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We theoretically investigate the propagation of surface plasmon polaritons in an amplifying plasmonic
coupler (metal–amplifying dielectric–metal). We study the loss-compensated nonlinear stationary modes of the
system by deriving coupled-mode equations for the optical amplitudes, predicting the existence of a mode with
broken symmetry for gain values higher than a characteristic threshold. We analyze the stability of symmetric,
antisymmetric, and nonsymmetric modes by solving the linearized system for small perturbations and by
numerically integrating coupled-mode equations in propagation. We find that, while the antisymmetric mode
stays always stable or marginally stable, the stability of symmetric and nonsymmetric modes is more involved.
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I. INTRODUCTION

Plasmonics is one of the most developing research areas
of physics and aims at controlling and manipulating light
at the nano-scale. If plasmons—collective oscillations of
electrons—are coupled to the electromagnetic field nearby the
surface of a metal, exponentially localized surface plasmon
polariton (SPP) modes can be excited [1]. SPPs can confine
light in the subwavelength scale overcoming the natural limit
of light diffraction and are used as optical interconnects in
highly integrated optoelectronic circuits [2]. In addition, they
are responsible for several effects including extraordinary
optical transmission through subwavelength hole arrays [3],
perfect imaging [4], and giant enhancement of local fields [5].
In particular, the latter mechanism boosts all the nonlinear
processes [6], which can be exploited in several applications,
e.g., biosensing [7], ultrafast processing of optical signals [8],
and plasmon-soliton formation [9–11]. Besides, nonlinearity
can be exploited to achieve symmetry breaking and switching
in plasmonic arrays and couplers, thus enabling all-optical
control and manipulation of SPPs [12–17]. However, the
above mentioned applications are hampered by the presence
of large intrinsic ohmic losses of metals that damp the optical
signal [18]. In turn, several strategies have been proposed
to retain the subwavelength localization provided by SPPs
and overcome the loss barrier of metals, e.g., the suppression
of interband absorption through ultrashort self-induced trans-
mitted plasmon solitons [19]. Besides, substantial research
has been addressed to the study of plasmonic devices em-
bedding gaining media [20,21]. After the seminal discovery
of stimulated emission of localized surface plasmons [22],
amplification of SPPs has been theoretically predicted [23]
and experimentally observed in several setups, e.g., using
erbium ions [24], rhodamine [25], PbS (Lead sulfide) quantum
dots [26], and hybrid organic-inorganic polymers [27]. In
particular, the intrinsic nonlinearity of two-level gaining media
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enables stationary propagation of SPPs [28] and transverse
localization of dissipative plasmon solitons [29,30]. In this
context, the effect of metal nonlinearities [31–34] can be
disregarded, as the gaining two-level system is resonant and
its saturated nonlinearity plays a major role.

In this paper, we investigate SPP propagation in an ampli-
fying plasmonic coupler (metal–amplifying dielectric–metal).
We analyze the loss-compensated nonlinear stationary modes
of the system by deriving coupled-mode equations for the
left and right SPP amplitudes of the coupler. We demonstrate
the existence of three kinds of stationary dissipative modes:
symmetric, antisymmetric, and nonsymmetric modes, which
exist for gain values higher than a characteristic threshold.
The stability analysis shows that for zero detuning symmetric
or antisymmetric modes are marginally stable while nonsym-
metric modes are unstable. For negative detuning, we find
that antisymmetric modes are stable while symmetric modes
are unstable within a short range of gain values and stable
elsewhere. Conversely, nonsymmetric modes are stable only
within a short range of gain values and unstable elsewhere.
We confirm our predictions by integrating the coupled-mode
equations in propagation.

The paper is organized as follows: In Sec. II we describe
the physical setup under consideration, the transverse magnetic
(TM) Maxwell equations for SPPs, and the loss-compensated
linear modes of the system; in Sec. III we develop a coupled-
mode theory for right and left SPPs of the coupler and we
study the loss-compensated nonlinear stationary modes of the
system (accounting for gain saturation) and their stability.

II. SETUP

In the following we consider an amplifying plasmonic
coupler, composed of a transparent amplifying medium
embedded between two thick silver slabs; the setup is
sketched in Fig. 1. SPPs propagate along the z direction
and are exponentially localized along the x direction at the
two silver-dielectric interfaces x = ±a. Gain is provided
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FIG. 1. (Color online) Illustrative sketch of the structure ana-
lyzed in this work: a silver-based amplifying plasmonic coupler
supporting SPPs at every z-y interface. The dielectric medium
(center blue slab) embeds externally pumped active inclusions, which
amplify SPPs propagating along the z direction. The dielectric slab
of width 2a, sandwiched between two thick silver slabs, supports
SPPs at the left and right interfaces with optical amplitudes L, R. The
system is assumed homogeneous in the y,z directions and the silver
slabs are assumed infinitely extended in the x direction.

by externally pumped active inclusions embedded in the
sandwiched dielectric layer that can be modeled as a two-level
system. For continuous monochromatic waves oscillating with
angular frequency ω, the complex susceptibility εD of the
amplifying dielectric medium is inherently nonlinear [29]:
εD = εb + α(δ − i)/(1 + δ2 + |E/ES |2), where εb is the linear
permittivity of the hosting medium, α is the dimensionless
gain (rescaled to ω/c), c is the speed of light in vacuum, δ

is the dimensionless detuning from resonance ωR rescaled to
the dephasing rate T −1

2 [δ = T2(ω − ωR)], ES is the saturation
field, and Ee−iωt is the electric field of the optical wave. SPP
propagation is governed by Maxwell equations for TM waves:

∂2
xzEz − ∂2

zzEx = Dx/ε0, (1)

∂2
xzEx − ∂2

xxEz = Dz/ε0, (2)

where ε0 is the vacuum dielectric permittivity, x,z are the
dimensionless spatial coordinates [rescaled to (ω/c)−1], E =
(ExEz)T is the electric field, and D = (DxDz)T = ε0ε(x)E +
PNL is the displacement vector. Note that ∂y derivatives do not
appear as the system is assumed infinitely extended in the y

direction. The linear permittivity profile is ε(x) = εmθ (|x| −
a) + εdθ (a − |x|), where 2a is the thickness of the dielectric
layer, θ (x) is the Heaviside step function, εm = ε′

m + iε′′
m is the

dielectric constant of silver, and εd = εb + α(δ − i)/(1 + δ2)
is the linear permittivity of the gain medium. The nonlinear
polarization PNL = ε0(εD − εd )θ (a − |x|)E accounts for gain
saturation and focusing or defocusing nonlinearity of the gain
medium:

PNL = ε0α(i − δ)|E/ES |2E
(1 + δ2)(1 + δ2 + |E/ES |2)

θ (a − |x|). (3)

A. Loss-compensated linear modes

For weak optical fields much smaller than the saturation
field, gain saturation and focusing or defocusing nonlinearity

(accounted for by the nonlinear polarization PNL) can be
neglected. In this section we find the linear modes of the
system by taking the Ansatz E(x,z) = Ae(x)eiβz, where A is
the arbitrary mode amplitude, e(x) is the dimensionless mode
profile, and β is its corresponding propagation constant. In this
weak intensity limit, Maxwell equations for TM modes reduce
to

β2ex + iβ∂xez = ε(x)ex, (4)

iβ∂xex − ∂2
xxez = ε(x)ez, (5)

with the boundary conditions (BCs): εmex(−a−) =
εdex(−a+), εdex(a−) = εmex(a+), ez(±a−) = ez(±a+). Be-
sides, as we are looking for guided modes, we require that
|e| → 0 for x → ±∞. Under these constraints, Eqs. (4)
and (5) provide two solutions with opposite symmetry:

ex = iβ(qdεm + qmεd )

2qdqmεde−qda
[eqdx ± e−qdx]θ (a − |x|)

+ iβ

qm

eqma
[
eqmxθ (−x − a) ± e−qmxθ

(
x − a

2

)]
, (6)

ez = (qdεm + qmεd )

2qmεde−qda
[±e−qdx − eqdx]θ (a − |x|)

+ eqma[±e−qmxθ (x − a) − eqmxθ (−x − a)], (7)

where q2
d,m = β2 − εd,m, and the propagation constant β

satisfies the dispersion relation:

e2qda = ±qdεm − qmεd

qdεm + qmεd

. (8)

Note that the symmetries of longitudinal (ez) and transverse
(ex) electric field components are opposite. In what follows, we
refer to symmetric or antisymmetric modes as the modes where
the longitudinal component ez is symmetric or antisymmetric
(while ex is antisymmetric or symmetric).

The dimensionless propagation constant β is a complex
quantity: Its real part β ′ accounts for the SPP phase shift
while its imaginary part β ′′ accounts for damping (β ′′ > 0)
or gain (β ′′ < 0) depending on the net balance between the
ohmic losses of silver and the amplification provided by the
externally pumped active inclusions embedded in the dielectric
slab. Amplification basically depends on the gain parameter
α, which can be tuned by changing the external pumping
power. We denote by α0 the amplification threshold, where
β ′′ = 0 and stationary SPPs propagate in the coupler. We
have numerically calculated the amplification threshold α0 and
the corresponding phase shift (effective index) neff = β ′. In
Fig. 2(a), we plot the effective index and in Fig. 2(b) the gain
threshold of the symmetric (solid blue lines) and antisymmetric
(dashed red lines) modes versus the slab thickness 2a. The
black dotted lines represent (a) the effective index and (b)
the gain threshold of a single interface between silver and
the gaining medium. In our calculations we have assumed
that the gaining medium is rhodamine 6G (embedded within
a polymer matrix), operating at the resonant wavelength
λ = 530 nm (assuming zero detuning: δ = 0). The dielectric
constant of the hosting dielectric medium (polymer) was
assumed εb = 1.8, while the dielectric constant of silver at
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FIG. 2. (Color online) (a) Effective index neff and (b) amplifica-
tion threshold α0 as functions of the dielectric slab thickness 2a. Solid
blue (dashed red) lines represent symmetric (antisymmetric) modes
(the symmetry refers to the longitudinal field component ez). The
black dotted lines represent (a) the effective index and (b) the gain
threshold of a single interface between silver and the gaining medium.
In our calculations we have assumed λ = 530 nm, εm = −9 + 0.8i,
δ = 0, and εb = 1.8.

λ = 530 nm is εm = −9 + 0.8i [35]. The slab thickness is
expressed in dimensionless units [the physical thickness is
2a(ω/c)−1]. Note that, when the slab thickness is smaller than
2a � 2, the symmetric mode is cut off. When 2a � 10, SPPs
at the two left and right interfaces are almost uncoupled, and
both the effective index neff and the amplification threshold
α0 converge to the single-interface results. While in the fully
coupled case a ≈ 1 the dispersion relation is given by a
transcendent equation, in the limit of small coupling a � 1, it
is given by the simpler expression β = √

εdεm/(εd + εm), and
the amplification threshold is

α0 = 1

2ε′′
m

(|εm|2 − 2ε′′
mεbδ) +

− 1

2ε′′
m

√
|εm|4 − 4ε′′

mεb(ε′′
mεb + δ|εm|2). (9)

In Figs. 3(a) and 3(b), we depict the structure of the
symmetric (a) and the antisymmetric (b) modes for a = 5,
λ = 530 nm, εm = −9 + 0.8i, δ = 0, and εb = 1.8. Solid blue
[dashed red] lines represent the real part of the longitudinal
Re(ez) [transverse Re(iex)] components of the symmetric or
antisymmetric modes. Note that these modes are stationary,
as gain provided by the amplifying dielectric compensates for
ohmic losses of silver. In turn, phase is not conserved in the
x direction and the imaginary parts of the mode components
[Im(iex), Imez] are also x dependent. Indeed, this phase flow
accounts for the exact power transfer (in the x direction)
from the amplifying medium to the surrounding silver that is
necessary for stationary propagation to occur. The longitudinal
or transverse power transfer in the z/x directions is described
by the Poynting vector:

S = Sxx̂ + Szẑ

= 1

2
Re[E × H∗] = |A|2

2cμ0
Re[−h∗

yezx̂ + h∗
yex ẑ], (10)

where H is the magnetic field in the y direction, μ0 is
the vacuum magnetic permeability, x̂,ẑ are the x,y unit
vectors, and hy = βex + i∂xez. In turn, apart from the arbitrary
dimensional factor |A|2/(2cμ0), the x-dependent profile of the
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FIG. 3. (Color online) (a) and (b) Profiles of (a) symmetric and
(b) antisymmetric modes for a = 5. Solid blue (dashed red) lines
represent the real part of the longitudinal Re(ez) [transverse Re(iex)]
components of the symmetric or antisymmetric modes. (c) and (d)
Profiles of the (c) longitudinal (sz) and (d) transverse (sx) components
of the dimensionless Poynting vector (s) for a = 1. Solid blue
(dashed red) lines represent symmetric (antisymmetric) modes. Other
parameters used in our calculations coincide with the ones used in
Fig. 3.

Poynting vector is accounted for by the dimensionless quantity,

s = sxx̂ + szẑ = Re[−h∗
yezx̂ + h∗

yex ẑ]. (11)

In Figs. 3(c) and 3(d), we depict the structure of (c)
longitudinal (sz) and (d) transverse (sx) components of the
dimensionless Poynting vector (s) for a = 1, λ = 530 nm,
εm = −9 + 0.8i, δ = 0, and εb = 1.8. Solid blue (dashed
red) lines represent symmetric (antisymmetric) modes. The
longitudinal component sz is symmetric for both symmetric
and antisymmetric modes: It is positive within the amplifying
dielectric (forward propagation) and negative in the outer
silver (backward propagation). However, the power density
pz = ∫ +∞

−∞ szdx stays positive and SPPs effectively propagate
in the forward direction. The transverse component sx is
antisymmetric for both symmetric and antisymmetric modes,
meaning that for these stationary modes there exists an outward
power flow from the center of the amplifying medium (x = 0)
towards the outer metal regions (|x| > a).

III. COUPLED-MODE THEORY

When the thickness of the dielectric slab is much longer
than the field penetration depth (a � 1), the field overlap
and the resulting coupling between adjacent SPPs at left
and right interfaces are small. In turn, for weak optical
fields much smaller than the saturation field (|E | 
 ES)
optical propagation can be modeled in terms of coupled-
mode equations (CMEs) [14,36]. In this limit, the full-
saturated dielectric permittivity of the gaining medium can
be approximated by its first-order Taylor expansion in terms
of |E/ES |2: εD � εb + 
εd + χ3|E |2, where 
εd = α(δ −
i)/(1 + δ2) accounts for linear gain and phase shift, while
the third-order susceptibility χ3 = α(i − δ)/(ES + δ2ES)2
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accounts for focusing or defocusing nonlinearity (depending
on the sign of the detuning δ) and nonlinear saturation of the
gain. Thus, the linear dielectric permittivity can be expressed
as the sum ε(x) = εA(x) + 
ε(x), where εA(x) = ε′

mθ (|x| −
a) − εbθ (a − |x|) and 
ε(x) = iε′′

mθ (|x| − a) + 
εdθ (a −
|x|). Besides, the nonlinear polarization is approximated by
PNL ≈ ε0χ3|E |2Eθ (a − |x|).

CMEs are derived through a multiple-scale expansion, by
assuming that the effects of metal losses and of the active
inclusions embedded in the dielectric medium are small:
|
εE |,|PNL/ε0| 
 |εAE |. Introducing the small dummy vari-
able s, we make the following Ansatz:

E = ES[L(z)eL(x) + R(z)eR(x) + 
E]eiβ0z + o(s5/2),

(12)

where eL,R are the unperturbed mode profiles of left and right
interfaces, L,R are the left and right mode amplitudes, β0 is the
unperturbed propagation constant, and 
E is the residual field
correction. For the development of the multiscale expansion
we assume that

|L|,|R| ∼ o(s1/2), |
ε|,e−2qda ∼ o(s), (13)

|∂zL|,|∂zR|,|
E| ∼ o(s3/2). (14)

The left and right SPP amplitudes L(z),R(z) and mode profiles
eL,R are dimensionless, while the physical dimensions are
carried by the saturation field ES . The assumption that e−2qda

is small and of the same order of |
ε| states quantitatively the
approximation of weak overlap between adjacent SPPs.

A. Linear modes and dispersion: o(s1/2) order

At the o(s1/2) order, left (L) and right (R) SPPs are
uncoupled. Inserting the Ansatz given by Eq. (12) in Eqs. (1)
and (2) one gets the linear system of differential equations
L̂kek = 0, where the labels k = L,R correspond to left and
right SPPs, ek are the uncoupled linear mode profiles ek =
(ek,xek,z)T , and

L̂k =
(

β2
0 − εk iβ0∂x

iβ0∂x −εk − ∂2
xx

)
. (15)

The unperturbed dielectric permittivity profiles εk(x) =
εL,R(x) represent single isolated left and right interfaces
and are explicitly given by εL = ε′

mθ (−x − a) + εbθ (x + a),
εR = ε′

mθ (x − a) + εbθ (−x + a). BCs at o(s1/2) order require
the continuity of ek,z and εkek,x at the interfaces x = ±a. In
turn, solving the linear system L̂kek = 0 and using the BCs
above one gets

eL(x) =
(

iβ0

qd

1

)
e−qd (x+a)θ (x + a)

+
(− iβ0

qm

1

)
eqm(x+a)θ (−x − a), (16)

eR(x) =
(

iβ0

qm

1

)
e−qm(x−a)θ (x − a)

+
(− iβ0

qd

1

)
eqd (x−a)θ (−x + a), (17)

where q2
d,m = β2

0 − εd,m and β0 = √
εbε′

m/(εb + ε′
m) is the di-

mensionless single-interface dispersion law of SPPs [rescaled
to (ω/c)−1]. Note that the expressions above are directly
related to the linear modes derived in Sec. II in the limit of
small evanescent coupling and vanishing dielectric gain and
metal loss.

B. Solvability condition and CMEs: o(s3/2) order

At the o(s3/2) order, the linearized Maxwell equations for
the residual field 
E = (
Ex
Ez)T yield

L̂A{
E + ES[LeL + ReR]} + ESF̂ [LeL + ReR] +
−χ3E

3
S[|L|2L |eL|2 eL + |R|2R |eR|2 eR] = 0, (18)

where

F̂ =
(−
ε − 2iβ0∂z ∂2

xz

∂2
xz −
ε

)
. (19)

Note that the linear operator,

L̂A =
(

β2
0 − εA iβ0∂x

iβ0∂x −εA − ∂2
xx

)
, (20)

does not coincide with the operators L̂L,R . Indeed, L̂A depends
on the complete dielectric permittivity profile εA, while
L̂L,R depend on the isolated left and right single-interface
profiles εL,R . In turn, the linear o(s1/2) order modes eL,eR

are not eigenvectors of the operator L̂A, which accounts
for the coupling terms between adjacent SPPs. Nonlinear
BCs imply the continuity of Ez and ε0ε(x)Ex + PNL,x at the
interfaces x = ±a [retaining only o(s3/2) terms]. Following
the mathematical procedure reported in Refs. [37,38], we take
the scalar product of Eq. (18) with the single-interface o(s1/2)
modes eL,eR . Nonlinear BCs enter the off-integral terms
arising from integration by parts, which is applied to calculate
the scalar products. Thus, coupling between adjacent SPPs
is accounted for by the dimensionless coefficient [rescaled to
(ω/c)−1],

κ = β0

∫ +∞
−∞ dxe∗

L(x) · L̂AeR(x)

2
∫ +∞
−∞ dxεA(x)|eR,x |2

= 2β3
0e−2qda

εb − ε′
m

. (21)

After taking the scalar products, one finds the CMEs for left
and right SPPs as the solvability condition of the multiple-scale
expansion:

i
dL

dz
= iηL − κR − γ |L|2L, (22)

i
dR

dz
= iηR − κL − γ |R|2R, (23)

where

η = β3
0

2

[
α(1 + iδ)

ε2
b (1 + δ2)

− ε′′
m

(ε′
m)2

]
, (24)

γ = α
(i − δ)

(1 + δ2)2

ε′
mβ0

(
q2

d + β2
0

)
4q2

d εb(εb + ε′
m)

. (25)
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C. Loss-compensated nonlinear modes

In principle, the nonlinear stationary modes of the system
can be thoroughly calculated under full-saturated conditions
by numerically solving the full vectorial Maxwell equa-
tions [39]. However, CMEs are very useful to model optical
propagation in plasmonic systems, as they enable the straight-
forward calculation of modes and can be numerically inte-
grated rather easily. In Sec. II, we derived loss-compensated
linear modes and their dispersion by neglecting the effect
of gain saturation. Nonlinear CMEs derived in the previous
section account for gain saturation in the approximation that
the electric field is much smaller than the saturation field
|E | 
 ES . If one wants to focus on the linear amplification
regime, nonlinear effects can be artificially disregarded by
setting γ = 0. In this case, the CMEs above thoroughly
reproduce results of Sec. II in the limit of small coupling.
Conversely, when nonlinear effects are retained, one can cal-
culate the loss-compensated nonlinear modes of the plasmonic
coupler by taking the Ansatz L(z) = L0e

i
βz, R(z) = R0e
i
βz,

where L0, R0 are the complex mode amplitudes and 
β is
the correction to the unperturbed propagation constant β0.
Inserting the Ansatz above into Eqs. (22) and (23) one gets
a nonlinear system of two complex algebraic equations in one
real unknown 
β and two complex unknowns L0,R0:

[−
β − iη + γ |L0|2]L0 + κR0 = 0, (26)

[−
β − iη + γ |R0|2]R0 + κL0 = 0. (27)

However, as the system above is invariant under an arbitrary
constant phase transformation L0 → L0e

iϕ , R0 → R0e
iϕ , it

is possible to set one amplitude to be real and without any
loss of generality we set L0 ∈ Re. In turn, the system reduces
to two complex equations (four real equations) in two real
variables 
β,L0 and another complex variable R0 (two real
variables). Thus, owing to the dissipative nature of our system,
for every fixed set of parameters η,κ,γ , only a discrete amount
of nonlinear modes exist. Symmetric and antisymmetric mode
families can be calculated straightforwardly:

L0 =
√

η/γ ′′, R0 = ±L0, (28)


β = ±κ + η′′ + η′ γ
′

γ ′′ . (29)

Besides, in order to find further nonsymmetric solutions,
we have numerically solved Eqs. (26) and (27) by using
the Newton-Raphson method; results of our calculations are
plotted in Fig. 4. In the panels of Fig. 4, we plot the
dimensionless power density [rescaled to (2μ0ω)/E2

S]:

pz = (|L0|2 + |R0|2)
β0εb(εb − ε′

m)

2q3
dq

2
m

, (30)

versus [Figs. 4(a) and 4(c)] the gain parameter α and
[Figs. 4(b) and 4(d)] the semithickness of the dielectric slab
a. The full dimensional power density is simply given by
Pz = E2

S/(2μ0ω)pz. Solid blue (dashed black) lines represent
symmetric and antisymmetric (nonsymmetric) mode families.
In our calculations we used the parameters εb = 1.8, εm =
−9 + 0.8i; Figs. 4(a) and 4(b) λ = 530 nm, δ = 0; and
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FIG. 4. (Color online) Families of dissipative nonlinear modes.
Dimensionless power pz versus (a) and (c) gain parameter α for a = 3,
and (b) and (d) semithickness of the dielectric slab a for α = 0.15.
Solid blue lines represent families of antisymmetric and symmetric
modes (which have the same power in the weak coupling regime
considered here), while black dashed lines represent nonsymmetric
mode families. In our calculations we used εb = 1.8, εm = −9 + 0.8i,
(a) and (b) λ = 530 nm, δ = 0, and (c) and (d) λ = 532 nm, δ = −1.

Figs. 4(c) and 4(d) λ = 532 nm, δ = −1 [δ = T2(ω − ωR), for
rhodamine 6G the resonant wavelength is λR = 530 nm, and
the dephasing time is T2 = 80 fs [40]]. For these parameters,
the coefficients of the CMEs are κ = 0.01; Figs. 4(a) and 4(b)
η = 0.06, γ = 0.24i; and Figs. 4(c) and 4(d) η = 0.02 −
0.04i, γ = 0.06 + 0.06i.

We have studied the stability of these nonlinear stationary
mode families under small perturbations by taking the Ansatz,

L(z) = [L0 + 
L1e
μz + 
L∗

2e
μ∗z]ei
βz, (31)

R(z) = [R0 + 
R1e
μz + 
R∗

2e
μ∗z]ei
βz, (32)

where 
L1,
L2,
R1,
R2 are arbitrary small perturbations
and μ = μ′ + iμ′′ is the complex instability eigenvalue (the
nonlinear mode is unstable when the real part of the instability
eigenvalue is positive μ′ > 0). Inserting the Ansatz above in
Eqs. (26) and (27) and linearizing with respect to the small per-
turbations 
L1,
L2,
R1,
R2, one gets the linear eigenvalue
problem M̂
L = μ
L, where 
L = (
L1
L2
R1
R2)T

and we omit the cumbersome expression of the instability
matrix M̂. We have numerically found the eigenvalues μ for
every mode family, being able to determine their stability. We
found that in the resonant case δ = 0 [Figs. 4(a) and 4(b)]
the symmetric and antisymmetric modes are marginally stable
(μ′ = 0), while the nonsymmetric modes are always unstable.
Conversely, in the down-detuned case δ = −1 [Figs. 4(c)
and 4(d)], the antisymmetric mode is always stable while
the stability features of symmetric and nonsymmetric modes
are more involved. Indeed, for every fixed semithickness
parameter a, there exists a range of gain values where the
symmetric mode is unstable (stable otherwise), while the
nonsymmetric mode is stable only in a finite range of gain
values above his onset threshold (unstable otherwise). For
example, for a = 3 [see Fig. 4(c)] the symmetric mode (solid
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FIG. 5. (Color online) Propagation plots are as follows: z evolu-
tion of left |L| (solid blue curves) and right |R| (dashed red curves)
amplitudes for the slab semithickness a = 3 and gain parameters
(a) α = 0.072, (b) and (c) α = 0.11, and (d) α = 0.119. In our
calculations we used εb = 1.8, εm = −9 + 0.8i, λ = 532 nm, and
δ = −1.

blue line) is unstable within the range 0.071 < α < 0.087
(stable otherwise), and the nonsymmetric mode (dashed black
line) is stable within the range 0.106 < α < 0.120 (unstable
otherwise).

In order to validate our calculations and to verify the
predicted stability features of nonlinear modes, we numer-
ically integrated Eqs. (22) and (23) using a fourth-order
Runge-Kutta algorithm. Results are depicted in the panels
of Fig. 5, plotting the z evolution of left |L| (solid blue
curves) and right |R| (dashed red curves) amplitudes for the
slab semithickness a = 3 and gain parameter (a) α = 0.072,
(b) and (c) α = 0.11, and (d) α = 0.119. Our calculations
were performed in the down-detuned case δ = −1, where
we assumed the same physical parameters used in Fig. 4.
In Fig. 5(a) the gain parameter was set to α = 0.072, where
the nonsymmetric mode does not exist and the symmetric
mode is unstable. The initial condition was set as a small
perturbation of vacuum L(0) = R(0) = 1 × 10−3. Note that,
after a propagation of about z = 6000, the system evolves to
a stable antisymmetric state where |L| = |R|, in agreement
with predictions of the linear stability analysis. In Figs. 5(b)
and 5(c) the gain parameter was set to α = 0.11, falling within
the stability domain 0.106 < α < 0.120, where all modes

(symmetric, antisymmetric, and nonsymmetric) are stable.
In this case, the z evolution of the system highly depends
on the input conditions. When the input condition is set
as a small perturbation of vacuum, e.g., L(0),R(0) ≈ 10−3,
we observe that the system evolves to a stable symmetric
or antisymmetric state |L| = |R| [see Fig. 5(b)], depending
on the particular perturbation. Conversely, for a finite input
condition far enough from the symmetric and antisymmetric
modes, e.g., L(0) = 0.52, R(0) = 0.54, we observe that the
system evolves to a stable nonsymmetric state |L| = |R| [see
Fig. 5(c)]. Besides, for gain parameters close to the upper edge
of the stability domain 0.106 < α < 0.120, e.g., α = 0.119
[see Fig. 5(d)], we observe that the system spontaneously
evolves to a stable nonlinear oscillatory state with periodic
oscillations in the optical amplitudes |L|, |R|. This scenario,
resembling nonlinear beating in conservative couplers, is quite
uncommon in dissipative systems such as the active plasmonic
coupler considered in our calculations.

IV. CONCLUSIONS

In this paper we have investigated the propagation of surface
plasmon polaritons in a metal-dielectric-metal plasmonic
coupler. We have derived the loss-compensated nonlinear
stationary modes of the system by developing a coupled-mode
theory for the optical amplitudes. We have predicted the
existence of a mode with broken symmetry for gain values
higher than a characteristic threshold. We have studied the
stability of symmetric, antisymmetric, and nonsymmetric
modes by solving the linearized system for small perturbations
and by numerically integrating coupled-mode equations in
propagation. We found that the stability features of symmetric
and nonsymmetric modes are involved in the down-detuned
case. In particular, the nonsymmetric mode is stable only
within a specific gain window. Within this particular gain
range, we observe that the longitudinal evolution in the coupler
highly depends on the input conditions, and that the system can
evolve either to a symmetric, antisymmetric or nonsymmetric
state or it can sustain stable oscillation cycles.
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