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Optomechanics of random media
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Using light to control the movement of nanostructured objects is a great challenge. This challenge involves
fields like optical tweezing, Casimir forces, integrated optics, biophysics, and many others. However, when the
complexity of the light-activated devices increases, disorder unavoidably occurs and induces a number of effects,
such as multiple-scattering, diffusion, and the localization of light. We show that these effects radically enhance
the mechanical effect of light. We determine theoretically the link between optical pressure and the light diffusion
coefficient and unveil that optical forces and their statistical fluctuations reach a maximum at the onset of the
photon localization. Disorder may thus be exploited for increasing the mechanical action of light on complex
objects.
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Several recent investigations show that light propagation
and amplification in disordered matter can be controlled. This
possibility allows applications such as tunable random lasers,
transmission through random media, and novel disorder-
driven devices, such as paper-based lasers and ultrasensitive
spectrometers [1–7]. Controlling the photon-transport also
enables us to tailor the optical properties of new materials [8,9],
although effects like the three-dimensional (3D) Anderson
localization of light are still largely debated [10–12]. However,
there is a specific field in which the benefits of randomness
have not yet been investigated, and that is optomechanics. Even
if the concept of optical pressure dates back to the famous work
of Kepler on comet tails in the 16th century [13], the role of
light diffusion and localization on the optomechanical forces
(OMFs) in disordered matter is unexplored.

Following James Clerk Maxwell [14], many theoretical
and experimental efforts were devoted in the past to OMFs
[15–21], with applications in laser cooling [22,23], optical
manipulation [24–27], biophysics [28,29], and optomechan-
ical devices [30,31]. OMFs are due to the interaction of the
electromagnetic (EM) field with the boundaries of dielectric
objects. Random systems are characterized by a large number
of boundaries, and determining OMFs can be highly nontrivial.
However, in the perspective of optically activated nanostruc-
tured devices, understanding OMFs due to many interfaces
and to the related multiple scattering of light is pivotal.

In the absence of scattering, any photon that is transmitted
unaltered through a dielectric material does not furnish kinetic
momentum to matter [32,33]. If the scattering changes the
photon direction, a recoil force appears. In the presence of
multiple scattering, the photon random walk generates a ran-
dom walk of the medium. This problem is remarkably similar
to the random walk of a macroscopic object in a liquid [34]:
even if the timescale of the single molecule collision is very
fast, the statistical fluctuations of the number of collisions
generate a slow observable motion of the macroscopic object.
For the photon, we find that the temporal fluctuations of the
forces occur on a timescale much longer than the optical carrier
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period, and that the physics is made even richer by localization
effects. Indeed, when the photon-transport mean-free path
�tr is small enough, 3D disordered systems can support
long-living localized states [35–39]. The excitation of these
states reduces the transmission T and, in turn, affects the
radiation pressure p (i.e., the longitudinal component of the
force) according to the well-known equation

p = 1 − T
2c0

I0, (1)

with c0 being the vacuum light speed and I0 being the input
optical intensity [20,33].

In this work, we show that disorder-induced localized states
increase the OMFs. By using the Maxwell stress tensor method
(MSTM), we find the relationship between the OMFs exerted
on the entire disordered system and the parameters charac-
terizing the photon-transport regime: the dynamic diffusion
constant and the Thouless conductance [40], as obtained by
considering the propagation in the random medium of an
ultrashort pulse. Because of the small values of the OMFs,
one must consider dielectric systems with spatial dimensions
of the order of tens of wavelengths. Larger systems are not
substantially affected by OMFs. In small disordered systems,
EM localized states are strongly altered by finite-size effects.
The most rigourous way to deal with finite-size effects is a
fully vectorial solution of Maxwell equations. The diffusion
approximation, which allows us to describe light propagation
in large random systems, cannot be adopted. In the following,
we describe our numerical results obtained by a parallel
computational approach for solving the Maxwell equations.
Our numerical approach is based on a finite-difference-time-
domain (FDTD) algorithm [41] with typical runs involving
thousands of processors in an IBM Blue Gene/Q system
with a massively parallel architecture. Other authors have
previously calculated by FDTD techniques the optical pressure
on dielectric media [42–46].

We consider a cubic structure with dimensions Lx = Ly =
Lz = L, made by a random distribution of 100 nm radius
monodispersed dielectric spheres with refractive index n. We
consider three different sizes of the cubic box, L = 0.5, 1.0,
and 2.0 μm; and we vary the refractive index of the single
particle in an interval ranging from n = 1.5 to 3.5. We solve the
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time-dependent Maxwell’s equation in 3D spatial dimensions:

∇ × E =−μ0∂tH, ∇ × H = ∂tD, (2)

where D is the displacement vector given by D = ε0εrE, and
εr = n2. We make two series of simulations by launching two
different x-polarized excitation signals on the 3D structure: (i)
we use a continuous wave (cw) light beam with wavelength
λ = 600 nm to calculate the OMFs by the MSTM; (ii) we use
a light pulse of duration t0 = 10 fs, with a spectral content
centered at λ = 600 nm to characterize the photon-transport
regime. Both the signals are launched along the z direction and
impinge on the input facet of the assembly located at z = 0.
The output facet is placed at z = L.

Let � and V be the surface area and the volume of the
block, respectively. The time-dependent force due the EM
wave, neglecting electrostriction, is given by [47]

F = dGmech

dt
=

∫
�

S · n̂dA − 1

c2

d

dt

∫
V

E × HdV, (3)

where S · n̂ = εE(E · n̂) + μH(H · n̂) − 1
2 (εE2 + μH 2)n̂ is

the projection of the Maxwell stress tensor S on the unitary
normal n̂ exiting from the surface �. The last term in Eq. (3)
is the time-derivative of the EM momentum in the volume
V , whose density is g and given by the Abraham and von
Laue expression g = gA = 1

c2 E × H [48]. In the cw case the

time-average force is given by F = 1
T

∫ T/2
−T/2 Fdt , with the

optical cycle T = λ/c. F gives the amount of momentum
per unit time transferred to the block. In the pulsed case, the
time-average is defined as F = 1

T

∫ ∞
−∞ Fdt , which gives the

total momentum transferred to the block per pulse during a
normalization time T much longer than the pulse duration.

We calculate the following output quantities: (i) the three
components of the resulting electromagnetic force F acting
on the whole random assembly of dielectric beads; (ii) the
transverse [in the (x,y) plane] intensity distribution of the
electric field at the output, at z = L, plane; and (iii) the total
transmission T (t) calculated by integrating the z component
of the Poynting vector over the output (x,y) plane. Notice that
the first two quantities are obtained by the cw simulations,
while the latter is obtained by using pulsed excitation.

Figure 1(a) shows the sketch of the simulated system. The
random assembly of dielectric spheres is illuminated by a
1 μm waist cw laser beam; light scattered by the random
structures in all directions is also indicated. The image in
Fig. 1(b) displays the typical intensity spatial distribution of
the electric field at the output (x-y) plane (z = L). Figure 1(c)
shows the time dynamics of the force Fz(t) for L = 2 μm and
n = 1.5. The fast oscillations correspond to the optical carrier
of the exciting source; the superimposed curve (thick line) is
obtained by filtering out such oscillations. The time-dynamics
of the filtered signal looks as a square-wave pulse due to the
initial transient, which is needed by the EM wave to propagate
through the whole structure. After this initial transient a
stationary regime takes place. Notice that the stationary value
of the longitudinal force is different from zero.

When the index contrast between the beads and the
surrounding medium (vacuum) increases, the recoil force edge
in the pulse is smoothed. Figure 1(d) shows the effect of the

FIG. 1. (Color online) (a) Sketch of the physical system consid-
ered in the 3D-FDTD numerical simulations. (b) Intensity spatial
distribution of the output electric field. (c) Time-dynamics of the
OMF z component Fz(t): the fast oscillations are due to the optical
carrier period of the light source; the superimposed thick curve is
obtained by spectral filtering the fast oscillations. (d) Time-dynamics
of disorder averaged F z(t) for different particle refractive indices
n and fixed system length L = 2.0 μm. (e) As in panel (d) for the
transverse components F x(t) (dotted line) and F y(t) (continuous line)
for n = 2.5 particle refractive index.

scattering on the time behavior of Fz(t) for a specific disorder
realization. As anticipated, when n grows, the trajectory of the
photons follows a complex path, which affects Fz(t).

Figure 1(e) shows the temporal behavior of the filtered
transverse components Fx,y(t) for a given particle refractive
index n = 2.5 and system size L = 2 μm. Because of the
random walk due to the multiple scattering, the photons es-
caping from the lateral sides of the sample generate transverse
OMFs components. When averaging over several disorder
realizations, these components vanish; this transverse random
force is expected to be observable for a specific sample with a
fixed disorder realization. In order to determine the statistical
distribution of the OMFs, we repeated the CW simulations for
sixty different disorder realizations for any considered system
size L and refractive index n.

The lateral leakages of photons increase with the scattering
strength; this reduces the recoil force in the z direction and
increases the overall longitudinal force. Such a dynamics is
confirmed by the behavior of the disorder average optical
force z component, 〈Fz(t)〉, reported in Figs. 2(a)–2(c) for
different L and n. Figure 2(d) shows the stationary value
of the 〈Fz(t)〉 curves reported in Figs. 2(a)–2(c) versus
n. This stationary value is normalized with respect to the
correspondent homogeneous structure (i.e., a cubic block of
the same size of the random assembly and refractive index).
Notice that, for the largest sample (L = 2.0 μm), one can
identify a refractive index threshold at which the longitudinal
force in the disordered case is enhanced with respect to the
homogeneous case.
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FIG. 2. (Color online) Disorder-averaged 〈Fz(t)〉 for the differ-
ent system sizes (a) L = 0.5 μm, (b) 1.5 μm, and (c) 2.0 μm. Each
curve corresponds to a different particle refractive index n = 1.5,
2.0, 2.5, 2.9, and 3.5 (from bottom to top). The 3D structures
in the panels are representatives of the simulated assemblies. (d)
Stationary long-time value of the curves reported in panels (a)–(c),
〈F z〉, normalized with respect to the corresponding homogeneous
case vs the refractive index n. Each curve refers to a different size
of the system: L = 0.5 μm (•), 1.0 μm (�), and 2.0 μm (�). The
colored box marks the transition at which the OMF z component is
enhanced by the disorder.

We then analyze the transverse components, Fx(t) and
Fy(t). Figures 3(a)–3(d) show the statistical distributions of
the stationary values of Fx and Fy . Notice that the histograms
broaden with the increase of the refractive index and that
this effect is more evident for the largest sizes. This analysis
predicts that a specific disorder realization sustains a transverse
force at a random direction. This result may be related to the
known enhancement of the fluctuations of the transmission at
the photon localization [49].

In order to link the OMFs with the photon dynamics, i.e.,
with the transition towards a localized regime expected at large

FIG. 3. (Color online) Histograms of the stationary long-time
value of the transverse (x,y) components of the optomechanical
force, F x and F y as obtained for 60 different disorders. Each panel
corresponds to a given size of the system, (a), (d) L = 0.5 μm, (b),
(e) 1.0 μm, and (c), (f) 2.0 μm.

n, we perform a set of simulations by considering an input
EM pulse with duration t0 = 10 fs and central wavelength λ =
600 nm. Following the procedure in Ref. [36], we determine the
photon-transport mean-free path as �tr = 3D/vE [50], where
vE is the energy propagation velocity given by vE = L/�t

with L being the sample length and �t being the time spent
by the pulse peak to travel from the input (z = 0) to the output
(z = L) face of the sample. By analyzing the trailing edge
of the total transmission T (t), collected at the output facet
of the system, we calculate the diffusion coefficient as D =
L2/(π2τ ), with τ being the exponential decay time of T (t).
Figure 4(a) shows the photon-transport mean-free path �tr

versus n for the L = 1.0 μm (circles) and L = 2.0 μm (dashed
line) samples; Fig. 4(b) reports the product k�tr , between
the wave vector k = 2π/λ of the incident radiation and the
photon-transport mean-free path �tr of Fig. 4(a). Figure 4(c)
shows the diffusion constant D versus n for the sample length
L = 1.0 μm (circles) and L = 2.0 μm (triangles). Figure 4(d)
shows the disorder average OMFs z component versus D. An
enhancement of the OMFs is found when the diffusion constant
reduces. The OMFs reach a maximum when D reaches the
smallest value in correspondence of the localization transition.
This result clearly shows the relation between the OMFs and
the photons dynamics within a disordered 3D medium. Notice
that, in order to calculate the forces, one needs to consider
a spatially limited structure for which the diffusion constant
does not vanish because of the finite-size effects.

In order to further characterize the photon-transport regime,
following the scaling theory of localization in 3D systems [40],
we analyze the spectral content of the output electric field
when varying the system size. Figures 4(c)–4(e) report the
output EM spectra corresponding to samples with n = 3.5 and
L = 0.5, 1.0, and 2.0 μm. When increasing L, the spectra
display an increasing number of peaks. The linewidth of these
resonances narrows with L, signaling the formation of long-
living localized modes. A measure of the localization degree
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FIG. 4. (Color online) (a) Photon-transport mean-free path �tr

versus n for the system sizes L = 1.0 μm (continuous line) and 2 μm
(dashed line). (b) Product k�tr versus n obtained from the panel (a) for
the system size L = 1 μm (continuous line) and L = 2 μm (dashed
line). (c) Diffusion coefficient D vs n obtained for the system sizes
L = 1.0 μm (�) and L = 2.0 μm (�). (d) Stationary value of the 〈F z〉
vs diffusion coefficient D for L = 1.0 μm (�) and L = 2.0 μm (�)
system sizes. (e)–(g) Spectral content of the output electric field for
the highest particle refractive index (n = 3.5) and different system
sizes (e) L = 0.5 μm, (f) L = 1.0 μm, and (g) L = 2.0 μm. The
dimensionless conductance g is also indicated. The insets show the
intensity spatial distributions of the output electric fields in the (x,y)
plane at z = L.

is given by the Thouless conductance

g(L) = δω

�ω
,

where δω is the peak spectral width and �ω is the peak
distance. The Thouless conductance is calculated by averaging

over all the modes. The localization transition occurs when
g < 1 [40], a condition that is found when n = 3.5 and
L = 1.0 and 2.0 μm. For these values, the output intensity
profile of the electric field in the (x,y) plane is reported in
Figs. 4(e)–4(g). We remark that g > 1 for all the considered
cases with n < 3.5. This result shows that, for g < 1, the
force reaches a maximum. This maximum can be explained
by recalling that the longitudinal force per unit transverse
area (optical pressure) increases when the total transmission
of the sample decreases [33]. The abatement of transmission
is specifically expected at the onset of photon localization
[40].

In conclusion, to unveil the effect of disorder on the
optomechanical forces, we have used a massively parallel
computational approach. This approach was combined with
the analysis of the light-transport regime of ultrashort pulses by
the Thouless conductance, the dynamic diffusion coefficient,
and the photon-transport mean-free path. When increasing
the strength of disorder, we observe the broadening of the
statistical distribution of the force transverse components.
Correspondingly, the diffusion constant and the photon-
transport mean-free path decrease and the optical pressure
reaches a maximum. This maximum shows that the mo-
mentum transferred to a disordered micron-sized composite
object increases when approaching a localized regime. The
optomechanical action is enhanced at the onset of the photon
localization of light. These findings open the road to the
exploitation of light scattering and localization for control-
ling the motion of complex dielectric structures. A proper
arrangement of refractive index distribution, loss, shape, size,
and spatial configuration of dielectric particles, allows us to
tailor the photon Brownian motion. One can thus engineer
the random walk of photons to determine the light-induced
forces for several applications as micromotors and photonics
robots.
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A. Zeilinger, Nature (London) 444, 67 (2006).

[24] D. B. Phillips, M. J. Padgett, S. Hanna, Y.-L. D. Ho, D. M.
Carberry, M. J. Miles, and S. H. Simpson, Nat. Photonics 8, 400
(2014).

[25] A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[26] K. Dholakia and P. Zemnek, Rev. Mod. Phys. 82, 1767

(2010).
[27] R. W. Bowman, G. M. Gibson, M. J. Padgett, F. Saglimbeni, and

R. Di Leonardo, Phys. Rev. Lett. 110, 095902 (2013).
[28] S. Unterkofler, M. K. Garbos, T. G. Euser, and P. S. J. Russell,

J. Biophotonics 6, 743 (2013).
[29] N. Koumakis, A. Lepore, C. Maggi, and R. Di Leonardo, Nat.

Commun. 4, 2588 (2013).
[30] M. K. Garbos, T. G. Euser, O. A. Schmidt, S. Unterkofler, and

P. S. J. Russell, Opt. Lett. 36, 2020 (2011).
[31] A. Butsch, C. Conti, F. Biancalana, and P. S. J. Russell, Phys.

Rev. Lett. 108, 093903 (2012).
[32] N. L. Balazs, Phys. Rev. 91, 408 (1953).

[33] C. Conti and R. Boyd, Phys. Rev. A 89, 033834 (2014).
[34] A. Einstein, Ann. Phys. (Berlin, Ger.) 17, 549 (1905).
[35] M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, Phys. Rev.

Lett. 96, 063904 (2006).
[36] S. Gentilini, A. Fratalocchi, L. Angelani, G. Ruocco, and

C. Conti, Opt. Lett. 34, 130 (2009).
[37] S. Gentilini, A. Fratalocchi, and C. Conti, Phys. Rev. B 81,

014209 (2010).
[38] J. Wang and A. Genack, Nature (London) 471, 345 (2011).
[39] T. Sperling, W. Buhrer, C. Aegerter, and G. Maret, Nat.

Photonics 7, 48 (2013).
[40] P. Sheng, Scattering and Localization of Classical Waves in

Random Media (World Scientific, Singapore, 1990).
[41] A. Taflove and S. C. Hagness, Computational Electrodynamics:

the Finite-Difference Time-Domain Method (Artech House,
Boston, 2000).

[42] W. Collett, C. Ventrice, and S. Mahajan, Appl. Phys. Lett. 82,
2730 (2003).

[43] D. Zhang, X. Yuan, S. Tjin, and S. Krishnan, Opt. Express 12,
2220 (2004).

[44] R. Gauthier, Opt. Express 13, 3707 (2005).
[45] W. Sun, S. Pan, and Y. Jiang, J. Mod. Opt. 53, 2691 (2006).
[46] S.-Y. Sung and Y.-G. Lee, Opt. Express 16, 3463 (2008).
[47] I. Brevik, Phys. Rep. 52, 133–201 (1979).
[48] S. M. Barnett, Phys. Rev. Lett. 104, 070401 (2010).
[49] A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature

(London) 404, 850 (2000).
[50] S. E. Skipetrov and B. A. van Tiggelen, Phys. Rev. Lett. 96,

043902 (2006).

043813-5

http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1007/BF03018208
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1364/AOP.2.000519
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1126/science.1057984
http://dx.doi.org/10.1038/nature05244
http://dx.doi.org/10.1038/nature05244
http://dx.doi.org/10.1038/nature05244
http://dx.doi.org/10.1038/nature05244
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1038/nature05273
http://dx.doi.org/10.1038/nphoton.2014.74
http://dx.doi.org/10.1038/nphoton.2014.74
http://dx.doi.org/10.1038/nphoton.2014.74
http://dx.doi.org/10.1038/nphoton.2014.74
http://dx.doi.org/10.1103/PhysRevLett.40.729
http://dx.doi.org/10.1103/PhysRevLett.40.729
http://dx.doi.org/10.1103/PhysRevLett.40.729
http://dx.doi.org/10.1103/PhysRevLett.40.729
http://dx.doi.org/10.1103/RevModPhys.82.1767
http://dx.doi.org/10.1103/RevModPhys.82.1767
http://dx.doi.org/10.1103/RevModPhys.82.1767
http://dx.doi.org/10.1103/RevModPhys.82.1767
http://dx.doi.org/10.1103/PhysRevLett.110.095902
http://dx.doi.org/10.1103/PhysRevLett.110.095902
http://dx.doi.org/10.1103/PhysRevLett.110.095902
http://dx.doi.org/10.1103/PhysRevLett.110.095902
http://dx.doi.org/10.1002/jbio.201200180
http://dx.doi.org/10.1002/jbio.201200180
http://dx.doi.org/10.1002/jbio.201200180
http://dx.doi.org/10.1002/jbio.201200180
http://dx.doi.org/10.1038/ncomms3588
http://dx.doi.org/10.1038/ncomms3588
http://dx.doi.org/10.1038/ncomms3588
http://dx.doi.org/10.1038/ncomms3588
http://dx.doi.org/10.1364/OL.36.002020
http://dx.doi.org/10.1364/OL.36.002020
http://dx.doi.org/10.1364/OL.36.002020
http://dx.doi.org/10.1364/OL.36.002020
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRevLett.108.093903
http://dx.doi.org/10.1103/PhysRev.91.408
http://dx.doi.org/10.1103/PhysRev.91.408
http://dx.doi.org/10.1103/PhysRev.91.408
http://dx.doi.org/10.1103/PhysRev.91.408
http://dx.doi.org/10.1103/PhysRevA.89.033834
http://dx.doi.org/10.1103/PhysRevA.89.033834
http://dx.doi.org/10.1103/PhysRevA.89.033834
http://dx.doi.org/10.1103/PhysRevA.89.033834
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1103/PhysRevLett.96.063904
http://dx.doi.org/10.1364/OL.34.000130
http://dx.doi.org/10.1364/OL.34.000130
http://dx.doi.org/10.1364/OL.34.000130
http://dx.doi.org/10.1364/OL.34.000130
http://dx.doi.org/10.1103/PhysRevB.81.014209
http://dx.doi.org/10.1103/PhysRevB.81.014209
http://dx.doi.org/10.1103/PhysRevB.81.014209
http://dx.doi.org/10.1103/PhysRevB.81.014209
http://dx.doi.org/10.1038/nature09824
http://dx.doi.org/10.1038/nature09824
http://dx.doi.org/10.1038/nature09824
http://dx.doi.org/10.1038/nature09824
http://dx.doi.org/10.1038/nphoton.2012.313
http://dx.doi.org/10.1038/nphoton.2012.313
http://dx.doi.org/10.1038/nphoton.2012.313
http://dx.doi.org/10.1038/nphoton.2012.313
http://dx.doi.org/10.1063/1.1567042
http://dx.doi.org/10.1063/1.1567042
http://dx.doi.org/10.1063/1.1567042
http://dx.doi.org/10.1063/1.1567042
http://dx.doi.org/10.1364/OPEX.12.002220
http://dx.doi.org/10.1364/OPEX.12.002220
http://dx.doi.org/10.1364/OPEX.12.002220
http://dx.doi.org/10.1364/OPEX.12.002220
http://dx.doi.org/10.1364/OPEX.13.003707
http://dx.doi.org/10.1364/OPEX.13.003707
http://dx.doi.org/10.1364/OPEX.13.003707
http://dx.doi.org/10.1364/OPEX.13.003707
http://dx.doi.org/10.1080/09500340600829077
http://dx.doi.org/10.1080/09500340600829077
http://dx.doi.org/10.1080/09500340600829077
http://dx.doi.org/10.1080/09500340600829077
http://dx.doi.org/10.1364/OE.16.003463
http://dx.doi.org/10.1364/OE.16.003463
http://dx.doi.org/10.1364/OE.16.003463
http://dx.doi.org/10.1364/OE.16.003463
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1016/0370-1573(79)90074-7
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1103/PhysRevLett.104.070401
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1038/35009055
http://dx.doi.org/10.1103/PhysRevLett.96.043902
http://dx.doi.org/10.1103/PhysRevLett.96.043902
http://dx.doi.org/10.1103/PhysRevLett.96.043902
http://dx.doi.org/10.1103/PhysRevLett.96.043902



