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Nonclassical light from few emitters in a cavity
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We study the characteristics of the light generated by a few emitters in a cavity at strong light-matter coupling.
By means of the Glauber g® function we can identify clearly distinguished parameter regimes with super-
Poissonian and sub-Poissonian photon statistics. We establish a relation between the emission characteristics
for one and multiple emitters and explain its origin in terms of the photon-dressed emitter states. Cooperative
effects lead to the generation of nonclassical light already at reduced light-matter coupling if the number of
emitters is increased. Our results are obtained with a full input-output formalism and master equation valid also
at strong light-matter coupling. We compare the behavior obtained with and without counterrotating light-matter-
interaction terms in the Hamiltonian and find that the generation of nonclassical light is robust against such
modifications. Finally, we contrast our findings with the predictions of the quantum optical master equation and

find that it fails entirely at predicting regimes with different photon statistics.
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I. INTRODUCTION

Two-level emitters interacting with a cavity photon mode
are widely studied in quantum optics with respect to spon-
taneous emission and superradiance [1-4], cooperativity and
lasing [5-7], and the emission of nonclassical light [8—10].
For sufficiently weak light-matter coupling, when the photon
dressing of emitter states is negligibly small, the emitter-cavity
system can be studied with the quantum optical master
equation, usually in combination with the rotating-wave
approximation [11]. The quantum optical master equation fails
at strong light-matter coupling to the extent that it predicts
unphysical emission at zero temperature if the number of
photons in the ground state is finite [12—14].

The correct theoretical description of systems with (ul-
tra)strong light-matter coupling [15-18] has attracted in-
creasing interest recently [19-24]. Essentially, the quantum
optical master equation has to be replaced by a master
equation expressed in the photon-dressed emitter eigenstates
[24-29]. While the master equation remains Markovian, which
is justified because of the weak emitter-environment and
cavity-environment couplings [11,25], it now requires full
diagonalization of the interacting emitter-cavity Hamiltonian.
Such an equation was used in recent studies of photon blockade
effects [19], spontaneous conversion of virtual to real photons
[20,21], and the emission of nonclassical light from a single
emitter [22].

In this paper we study the emission of a few emitters in
a cavity, with particular focus on the photon statistics of the
emitted light. Our goal is the characterization of temperature
and coupling regimes where nonclassical light [30,31] is
generated. A major result will be the identification of two
clearly distinguished neighboring regimes with pronounced
sub-Poissonian and super-Poissonian photon statistics at
strong coupling.

Our results are obtained with the full input-output for-
malism [32-35] and master equation [24-29] without further
approximations. To understand the relevance of the differ-
ent approximations involved in traditional quantum optics
treatments we make two comparisons. First, we compare the
results that are obtained when the counterrotating light-matter
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interaction terms are included in the Hamiltonian to those when
they are dropped. Second, we contrast the results obtained with
the full master equation with results from the quantum optical
master equation. The latter comparison will clearly show the
necessity of using the correct master equation already at weak
coupling if the photon statistics is of interest. This issue has
been studied conclusively for a single emitter in Ref. [22],
which also contains Glauber function plots for few emitters in
the supplemental material but omits the further analysis of the
situation that we give here.

This paper is organized as follows. In Sec. II we introduce
the physical situation under study together with the master
equation used for its analysis. In Sec. III we discuss the
emission spectra in relation to the energy spectra of the
emitter-cavity Hamiltonian, while the statistics of the emitted
photons is studied in Sec. IV. We conclude in Sec. V.
The appendixes collect further information on the theoretical
approach. Appendix A gives details of the input-output
formalism. In Appendix B we derive the master equation,
and we give a few analytical results for the photon statistics in
Appendix C.

II. THE PHYSICAL SITUATION

The interaction of N two-level emitters with a single cavity
photon mode is described by the Dicke model [36],

N N
H = a)CaTa + w, Zaj_j)aﬁj) +g Z(atay) + aafrj))
j=1 j=1

N
+8') (@ +alol)), (D

j=1

where the operator a'? annihilates (creates) a cavity photon
with frequency o, and o (oij )) is the corresponding
lowering (raising) operator for the jth emitter with transition
energy w,. Throughout this work, we consider the resonant
case wy = w, = wy,. We allow for different emitter-photon
coupling strengths for the corotating (g) and counterrotating
(g') interaction terms. Changing g’ relative to g interpolates
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between the Tavis-Cummings (TC) limit (g’ = 0) without
and the Dicke limit (g’ = g) with counterrotating terms.
Both situations can be realized experimentally [37,38]. The
rotating-wave approximation consists in replacing the Dicke
by the TC limit.

Dissipation arises from the coupling of the emitters and
the cavity to the environment. For a bosonic environment the
coupling terms are of the form

Hy =—iS»  h(by — b)), )

where S is a (Hermitian) emitter or cavity operator and (! are
bosonic operators for the environment photons (at frequencies
w, with coupling constants A,). As the operator S we choose
the field operator X = —i Xo(a — a') for the coupling of the
cavity and the transition operator a“(,j b= (afrj) — o) for the
coupling of the jth emitter to the environment.

At sufficiently weak coupling to the environment, the
emitter-cavity system density matrix o obeys a Markovian
master equation [24-29],

d ) 1
PO =—ilH,p(0] =i ; E(@)[S] Su, p(1)]

1
+5 ; X(@)[So0(), S5+ [S,,p0)SIT),  (3)

where

Sw =Y lm)(m|SIn)(n|8, £, .« “4)

m,n

is the projection of S onto transitions between eigenstates
|m), |n) of H with energy difference w,,, = E, — E,, (see
Appendix B for a derivation). For the sake of notational sim-
plicity we state the master equation for a single coupling term
(2). Multiple coupling terms lead to additional contributions
of the same form.

The functions x(w) and &(w) in Eq. (3) follow from the
environment spectral function

(@) =21 ) 80— w) (5)

and its analytical continuation I'(w) into the upper half plane,
with y(w) = FIm (& + i0T). For a thermal environment
with inverse temperature 8 = 1/T we get

oy [r@mE@ D1
X y(—on(—w.T)

ifw >0,

(6)

ifw <0,

and

Rel(w +i0N)[n(w,T)+1] ifw >0,
£(w) = . . )
—Rel'(—w+i0")n(—w,T) ifw <0,
with the Bose-Einstein distribution function
1

n(w,T) = I

®)

Note that in the zero-temperature limit n(w,7T) — 0 such that
the master equation (3) contains only dissipative terms for
transitions |n) — |m) with positive energy w,,, > 0; that is,
dissipation correctly leads to energy decrease. In particular, the
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problem of unphysical emission from the ground state encoun-
tered for the quantum optical master equations is resolved.

In the present work we assume an Ohmic spectral function
v.(w) = yw/wy for the cavity-environment coupling and use
¥ = 102w, in all numerical computations. To reduce the
number of free parameters we assume the same spectral func-
tion y)gj )(w) = y.(w) for the emitter-environment couplings.
The respective environment temperatures are also identical.

A. Solution of the master equation

As we show in Appendix B, the master equation (3) splits
into two equations of motion,

d
—Punl) = n Sn t
T Prn(®) gx(wk> 0

— > X (@) S (1), ©)
k#n

d
—Pmn(t) = =(Zm + Z)pmn®)  (m#n),  (10)

dt

for the matrix elements p,, ,(t) = (m|p(¢)|n) of the density
operator. In these equations, S, , = |(n|S |k)|> and

1
Zy =5 D Ix@w) +iE@ulSn +iEr (1)
k#n

The general solution of Eq. (10) is
() = e D20, 00 (mFEn).  (12)

Because Re Z,, > 0 for all n, the off-diagonal elements of p(¢)
decay exponentially. Hence, the stationary state fulfills

p/?z(?n = t1~1>r£10 pm,n(t) = anfsm,n- (13)

The diagonal elements p;*, are determined by the stationary
solution of the Pauli master equation (9). If the system is
coupled to a thermal environment as in Eqgs. (6) and (7), the
stationary solution of Eq. (9) is the thermal state p™ oc e ##
of the system corresponding to the temperature 7 = 1/8 of
the environment.

The emission spectrum and photon statistics can now be
computed through a standard input-output formalism (see
Appendix A), which leads to the projected cavity-environment
coupling operator

Xo=—i ) (Ey— Eplm)(m|X[n)(n]  (14)

m,n>m

describing the emission. The correlation functions of X_ and
X, = (X_)'" characterize the properties of the emitted light.
The emission spectrum of the cavity is

@ Re/oo X (4 )X _(D)dT, (15)
0

and the second-order Glauber function [39] reads
(XL (X4t + D)X+ DX_(1)
(X (HX_(1))? '

Note that evaluation of Egs. (15) and (16) requires diagonal-
ization of the Hamiltonian H.

g?(r) = lim (16)
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Because the stationary state p* from Eq. (13) is diagonal
in the eigenbasis |n) of H, we can evaluate the 7 integration
in Eq. (15) analytically as

S() = V";“’) > lmIX_ ) Pog,

o Re(Z,, + Z,)
[w - Im(Zn - Zm)]2 + [Re(Zm + Zn)]2 ’

The emission spectrum S(w) is the sum of Lorentz peaks
with width Re(Z,, + Z,,) at the respective transition energies
Im(Z, — Z,,), which, according to Eq. (11), are shifted relative
to the transition energies E,, — E,, of the closed system by a
Lamb shift that results from coupling to the environment.

A7)

B. Quantum optical master equation

It is instructive to compare the master equation (3) to the
quantum optical master equation [11]

d N
TP = —ilH,p(O)] — i Xij %[S;Si,pa)]

+ ) SHISp(). 5L + [Sx.p()SLI). - (18)
+

which is obtained by replacing the projected operators S,
with the “bare” operators S = szo S, and by assum-
ing x(fw)~ x4, £&(w) ~ &L in the vicinity of a typical
transition energy w. Note that S; = —iXpa for the cavity-
environment coupling and S = —i o for the emitter-
environment coupling. Evidently, this approximation can be
valid only for weak light-matter coupling g,g" < w,wx,
when the dressing of emitter states by cavity photons can
be neglected. Because the quantum optical master equation
does not distinguish between energy-increasing and energy-
decreasing transitions, which are equally contained in the
unprojected operator S because of Hermiticity, it can lead to
unphysical predictions such as emission out of the ground state.
Furthermore, because failure to observe the above distinction
is tantamount to a high-temperature approximation, one will
expect that the quantum optical master equation fails at the
prediction of nonthermal photon statistics at low temperatures.
Therefore, we use the more general master equation (3).

III. THE EMITTED LIGHT

The first characterization of the light generated in the cavity
is provided by the emission spectrum. Because the emission
spectrum depends on the (Lamb-shifted) energy spectrum
of the Dicke Hamiltonian, we start with a discussion of
the eigenvalues of H for a few emitters before we turn to
the actual function S(w) obtained from numerical solution
of the master equation (3).

A. Energy spectrum of the Hamiltonian

To construct the energy spectrum of H we notice first
that the eigenstates of N uncoupled two-level emitters can
be classified as angular momentum eigenstates with total
angular momentum J =N/2,N/2—-1,... > 0. Since H
commutes with the total angular momentum operator, states
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FIG. 1. Schematic energy-level pattern for the construction of the
spectrum of the Dicke model. Horizontal arrows depict the corotating
interaction terms in Eq. (1) (coupling constant g); diagonal arrows
depict the counterrotating terms (g’).

with different J do not mix even at finite coupling g,g" # 0.
For fixed J, the J, quantum number M can assume the
values M = —J, — J + 1, ...,J, and a corresponding emitter
eigenstate has energy (M + N /2)w,. Note that for N > 3 the
classification in terms of J, M is not exhaustive since different
emitter states can have identical values. However, these states
give the same contribution to the emission spectrum. The
cavity photon eigenstates are Fock states |n) with energies
nw;.

For given J we can arrange the eigenstates of the uncoupled
emitter-cavity system as the rungs of a ladder diagram as
in Fig. 1. Working at resonance w, = w, = wy, the energy
(M + N/2 + n)w of each state is given by the total number
of emitter and cavity excitations. The corotating light-matter
interaction terms in H preserve the number of excitations and
connect states at the same energy level (horizontal arrows
in Fig. 1). The counterrotating terms change the number of
excitations by two (diagonal arrows in Fig. 1). This simple
scheme explains many properties of the energy spectra of H
shown in Fig. 2.
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FIG. 2. Eigenvalues of H in Eq. (1) for (a)-(c) g’ = g and (d)-(f)
g’ = 0 as functions of the coupling strength g. (a) and (b) show the
results for one emitter, whereas the number of emitters is N = 2 in
(b) and (e) and N = 3 in (c¢) and (f).
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For N =1 it is J =1/2, and we recover the Jaynes-
Cummings ladder [40] for g’ = 0. The lowest level (M =
—1/2, n = 0) does not couple to any other state and hence
leads to the g-independent eigenvalue zero of H [see Fig. 2(d)].
Every other level consists of two ladder rungs. They lead to
the eigenvalues nwy & /ng forn > 1. For g’ = g corrections
arise from coupling between states at different heights in
the ladder, but the energy-level pattern remains discernible
[Fig. 2(a)].

For N = 2 [see Figs. 2(b) and 2(e)] we have either triplet
(J = 1) orsinglet (J = 0) emitter states. For g’ = 0, the triplet
states lead to the eigenvalue zero (n = 0), the two eigenvalues
wo £ ﬁg (n =1), and the three eigenvalues nwgy, nwy £
V2/2n —1g for n > 2. The singlet states do not couple
with each other and lead to the g-independent eigenvalues
(n + 1wy for n > 0. It follows that the eigenvalues nw, for
n > 2 are twofold degenerate (one triplet, one singlet state).
This degeneracy is lifted for g’ = g, but the energies of the
singlet states remain fixed.

For N =3 we have quadruplet (J = 3/2) and doublet
(J = 1/2) emitter states. The ladder scheme for the doublet is
equal to that for N = 1 and hence leads to the same energy
spectrum, apart from the fact that all energies are shifted up by
wp when going from N = 1 to N = 3. Notice that the doublet
states are twofold degenerate because the angular momentum
classification of the emitter states is not unique in this case. The
quadruplet states lead to one (starting at zero for g = 0), two
(at wy), three (at 2wy), and four (at nwy with n > 3) additional
eigenvalues in Fig. 2(f). Because of the close vicinity of many
states in the energy spectrum the corrections resulting from the
counterrotating terms for g’ = g are large. This trend continues
if N is increased further.

B. The emission spectrum

In Fig. 3 we show the emission spectrum S(w) for N =2
emitters at different coupling strengths g and environment
temperatures 7. These data, as well as those for the Glauber
function g@(¢) shown later, have been computed with a
maximal number of 10? cavity photons in the numerical
diagonalization of H, which is sufficient for the given
parameter combinations.

For low temperatures 7 < wp, only the first possible
transition into the ground state contributes to the emission
spectrum. It leads to the single peak in panels (i) and (iii)
of Fig. 3. With increasing temperature, transitions involving
higher excited states begin to contribute. For example, the
two peaks in panels (ii) and (iv) correspond to the transition
from the second to the first excited state and from the third
excited state to the ground state. As could be deduced already
from Figs. 2(b) and 2(e), the transitions tend to have smaller
energies in the TC limit than in the Dicke limit, which leads to
the redshift of the emission peaks in panel (v) relative to those
in panel (ii). However, at not too strong coupling the low-lying
states still have comparable energies, and the emission spectra
look similar. The situation changes at ultrastrong coupling
when the corotating and counterrotating terms are of equal
magnitude [panels (iii) and (vi)]. In addition to the markedly
different peak energies the peak height has now decreased by
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FIG. 3. Emission spectra S(w) for N = 2 emitters, for (left) g’ =
g and (right) g’ = 0. The emitter-cavity coupling strength and the
environment temperature are g = 0.5wg, T = 0.07w, in panels (i) and
(iv), g = 0.7wy, T = 0.23w, in panels (ii) and (v), and g = 0.8wy,
T = 0.1wy in panels (iii) and (vi).

two orders of magnitude in the Dicke limit but not in the TC
limit.

The decrease of peak height can be recognized in the w-
integrated emission spectrum

oo
/ 5@ o = (X, X_) (19)
—0 Ve(®)
shown in Fig. 4. The equality with the given expectation value
follows directly from Eq. (17). Only in the Dicke limit, but not
in the TC limit, does the total emission become small again at
ultrastrong coupling and low temperatures. Still, one sees that
both plots agree nicely for not too strong coupling (g/w <
0.5). This observation sets the upper limit of the coupling
strength (here, for N = 2 emitters) below which the presence
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FIG. 4. (Color online) Expectation value (X.X_) for N=2
emitters as a function of temperature 7' and coupling strength g.
Results are given for (a) g’ = g and (b) g’ = 0. Crosses mark the
parameters used in Fig. 3.
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FIG. 5. (Color online) Glauber function g®(0) at zero time delay
for one emitter (N = 1) as a function of temperature 7" and coupling
strength g. Results are given for (a) g’ = g and (b) g’ = 0. Note that
all values g?(0) > 4 are assigned the same [dark red (dark gray)]
color in the density plots.

or absence of counterrotating interaction terms does not affect
the light emission significantly. We will find the same behavior
for the Glauber function.

IV. NONCLASSICAL LIGHT

A basic decision on the possible generation of nonclassical
light is possible with the Glauber function g®(0) at zero
time delay. For g®(0) = 1 the emitted photons have a Poisso-
nian distribution, while g®(0) > 1 indicates super-Poissonian
statistics. Thermal light has g (0) = 2. By contrast, g®(0) <
1 indicates nonclassical light with sub-Poissonian photon
statistics. Further information on photon (anti)bunching is
provided by the full time-dependent function g®(t).

A. Photon statistics for one emitter

The Glauber function g(z)(O) for one emitter (N = 1) is
shown in Fig. 5. Two distinct regions can be identified in the
Dicke limit in Fig. 5(a) (where g’ = g). A triangular region
with g®?(0) < 1, which stretches out along the vertical axis, in-
dicates the emission of nonclassical light with sub-Poissonian
photon statistics at low temperatures and moderate to strong
light-matter coupling. It lies below an elongated region with
strongly super-Poissonian photon statistics [g®(0) > 2] at
larger coupling, which extends diagonally towards higher
temperatures. Both regions are embedded in the background
of thermal light with g®(0) ~ 2. The situation is distinctly
different in the TC limit (g’ = 0) in Fig. 5(b), where the super-
Poissonian region is pushed back in favor of a second sub-
Poissonian region that continues towards ultrastrong coupling.
Note, however, that the emission of nonclassical light in the
first sub-Poissonian region is observed equally in both limits.

B. Photon statistics for few emitters

The distinctive features of the Glauber function persist for
multiple emitters (see Fig. 6), but the regions are shifted to
smaller couplings g as the number of emitters increases from
one to three.

The obvious similarity between g®(0) for N =1,2,3
emitters visible in Figs. 5 and 6 can be expressed as an
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FIG. 6. (Color online) Glauber function g (0) at zero time delay
as a function of temperature T and coupling strength g for (top) N = 2
emitters and (bottom) N = 3 emitters. Results are given for (a) and
(b) g’ = g and (c) and (d) g’ = 0. Note that all values g®(0) > 4 are
assigned the same [dark red (dark gray)] color in the density plots.

approximate relation between the respective emitter-cavity
coupling g. In the Dicke limit (¢’ = g) we find that the
features of g®(0) are closely reproduced under the scaling
g x 1/N. In the TC limit (g’ = 0) features are reproduced
under the scaling g o< 1/+/N. Interestingly, the proper scaling
of g depends on the presence of counterrotating interaction
terms in the Hamiltonian. This difference is in contrast to the
semiclassical theory where the mean cavity photon number
in the steady state scales < N in both the Dicke and TC
limits. Not surprisingly, the Glauber function g‘®(0) is more
sensitive to the details of light-matter coupling than the
semiclassical theory that neglects quantum correlations in
favor of a mean-field approximation.

Our arguments in favor of the above scaling relations
depend on several observations, which we now develop for the
TC limit (g" = 0). Without counterrotating interaction terms
the Hamiltonian H commutes with the operator N; = a'a +
Z;V:l 0P, which counts the total number of excitations.
Hence, H is block diagonal with blocks of the form n,wgl +
gC, where n, denotes the eigenvalue of N,, I is the identity
matrix, and the matrix block C contains the g-independent
matrix elements of the corotating interaction terms in H. From
this form of the blocks it is evident that the eigenvectors of
H do not depend on g, that is, the matrix elements of Xi
that enter Eq. (16) are constant. The dependence of g*(0) on
g results purely from the eigenvalues, which determine the
occupation of the states in the stationary (thermal) state and
the prefactors of X 1. If we can show that the eigenvalues scale
approximately as g+/N, the above relation follows.

Let us focus on the low-lying states that give the dominant
contribution in the interesting temperature regimes. These
states can be found in the ladder diagram of states in Fig. 7.
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FIG. 7. Schematic energy-level pattern. Horizontal arrows depict
the corotating interaction terms in Eq. (1) (coupling constant g);
diagonal arrows illustrate the action of the cavity photon annihilation
operator a.

They must be connected to the ground state at energy zero by
a diagonal arrow that gives the action of the operator a, i.e., of
X_.

For the denominator (X X _) of g®(0) from Eq. (16) states
which are separated by one vertical step in the ladder diagram
contribute. The energy of the most relevant first excited state is
given by E| = wy = g+/N, which has the postulated scaling.
This scaling of the first excited state for a few emitters has
been verified experimentally in Ref. [41].

For the numerator (X, X, X_X_) of g®(0), where each
operator appears twice, states which are separated by two
vertical steps on the ladder contribute. Now the second excited
state is most relevant, which is the linear combination of the
two (N = 1) or three (N > 2) vertical rungs that occur for
n, = 2 excitations. The corresponding 2 x 2 or 3 x 3 matrix
from the above block decomposition of H is

200 28 0
2w  2g
.| V2 2w V2Ng|. (0
(\/Eg 2a)0) 8 0 8

0 V2Ng 2wy

Diagonalization gives the energies E; = 2w & +/2g for N =
1, while E; € {2wg,2wo & +/2/N + 1g} for N > 2. With the
approximation /N + 1 &~ +/N, which is good enough for
a rule of thumb, this is again the postulated scaling. Put
together, the energies that enter the computation of g®(0)
scale roughly as g+/N, which concludes our argument in favor
of the observed relation “g o< 1/+/N” in the TC limit.

In the Dicke limit g’ = g the block decomposition of H is
not possible because of the counterrotating interaction terms.
The eigenvectors of H now depend on g, and the previous
argument cannot be easily translated. However, inspection of
the energy spectra in Fig. 2 strongly suggests that the observed
relation is still related to an approximate relation between
the eigenvalues of H for different N, now with the scaling
g 1/N.

C. Photon statistics from the quantum optical master equation

Results for the Glauber function obtained with the quantum
optical master equation (18) are shown in Fig. 8 in the
Dicke limit g’ = g. In stark contrast to the results from
Figs. 5 and 6 the quantum optical master equation does not
predict the emission of nonclassical light with sub-Poissonian
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FIG. 8. (Color online) Glauber function g®(0) computed with
the quantum optical master equation (18), shown as a function of
temperature 7 and coupling strength g for g’ = g. Results are given
for (a) N = 1 emitter and (b) N = 2 emitters.

photon statistics in any part of the parameter space. The
situation does not improve in the TC limit g’ = 0, where
[H,N;] = 0 and the quantum optical master equation gives
the stationary (thermal) state oc e V! leading to g®(0) =
(atataa)/(a'a)?* = 2 independent of the number of emitters
N, the coupling strength g, or the temperature 7', thus always
predicting the emission of thermal light. While it may not
be surprising that the quantum optical master equation fails
because the weak-coupling condition g < w, . is not satisfied,
it is remarkable that it fails to capture any features from
the previous Glauber function plots in Figs. 5 and 6. This
failure highlights the importance of using the correct master
equation not only for strong light-matter coupling but also
if one is interested in properties following from higher-order
correlation functions, such as the photon statistics obtained
from the second-order Glauber function.

D. Photon bunching and antibunching

A further property to distinguish classical and nonclassical
light is the time-coincidence statistics of the emitted photons,
which can be deduced from the time-dependent Glauber
function g?(¢). For classical light, g®(¢) has a nonpositive
initial slope at ¢+ = 0. This indicates photon bunching, i.e.,
that the probability of observing two photons at equal times is
larger than the probability of observing them at different times.
Conversely, a positive slope indicates photon antibunching,
which is possible only for nonclassical light. In the long-time
limit, lim,_, oo g®(t) = 1 in all cases.

In Fig. 9 we plot g@(¢) for the parameter combinations
marked in the two upper panels in Fig. 6. We see that g®(¢)
is always a strictly monotonic function of ¢. Therefore, in the
present situation photon bunching and antibunching coincide
precisely with super-Poissonian and sub-Poissonian photon
statistics. Only if 1 < g®(0) < 2 in panel (ii) the function
g@(¢) shows small oscillations, but the overall decay is still
indicative of photon bunching.

V. CONCLUSIONS

Our analysis of the light generated by a few emitters
in a cavity reveals a nontrivial dependence of the photon
statistics on the light-matter coupling and temperature. Clearly
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FIG. 9. Glauber function g®(¢) as a function of time for N =2
emitters, for (left) g’ = g and (right) g’ = 0. The emitter-cavity
coupling strength and the bath temperature are g = 0.5y, T =
0.07wy in panels (i) and (iv), g = 0.7wy, T = 0.23wy in panels (ii)
and (v), and g = 0.8wy, T = 0.1wy in panels (iii) and (vi).

identifiable parameter regimes with sub- and super-Poissonian
photon statistics appear at strong and ultrastrong coupling
and lie immediately next to each other. Tuning the light-
matter coupling or changing the temperature can thus have
a tremendous effect on the photon statistics. As a general
trend we find strong signatures of nonclassical light at strong
coupling. Thermal photon statistics, on the other hand, requires
weak coupling or high temperatures: It is the exception rather
than the rule at low temperatures.

The photon statistics, and to a lesser degree also the total
emission, is strongly influenced by the presence of counter-
rotating light-matter interaction terms in the Hamiltonian.
These terms are responsible for the prevalence of super-
Poissonian over sub-Poissonian light at ultrastrong coupling.
Not surprisingly, the convenient rotating-wave approximation
(i.e., identification of the Dicke limit by the TC limit) gives
the wrong prediction when the coupling becomes too large.
Nevertheless, the scenarios with and without counterrotating
terms are surprisingly similar at not too strong coupling, which
shows that generation of nonclassical light is not a peculiar
effect arising from the fine-tuning of interaction terms in the
Hamiltonian but a rather robust feature.

We have provided an approximate rule to relate the emission
of a few emitters to the emission of a single emitter under
appropriate scaling of the coupling constant. In accordance
with this rule, the features of the Glauber function observed
for one emitter occur at comparably smaller values of the
individual emitter-cavity coupling in the case of a few emitters.
The reason is that all emitters interact with the same cavity
mode, which magnifies the effects of resonant emission and
(re)absorption of cavity photons. Broadly speaking, generation
of nonclassical light is easier with more emitters because the
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required coupling of each individual emitter to the cavity mode
can be reduced.

Our analysis of strong light-matter coupling required the
use of the full input-output formalism and of the full master
equation, which carefully distinguishes between transitions
at different energies. If this correct treatment is replaced by
the standard quantum optical master equation, results change
completely. Especially, the prediction of nonclassical light
does not survive the additional approximations made in the
replacement. While the quantum optical master equation could
not be expected to work at strong coupling, its outright failure
at describing any of the distinctive features observed in the
photon statistics shows that using the right master equation is
essential in all situations, perhaps apart from extremely weak
coupling. The price one has to pay is full diagonalization of
the Hamiltonian.

We here focus on the system at thermal equilibrium.
Future work should address emission if the system is driven
coherently through external photon sources. This will require
the addition of explicitly time-dependent periodic terms to the
Hamiltonian and thus combination of the present master equa-
tion with the Floquet formalism. By contrast, a perturbative
expansion in the driving strength is sufficient only for weak
off-resonant driving, but then the possible new effects would
be weak too.
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APPENDIX A: THE INPUT-OUTPUT FORMALISM

We follow standard input-output theory [19,42]. The in-
teraction Hamiltonian in Eq. (2) for the cavity-environment
coupling in the continuum limit is

H =—-iX / D(w)Mw)(b, — bju)da), (Al)
where D(w) is the environment density of states and A.(w)
is the cavity-environment coupling function; that is, the
environment spectral function is y,.(w) = 27 D(@)Ar(w)?. Hy
together with the free Hamiltonian f D(a))a)blbwdw of the

environment photons and the commutator [bw,bl/] =(w —
") leads to the equation of motion

by =—iwb, + Mw)X (A2)

for the field quadratures of the environment. For ) <t < 1,
the formal solution of Eq. (A2) is

t
by(t) = e “U"p, (1)) + AMw) / e X (1Ydt
Iy
. h . ’
= e h,(11) — M) / e TIX(1)dr'. (A3)
t
We define input (output) field operators

Bintous (1) = / D(@M@)e ™ b, (o )dw  (Ad)
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and make use of the spectral function y,.(®w) = y w/wy to obtain
the input-output relation

bou(t) = bin(t) + i X_(1), (A5)
(O

where X _ denotes the positive frequency component of X;
that is, X acts as a lowering operator. The explicit definition
of X_ in the system-energy eigenbasis is given in Eq. (14).

APPENDIX B: THE MARKOVIAN MASTER EQUATION

We consider the dissipative dynamics of the system
density matrix in the weak system-environment coupling
limit. For strong coupling within the system the quantum
optical master equation predicts unphysical emission from
the ground state [14]. Going one step back in the derivation
of the quantum optical master equation, the second-order
time-convolutionless projection operator method [25] gives
a time-local master equation leading to consistent results
including the counterrotating terms [43,44]. Nevertheless,
this master equation does not, in general, generate positive
dynamics [45,46]. This problem was resolved by a recently
derived master equation in the system eigenbasis [24-29], and
we here recapitulate its derivation.

The total Hamiltonian is the sum of the contribution of
the system H, the contribution of the reservoir Hg, and
the interaction H;. We note that the interaction Hamiltonian
in Eq. (2) is of the general form H; = SR, where S (R)
is a Hermitian system (reservoir) operator. A more general
coupling H; = Zn S, R, can also be considered but leads
to the same qualitative results. The dynamics of the density
operator pr(t) of the total system in the interaction picture is
described by the von Neumann equation,

d N
Eﬁr(t) =—i[H (1), pr(1)]. (BI)

As a notational convenience, we mark operators in the
interaction picture with a hat. The interaction Hamiltonian
and the density operator in the interaction picture are defined
as

pr(t) = U§(2.0)pr(1)Uo(1.0), (B2)

Hy(1) = UJ(1,0)H; Up(1,0), (B3)

where the time-evolution operator of the uncoupled system
and reservoir is

Uo(t,s) = e~ HHHRE=S), (B4)

In the limit of weak system-reservoir coupling several
approximations are performed. First of all, within the Born
approximation, initial factorization of the density operator is
assumed, p7(0) = p(0)pg, and the back-action of the system
onto the reservoir is neglected, pr(t) = p(¢)pg. Second, the
Markov approximation is performed by replacing p(t) at
retarded times T with p(¢) at the local time ¢. Third, assuming
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that the reservoir correlation time is small compared to the
relaxation time of the system, the time integration is extended
to infinity to arrive at the Born-Markov equation of motion

d o0 N N
Zﬁ(t) =—/O Trp{[H;(1),[H;(r — ©), p(1)pr]l}dz, (BS)

where Trg{-} denotes the partial trace over the reservoir
degrees of freedom and (R) =0 is assumed. We further
assume a thermal reservoir state pg o< e ##* and define the
reservoir correlation function

C(1) = Trg{e'** Re""x* Rpp} = C(—1)* (B6)

to evaluate the traces in Eq. (B5). This yields the master
equation

d R A
Eﬁ(f)=/ [S(r —D)p((0),SM]C(T)dT +He., (B7)
0

where H.c. denotes the Hermitian conjugate.

We introduce the transition operators in Eq. (4) that are the
discrete Fourier components of the interaction picture S(t),
ie.,

Sty="Y) e, (BS)

Equivalently, [H,S,] = —»S,,. In addition, we introduce the
even and odd Fourier transforms of the reservoir correlation
function,

x(@) = / C(v)e"dr = x(w)*, (B9)

o0

E(w) = ll f ” C(7)sgn(1)e'"dt = E(w)*. (B10)

oo
For a thermal photon reservoir with spectral function y (w) the
functions x(w) and &(w) are given in Egs. (6) and (7). With
these definitions we find

d 1 : / L
P =5 D (@) +iE@))e ™ [Sp(1). S]] + Hee.

w,w

(B11)

Equation (B11) is the standard Born-Markov master equation
in the system energy eigenbasis. It contains the dissipative parts
proportional to x(w) and the Lamb-shift terms proportional
to &(w). Because Eq. (B11) is not of Lindblad type, it
does not, in general, preserve the positivity of the density
operator.

Inspecting Eq. (B11), we recognize that it contains os-
cillating terms proportional to e @~ If we assume that
the relaxation of the system is slow compared with all
oscillations ¢*@~“) we can neglect the contribution from
terms with ' # w. This approximation is called secular or
rotating-wave approximation, and the master equation in the
Schrodinger picture simplifies to the result given in Eq. (3).
This equation is the Lindblad master equation that includes
the Lamb shift of the unperturbed system energies E, as well
as reservoir induced dissipation effects to lowest order in the
system-reservoir interaction strength.
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As is already known in the literature, special care has to be
taken if the spectrum of H is degenerate [24,47]. But even if
the eigenvalues E, are nondegenerate, we may have situations
where energy differences are degenerate, i.e., E, — E, =
Ey — E; for n # m # k # . The consequences of these two
different types of degeneracy can be understood when we
decompose the density matrix into blocks. In particular, we
write p,,,,, (Si,) for the matrix containing the elements (k|0|l)
((k|S|l)) with E;, = E, and E; = E,,. The master equation (3)
in this block notation reads

d

TP = Y X (Ex ~ En)Sukby (08,055, 6,
k,l

1 . .
=3 2 9(En = ER) Py (0SSt
k

1 .
=3 2 P(En = E)S,ySinbp(®).  (B12)
k

where the summations run only over different system energies,
and the complex function ¢(x) = x(x) + i&(x) is introduced.
We see that the last two lines in this equation are block
diagonal. For m = n, the Kronecker delta in the first line
evaluates to 8g, g such that diagonal blocks couple only
to diagonal blocks. For m # n, the first line contains only
terms with k # [, such that nondiagonal blocks do not couple
to diagonal ones. Nevertheless, a nondiagonal block p,,,
couples to another nondiagonal block p,; withk #1 #m # n
if the respective transition energies are degenerate. Thus,
energy-level degeneracy introduces a block structure implying
that a diagonal density matrix element couples to nondiagonal
elements within diagonal blocks, whereas energy transition
degeneracy leads to a coupling of nondiagonal blocks to
different nondiagonal blocks. We remark that both subtleties
have their origin in the rotating-wave approximation. On
the one hand, this approximation leads to the Lindblad
structure of Eq. (3). On the other hand, it results in strict
Kronecker deltas between the two transition energies o’
and w.

Consider a situation where each degeneracy in the spectrum
of H as well as in their differences is lifted by a small €
parameter. Then, each block contains only a single element,
implying that the equations for the diagonal density matrix
elements no longer couple to nondiagonal elements. In addi-
tion, any nondiagonal element of the density matrix evolves
independently from all other elements. This behavior does not
change when we let each ¢ — 0. In this limit, the equations
become independent of the ¢ parameters but are different from
the € = 0 case. In particular, for every nonzero ¢ — 0 we get
the two equations (9) and (10) for the diagonal and nondiagonal
density matrix elements.

We remark that in real physical systems one will never have
perfectly equal or equidistant energies because each small
perturbation will lift the degeneracies. In the theoretical de-
scription we may argue that the Lamb shift lifts degeneracies.
Nevertheless, we have to keep in mind that with Egs. (9) to
(11) we cannot study effects that rely on degenerate energies
or degenerate transitions; for example, the perfectly harmonic
oscillator or a system composed of completely uncoupled
identical subsystems is not correctly described.
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APPENDIX C: ANALYTICAL RESULTS IN THE
TAVIS-CUMMINGS LIMIT

In this section we derive analytical results for the Glauber
2@(0) function in the TC limit (g’ = 0) for a single emitter
(N =1).

According to the argumentation in Sec. IV B, the dominant
contribution to the denominator of g®(0) in Eq. (16) at
low temperatures is that of the first excited state with
energy E| = wy — g. Specifically, the denominator (X, X_)
is approximated by

3w — g)’e Pnme), (€1
In this expression the exponential e #(0~8 is the thermal
population of the first excited state, and the prefactor (wy —
2)?/2 is the squared transition matrix element of X_ between
the first excited state and the ground state.

The most relevant state for the numerator of g®(0) at low
temperatures is the lowest eigenstate with energy E, = 2wg —
V/2g of the 2 x 2 matrix given in Eq. (20). To evaluate the
matrix elements of the operators X, we have to consider the
four possible transition sequences [2,—) — |1,£) — |0) —
|1,£) — |2,—), where |0) denotes the ground state and |n, =)
are the two eigenstates with energies E, = nwq * 1/ng. This
yields the expression

{ 2 +8‘/§ [0 — (V2 DgP@o - g7

1
+ oo — (V2 = Dgl(w} — g*)lwo — (v2 + 1)g]
3438
8

+ [wo — (\/E + 1)g]2(a)0 + g)z}eﬁ(Zwoﬁg)

(C2)

approximating the numerator of g‘®(0).

The results belonging to Egs. (C1) and (C2) are plotted in
Fig. 10(a). Compared to the exact numerical results in Fig. 5(b),
a good agreement appears for 0.2 < g/wy < 0.4 and low
temperatures. For high values of g = 0.4wy the first excited
state becomes closer and closer to the ground state, such that

0.15 0.2 0.25

O L
0.05 0.1
T/ o T/ my

Q
0.05 0.1 0.15

0.2 0.25

FIG. 10. (Color online) Analytical results for the Glauber func-
tion g®(0) for one emitter (N = 1) as a function of temperature T
and coupling strength g in the TC limit. Shown are (a) the result
following from Egs. (C1) and (C2) and (b) the result refined for
g < wy as explained in the text.
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the finite temperature leads to significant contributions from
transitions not involving the ground state. For this reason, the
upper part of Fig. 10(a) is not well reproduced. In contrast,
the lower part of Fig. 10(a) is not in accordance with the exact
numerical results because our assumption of low temperatures
T < g < wp does not include the limit g — 0.

To improve the results in regions with g <« wy we addi-
tionally have to take into account the transition sequences
[1,+) — |0) — |1,4) for the denominator and |2,+) —

PHYSICAL REVIEW A 91, 043814 (2015)

[1,£) — |0) — |1,4£) — |2,+) for the numerator. The result
is shown in Fig. 10(b), where the agreement with the exact
results in Fig. 5(b) is now very good for all temperatures
and g < 0.4wp. Note that at g ~ 0.4wy a crossing of the
eigenvalues of the second and third excited states occurs, as can
be seen in Fig. 2(d). This indicates that the role of these states in
the calculation of g(0) is interchanged. The impact of these
eigenvalue crossings would analytically be reproduced if we
include contributions to g®(0) from higher excited states.
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