � �s which means that,
if the system is in dark state |ψ̃D2〉, then the population in
|1〉 must be higher. However, we see that the population of
state |3〉 is in fact higher and exhibits the opposite behavior
to that shown in Fig. 11(c). Thus, the system corresponding
to Figs. 11(b) and 11(c) could be trapped in |ψ̃D1〉. However,
the few populations in state |2〉 prevent us from making this
conclusion as well.

From this argument, we conclude that the system is not in
a pure dark state, but relaxes into a mixture of the two dark
states (B11) which is also a dark state given by

ρ̃D = pD1|ψ̃D1〉〈ψ̃D1| + pD2|ψ̃D2〉〈ψ̃D2|, (B15)

where pD1 is the probability of being in state |ψ̃D1〉 and pD2 is
the probability of being in state |ψ̃D2〉 such that

pD1 + pD2 = 1. (B16)

The probability for state |1〉 being populated is

P̃1 = 〈1|ρ̃D|1〉
= 1

|�p|2 + |�s|2
(

pD1|�s|2 + pD2|�p|2|�c|2
|�c|2 + |�p|2 + |�s|2

)
,

(B17)

for populating state |2〉 is

P̃2 = 〈2|ρ̃D|2〉

= pD2

∣∣�2
p + �2

s

∣∣2

(|�c|2 + |�p|2 + |�s|2)(|�p|2 + |�s|2)
, (B18)

and for populating state |3〉 is

P̃3 = 〈3|ρ̃D|3〉
= 1

|�p|2 + |�s|2
(

pD1|�p|2 + pD2|�s|2|�c|2
|�c|2 + |�p|2 + |�s|2

)
.

(B19)

The relation between P̃1, P̃2, and P̃3 is

P̃1 + P̃2 + P̃3 = 1 (B20)

from Trρ̃D = 1.
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FIG. 11. Populations of levels |1〉, |2〉, and |3〉 represented by
ρ11 (dotted line), ρ22 (dotted-dashed line), and ρ33 (dashed line),
respectively, as a function of time t evaluated numerically by solving
the master equation. The conditions are (a) �s = �p = 0.3γ4 and
�c = γ4, (b) �p,�c � �s with �c = �p = γ4 and �s = 0.3γ4, and
(c) �s,�c � �p with �c = �s = 1γ4 and �p = 0.3γ4. The initial
population is ρ

(0)
11 = 1 and ρ

(0)
22 = ρ

(0)
33 = ρ

(0)
44 = 0. Other parameters

are γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, δp = δs = δc = 0.
Insets (a), (b), and (c) are the absorptions represented by Imρ14.

FIG. 12. Numerically evaluated steady-state populations ρ11

(dotted line), ρ22 (dotted-dashed line), ρ33 (dashed line), and ρ44 (solid
line) vs probe-field detuning δp evaluated (a), (b) at zero temperature
and (c), (d) at 100 K. Parameter choices are (a) �s = �p = 0.3γ4.
(b) �s � �p, �s = 0.3γ4, �p = 0.01γ4, (c) �s = �p = 0.3γ4, and
(d) �s � �p, �s = 0.3γ4, �p = 0.01γ4. Other parameters are γ4 =
18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, and �c = γ4, δs = 0.5�c,
δc = 0.

We use numerical calculation of the population in state
|2〉 and Eq. (B18) to determine the value of pD2. Once pD2

is known, pD1 is calculated from Eq. (B16). The agreement
between the numerical values of ρ11 and ρ33 and the calculated
values of P̃1 and P̃3 using Eqs. (B18) and (B19), respectively,
verify that the system is in a mixture of the two dark
states (B11).

We see that, for certain two-photon detunings, the system
is eventually trapped in a dark state even if the atom has not
been prepared initially (at t = 0) in a dark state. The atom is
driven into the dark state by a combined action of coupling,
signal, and probe fields and by spontaneous emission similar
to that occurring through an optical pumping mechanism.

For stationary atoms (at low temperature), the steady-
state atomic population depends on probe-field detuning
due to dark-state dependence on probe-field detuning. Thus,
changing the probe-field detuning modifies the steady-state
population in each energy state, as long as the probe field has
comparable strength to the signal field even if both are quite
weak compared to the coupling field strength as shown in
Fig. 12(a). However, the dependence of the atomic population
on probe-field detuning decreases as the probe-field strength
become weaker than the signal-field strength; this feature is
evident by comparing Figs. 12(a) with 12(b). Almost all of
the population is evidently trapped in the dark state |ψD〉
when δpc = 0 and in dark state |ψ ′

D〉 when δps = 0. which
corresponds to state |1〉 when �s � �p.

2. Atomic population for probe-field strength weaker
than signal-field strength

In this section, we derive an analytical expression for atomic
populations for the case studied in our paper corresponding
to �c � �s � �p. The analytical expression can be found
by solving Eqs. (A10) and (A11) restricted to the case that
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�p ≡ 0:

ρ̇23(t) =
(

−1

2
�32 − iδsc

)
ρ23(t) − i

2
�cρ43(t),

ρ̇24(t) =
(

−1

2
�42 + iδc

)
ρ24(t)

− i

2
{�c[ρ44(t) − ρ22(t)] − �sρ23},

ρ̇43(t) =
(

−1

2
�43 − iδs

)
ρ43(t)

+ i

2
{−�∗

cρ23(t) + �∗
s [ρ44(t) − ρ33(t)]},

ρ̇11(t) = γ41ρ44(t),

ρ̇22(t) = γ42ρ44(t) − i

2
[−�∗

cρ24(t) + �cρ42(t)],

ρ̇33(t) = γ43ρ44(t) − i

2
[−�∗

s ρ34(t) + �sρ43(t)],

1 ≡ ρ11(t) + ρ22(t) + ρ33(t) + ρ44(t). (B21)

As we mentioned earlier, the |1〉 ↔ |2〉, |1〉 ↔ |3〉, and
|2〉 ↔ |3〉 transitions are dipole forbidden. Therefore, we
restrict γ21 = γ31 = γ32 = 0 in the above equation.

With initial population described by ρ11(0),ρ22(0),ρ33(0),
and ρ44(0), the atomic populations for the four atomic bare
states in the steady state are

ρ11 = γ41ZY

γ41ZY + γ43(X − Y )
,

ρ22 = γ41Zρ22(0) + [Z(Y − γ42) − Xγ43)(1 − ρ11(0)]

γ41ZY + γ43(X + Y )

+ Xγ41ρ33(0)

γ41ZY + γ43(X − Y )
,

ρ33 = Y [(Z + γ43)(1 − ρ11(0)) + γ41ρ33(0)]

γ41ZY + γ43(X − Y )
,

ρ44 = Z(1 − ρ11(0))Y

γ41ZY + γ43(X − Y )
, (B22)

with

X = |�s|2|�c|2(
�2

42 + 4δ2
c

) (
�2

32 + 4δ2
sc

)
⎡
⎢⎣

(
�43 + |�c|2�32

�2
32+4δ2

sc

)
(4δsδsc + �32�42)(

�43 + |�c|2�32

�2
32+4δ2

sc

)2
+ 4

(
|�c|2δsc

�2
32+4δ2

sc
− δs

)2

+
(

|�c|2δsc

�2
32+4δ2

sc
− δs

)
(4�32δc − �42δsc)(

�43 + |�c|2�32

�2
32+4δ2

sc

)2
+ 4

(
|�c|2δsc

�2
32+4δ2

sc
− δs

)2

⎤
⎥⎦ ,

Y = |�c|2�42

�2
42 + 4δ2

c

, (B23)

and

Z =
|�s|2

(
�43 + |�c|2�32

�2
32+4δ2

sc

)
(
�43 + |�c|2�32

�2
32+4δ2

sc

)2
+ 4

(
|�c|2δsc

�2
32+4δ2

sc
− δs

)2 . (B24)

Equations (B22) tell us that, for all probe-field detunings,
almost all the atomic population is in state |1〉 with almost no
population in state |3〉. This lack of population in |3〉 eliminates
the effect of the nonlinear signal-probe interaction described
by the second term of Eq. (4). As we require population in
|3〉, we introduce an always-on incoherent pump at rate r to
maintain population in |3〉.

The equations of motion of the density matrix elements
with the incoherent pumping are similar to those without
incoherent pumping Eqs. (A10) and (A11), differing only in
the replacement

γ4 → γ4 + 2r, γ3 → γ3 + r,

γ2 → γ2 + r, �34 → �34 + r. (B25)

The atomic population equations in the presence of the
incoherent pumping are modified as

ρ11 = ZY (γ41 + r)

Z (−rγ42 + 4rY + γ41Y ) + rγ43 (Y − X)
,

ρ22 = r [Z (Y − γ42) − γ43X]

Z (−rγ42 + 4rY + γ41Y ) + rγ43 (Y − X)
,

ρ33 = rY (Z + γ43)

Z (−rγ42 + 4rY + γ41Y ) + rγ43 (Y − X)
,

ρ44 = rZY

Z (−rγ42 + 4rY + γ41Y ) + rγ43 (Y − X)
(B26)

with X, Y , and Z defined in Eq. (B23) with replacement (B25).
The modified atomic population in the presence of inco-

herent pumping for the case �s � �p is shown in Fig. 13(a).
The existence of incoherent pumping makes the population
constant for all probe detunings. The value of the pumping
rate r controls the population in each state. We use r = 1 MHz
to populate states |1〉 and |3〉 with ρ11 = ρ33 = 0.44. At high
temperature, when the Doppler effect plays a critical role in

FIG. 13. Steady-state populations ρ11 (dotted line), ρ22 (dotted-
dashed line), ρ33 (dashed line), and ρ44 (solid line) vs probe-field
detuning δp for �s � �p in the presence of incoherent pumping with
constant rate r evaluated numerically by solving the master equation.
The solutions correspond to (a) low temperature for r = 1 MHz
and (b) for two temperatures 100 and 400 K with r = 0.01 MHz.
Other parameters are �s = 0.3γ4, �p = 0.01γ4, γ41 = γ42 = 6 MHz,
γ43 = 12 MHz γ3 = 10 kHz, γ2 = 40 kHz, and �c = γ4, δs =
13.5 MHz, δc = 0.
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repopulating the states, |3〉 can be repopulated to a value of
half using pump rate r as low as 1 kHz as shown in Fig. 13(b).

In this section, we have presented an incoherent pumping
procedure that maintains equal population between |1〉 and
|3〉 for a weak probe field. In the main body of the paper, we
did not treat pumping; instead, we assumed equal population
between |1〉 and |3〉. As we use an incoherent pump, we
should be concerned that coherence is affected, but we see
here that dephasing due to incoherent pumping is negligible
for reasonable parameters. Specifically, the extra dephasing of
system from incoherent pumping is of the same order as γφ3

for Doppler-broadened media [20].

3. Temperature dependence of atomic population

Increasing the temperature adds two more phenomena
to the atom-field system which we incorporated into an
extended quantum master equation. These two phenomena are
thermal dissipation and Doppler broadening. Our examination
of thermal dissipation shows that its effect is too weak to
influence substantially either the coherence or the population.
However, the second phenomenon of Doppler broadening
modifies the coherence, as presented from Sec. III onward
for equal populations in levels |1〉 and |3〉, is discussed in this
section in the absence of this equal-population restriction.

Finding an analytical expression for population in Doppler-
broadening medium is difficult. Therefore, we perform numer-
ical studies of atomic populations for various temperatures.
Now, we proceed to analyze the connection between atomic
population and coherence.

At high temperature, Doppler broadening reduces coher-
ence [21,22] and specifically directly reduces the coherences
ρ14 and ρ34 that are established by the weak fields. Con-
sequently the populations of the states |1〉 and |3〉 change
according to the solution of Eq. (A11). We see from the ap-
proximate analytical expression for optical susceptibility (36)
that increasing Doppler width WL in Eq. (36) is responsible
for reducing coherence.

Reduction of coherence and its consequent effects due
to Doppler broadening and to increasing Doppler width are
similar to the effects due to adding extra dephasing γφ41

between |1〉 and |4〉 and γφ43 between |3〉 and |4〉 plus
increasing the dephasing γφ2 between |1〉 and |2〉. In Fig. 14, we
present numerically evaluated atomic populations for different

FIG. 14. Numerically evaluated steady-state populations ρ11

(dotted line), ρ22 (dotted-dashed line),ρ33 (dashed line), and ρ44

(solid line) vs probe-field detuning δp at zero temperature and
incorporating dephasing γφ41 = γφ43 =150 MHz and γφ2 = 0.8 MHz.
The plots show (a) �s = �p = 0.3γ4 and (b) �s � �p, �s = 0.3γ4,
�p = 0.01γ4. Other parameters are γ4 = 18 MHz, γ3 = 10 kHz, and
�c = γ4, δs = 0.5�c, δc = 0.

probe field detunings δp at zero temperature accompanied by
additional dephasing quantified by γφ41 and by γφ43. We choose
the dephasing γφ41 and γφ43 in Fig. 14 to be of the same order
of magnitude of WL. We observe that Figs. 12(c) and 12(d) are
similar to Figs. 14(a) and 14(b).

a. �s = �p

At δp = δc = 0, the population of atoms in state |3〉
increases as temperature increases, as shown Fig. 12(c).
Increasing the temperature from 0 to 100 K decreases ρ11

from 1.0 to 0.7 while increasing ρ33 from 0.0 to 0.2. This
population change is due to reduction of the coherence ρ14.
The coherence ρ34 does not have an influence at δpc = 0.

The atom-field system is no longer in the pure dark state
|ψD〉. Increasing the temperature has the effect of displacing
the system from the dark state to different state, where
the absorption of the probe field increases. Thus, as the
temperature of the system increases, probe-field absorption
becomes very high, thereby potentially preventing the first
EIT window from being observed.

For δp = δs, the atomic population remains the same at
different temperatures, i.e., ρ11 = ρ33 = 0.5. Therefore, the
system remains trapped in the dark state |ψ ′

D〉 [Eq. (B6)].
The population at that detuning is less sensitive to Doppler
broadening. This insensitivity can be explained as resulting
from higher-order nonlinear interactions between the signal
and probe fields resulting from the coupling of ρ14 to ρ34

through the presence of the term ρ13 [8]. This coupling
eliminates the effect of Doppler broadening and eliminates
the dephasing by WL. Thus, at the second window, the dressed
atom-field dark state is stable with respect to the Doppler
effect, and this stability enables observing the second window
even at higher temperature.

b. �s � �p

For �s � �p, the term �pρ41(t) − �∗
pρ14(t) of Eq. (A11)

is neglected because its effect is very small. Therefore, for
this case, the coherence ρ14 has negligible effect on the atomic
population of state |1〉. Consequently, the population of |1〉 is
not affected by Doppler broadening at δp = δc.

Under the additional constraint that δps = 0, only ρ34 affects
the population by reducing ρ33, and, as ρ33 for the Doppler-free
atomic-field system is almost zero, reducing ρ34 thus has no
effect on the population of state |3〉. Hence, the population of
each level (A11) at zero temperature will be the same as for
the population at any higher temperature. At steady state, the
atoms are all trapped in the state |ψD〉 for δpc = 0 and to |ψ ′

D〉
for δps = 0.

APPENDIX C: ABSORPTION MAXIMA AND MINIMA

In this section, we show the calculations leading to closed-
form expressions for the heights, or maxima, of the two
absorption windows and also the nadirs, or minima, of these
absorption windows. These expressions are derived first for the
stationary atom and then generalized to the Doppler-broadened
case.
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1. Stationary atom

Identifying the maximum height hmaxı
and minimum height

hminı
of the ıth window is subtle because the two Lorentzian

transparency windows are cut asymmetrically into the overall
Lorentzian absorption peak corresponding to zero-coupling
field. First, we consider the ı = 1 case.

The maximum is calculated by setting �c = 0 = �s and
evaluating Eq. (11) at δp = δc = 0:

hmax1 = η
ρ11 − ρ44

γ4
. (C1)

The minimum hmin1 is determined by setting �s = 0 but
�c �= 0 and evaluating Eq. (11) at δp = δc = 0. We obtain

hmin1 = η (ρ11 − ρ44) γ2

γ4γ2 + |�c|2
γ2→0−−→ 0 (C2)

with zero absorption attained for γ2 = 0. If γ2 �= 0 but
condition (15) holds,

hmin1 → η (ρ11 − ρ44) γ2

|�c|2 , (C3)

and minimum absorption is reached.
The maximum and minimum of the first transparency

window are used to calculate the half-maximum


1 := hmax1 + hmin1

2
= η(ρ11 − ρ44)(2γ4γ2 + |�c|2)

2γ4(γ4γ2 + |�c|2)
. (C4)

Applying condition (15) yields


1 = η (ρ11 − ρ44)

2γ4
. (C5)

For the ı = 2 case, we have a Lorentzian transparency
window cut into the absorption curve corresponding to the
two conditions �s = 0 and �c �= 0 holding. For our case
of DDEIT, we set �c = 2δs, which establishes the second
transparency window centered at δp = δs, which is the point
that the maximum peak height hmax2 occurs. Therefore, hmax2

can be determined by calculating the �s = 0 absorption curve
value at δp = δs:

hmax2 = η
(ρ11 − ρ44)

(
γ4 + �2

cγ2

4δ2
sc

)
γ 2

4 + 4
(

�2
c

4δ2
sc

− δs

)2 . (C6)

Under the approximation that

γ4 � |�c|2
2δ2

sc

γ2

2
, (C7)

we obtain

hmax2 = η
ρ11 − ρ44

γ4
. (C8)

Thus, hmax1 ≈ hmax2 .
In order to calculate the minimum of the second trans-

parency window, we set �s �= 0 and �c �= 0 and evaluate
Imχ (1)

p from Eq. (11) at δp = δs to obtain the minimum

hmin2 = η

(
(ρ11 − ρ44) γ3

γ4γ3 + |�s|2 + (ρ44 − ρ33) |�s|2
�43(γ4γ3 + |�s|2)

)
. (C9)

The first term in the right-hand side of Eq. (C9) represents the
absorption minimum, whereas the second term represents the
maximum gain (negative absorption).

If we wish to reduce absorption, decay from level |3〉 must
be minimized, i.e., γ3 → 0. For the case γ3 �= 0, condition (16)
must be satisfied to minimize the absorption. As �43 ≈ γ4,
Eq. (C9) is simplified to

hmin2 = η

(
(ρ11 − ρ44) γ3

|�s|2 + ρ44 − ρ33

γ4

)
. (C10)

As ρ44 = 0 is assumed, gain exists only when

|ρ44 − ρ33|
γ4

� |ρ11 − ρ44|γ3

|�s|2 (C11)

or, equivalently, if

|ρ44 − ρ33|
|ρ11 − ρ44| � γ3γ4

|�s|2 . (C12)

In our case
|ρ44 − ρ33|
|ρ11 − ρ44| ≈ 1. (C13)

Therefore, we also require condition (16) in order to achieve
gain. The half-maximum is then


2 = η

[
(ρ11 − ρ44)(2γ4γ3 + |�s|2)

γ4(γ4γ3 + |�s|2)
+ (ρ44 − ρ33)|�s|2

�43(γ4γ3 + |�s|2)

]
.

(C14)

For condition (16) and γ4 � γ3,


2 = η
(ρ11 − ρ33)

γ4
. (C15)

For ρ11 ≈ ρ33, 
2 is located at zero absorption.

2. Doppler-broadened susceptibility

In the case of Doppler-broadened susceptibility, the absorp-
tion profile near the center (corresponding to zero velocity)
is quite flat. As the two windows occur near the center, the
maxima for both windows are the same. The maximum value
is calculated for �c = �s = 0 and for δp = δc:

hDmax1,2 = η
√

π (ρ11 − ρ44)

γ4 + WL
. (C16)

The minimum value of the first window is calculated for
�s = 0 and δp = δc:

hDmin1 = η
√

π (ρ11 − ρ44) γ2

|�c|2 + γ2 (γ4 + WL)
γ2→0−−→ 0, (C17)

which requires the condition |�c|2 � γ2 (γ4 + WL) to hold in
order to reach minimum absorption.

For γ2 �= 0, however, for WL � γ4, this condition can be
reduced to |�c|2 � γ2WL. If the intensity of the driving field
eliminates the inhomogeneous broadening due to Doppler
broadening, it certainly eliminates the homogeneous broad-
ening as well. The half-maximum of the first window is then
equal to


̄1 = η
√

π (ρ11 − ρ44)

2

2γ2WL + |�c|2
γ2W

2
L + |�c|2 (γ4 + WL)

. (C18)
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For ı = 2, the minimum is calculated for �c = 0 and
δp = δs with the result

hDmin2 = η
√

π

[
(ρ11 − ρ44) γ3

γ3 (γ4 + WL) + |�s|2

− (ρ44 − ρ33) |�s|2
γ3W

2
L + (WL − γ4) |�s|2

+ 2 (ρ44 − ρ33) |�s|2
WL(2γ3γ4 + |�s|2)

]
. (C19)

The first term in the right-hand side of Eq. (C19) represents
the absorption minimum. This term tends to 0 if γ3 → 0.

For the case of nonzero dephasing or relaxation decay
from state |3〉, condition |�s|2 � γ3 (γ4 + WL) is required to
minimize the absorption. For WL � γ4, this condition can be
reduced to (41). The last two terms of the right-hand side of
Eq. (C19) represent the maximum of the gain. After solving
some algebraic expressions, Eq. (C19) becomes

hDmin2 =η
√

π

[
(ρ11 − ρ44)γ3

γ3(γ4 + WL) + |�s|2 − (ρ44 − ρ33)|�s|2
WL(2γ3γ4 + |�s|2)

× 2γ3WL(γ4 − WL) + |�s|2(2γ4 − WL)

γ3W
2
L − |�s|2(γ4 − WL)

]
. (C20)

Now, we want to examine whether condition (41), for
γ3 �= 0, is required to observe gain of the Doppler-broadening
susceptibility. If not, then the existence of gain suppresses
absorption, and the second transparency window is observed
even if condition (41) fails. We evaluate Eq. (C20) for the
condition WL � γ4, in order to simplify the calculation, and
evaluate for condition (16), which is necessary to minimize
the absorption as shown earlier:

hDmin2 = η
√

π

[
(ρ11 − ρ44) γ3

γ3WL + |�s|2

− (ρ44 − ρ33)

WL

(
1 + γ3WL

γ3WL + |�s|2
)]

. (C21)

In order for gain to exist,

|ρ44 − ρ33|
WL

(
1 + γ3WL

γ3WL + |�s|2
)

� |ρ11 − ρ44|γ3

γ3WL + |�s|2 , (C22)

which can be simplified by rearranging terms and substituting
the quantity

|ρ44 − ρ33|
|ρ11 − ρ44| ≈ 1 (C23)

to yield

|�s|2 + WL

γ3WL
� 0. (C24)

Condition (C24) is always valid even if condition (41) is not
satisfied. Note that the derivation of inequality (C24) is based
on the validity of condition (16) for homogeneous broadening.
Therefore, condition (16) is required for the gain to exist in
our system, whereas condition (41) is not.

The half-maximum for the second EIT window, without
making any approximation, is


̄2 = η
√

π

2

{
(ρ11 − ρ44) [2γ3 (γ4 + WL) + |�s|2]

[γ3 (γ4 + WL) + |�s|2] (γ4 + WL)

+ (ρ44 − ρ33) |�s|2
WL(2γ3γ4 + |�s|2)

× 2γ3WL(γ4 − WL) + |�s|2(2γ4 − WL)

−γ3W
2
L + |�s|2(γ4 − WL)

}
. (C25)

Applying condition (16) simplifies this expression to


̄2 = η
√

π

2

{
(ρ11 − ρ44) (2γ3WL + |�s|2)

(γ3WL + |�s|2)(γ4 + WL)

+
[

2γ3WL(γ4 − WL) + |�s|2(2γ4 − WL)

−γ3W
2
L + |�s|2(γ4 − WL)

]

× ρ44 − ρ33

WL

}
, (C26)

which is the same as Eq. (46) for ρ11 = ρ33 ≈ 0.5 and ρ44 = 0.
For the condition that WL � γ4, Eq. (C26) reduces to


̄2 = η
√

π

2WL

(
2γ3WL + |�s|2
γ3WL + |�s|2

)
(ρ11 − ρ33) . (C27)

Thus, the half-maximum of the second EIT window for high
Doppler broadening depends on the population difference
between states |1〉 and |3〉. For equal population, the half-
maximum is always located at zero where absorption vanishes.
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