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Statistical physical theory of mode-locking laser generation with a frequency comb
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A study of the mode-locking lasing pulse formation in closed cavities is presented within a statistical-
mechanical framework where the onset of laser coincides with a thermodynamic phase transition driven by the
optical power pumped into the system. Electromagnetic modes are represented by classical degrees of freedom
of a Hamiltonian model at equilibrium in an effective ensemble corresponding to the stationary laser regime. By
means of optimized Monte Carlo numerical simulations, the system properties are analyzed while varying mode
interaction dilution, gain profile, and number of modes. Properties of the resulting mode-locking laser phase are
presented that were not observed in previous approaches based on mean-field approximations. For strong dilution
of the nonlinear interaction network, power condensation occurs as the total optical intensity is taken by a few
electromagnetic modes, whose number does not depend on the size of the system. For all reported cases, laser
thresholds, intensity spectra, phase waves, and ultrafast electromagnetic pulses are computed.
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I. INTRODUCTION

In multimode lasers with many cavity modes, nonlinear
interactions originate among modes. One notable mechanism
inducing interaction is saturable absorption, i.e., the progres-
sive depletion of low-power tails of the light pulse traveling
through the cavity during each round-trip. This causes the
consequent amplification of very short pulses composed
of modes with locked phases, a phenomenon called mode
locking [1,2]. Mode locking (ML) derives from the nonlinear
synchronization constraint on the oscillations of interacting
modes. Given any quadruplet of modes {k1,k2,k3,k4}, this is
expressed by the frequency-matching condition (FMC):

|νk1 − νk2 + νk3 − νk4 | � γ, (1)

where γ is the single-mode linewidth. Phase locking occurs at
the ML lasing threshold and corresponds to some long-range
order in the set of modes in the cavity.

We adopt a statistical-mechanical approach to describe the
optical properties of stimulated light emission from cavities
with a large number of modes. In this approach the gener-
ation of a multimode ML lasing regime from a fluorescent
continuous-wave (cw) regime as the optical power in the
cavity is increased can be characterized as a thermodynamic
phase transition between a disordered phase and a phase with
long-range order. The stationary laser system can be treated
as a thermodynamic system at equilibrium in a thermal bath
whose effective temperature is proportional to the inverse
squared power pumped into the cavity [3,4]. Since the first
attempt by Gordon and Fischer in the early 2000s [5], this
approach has been performed in a mean-field fully connected
approximation corresponding in the optical language to the
so-called narrowband approximation (see also Refs. [3,6–8]).
This consists of choosing mode frequencies in a narrow
bandwidth �ν around the central frequency of the cavity. The
bandwidth is so narrow that the frequency interspacing δν

between resonant modes is less than the linewidth γ of each
mode. In this way Eq. (1) is practically always satisfied and
therefore is actually irrelevant in determining lasing properties.

In the present work we introduce frequency-dependent
populations of modes, considering gain profiles g(ν) and the
effect of nontrivial frequency matching on the mode couplings.
This analysis requires us to go beyond the limits of validity of
mean-field theory, and it is carried out by means of optimized
Monte Carlo (MC) simulations running on Graphic Processing
Units. An exhaustive numerical analysis accounting for the
fluctuations induced by these new ingredients reveals that,
depending on the optical system properties, on the cavity
topology, and on the relative gain-to-nonlinearity strength,
different thermodynamic-like phases occur. Such regimes
range from a ferromagnetic-like one, where all mode phases
are aligned, to a phase-wave one, where phases of modes
at nearby frequencies are strongly correlated, although not
equal to each other. The ferromagnetic behavior occurs
in the low-finesse limit of the narrowband approximation.
Nontrivial phase locking occurs, instead, at high finesse. In
the latter case we show how, distributing the frequencies
according to an optical frequency comb [9–11], intensity
spectra and pulse phase delay observed in ultrashort pulses are
reproduced [12].

As it will be discussed in the following, previous studies
based on mean-field theory are exact only in the narrow-
bandwidth case. In this paper we go beyond the mean-
field approximation, accounting also for situations in which
different modes exhibit different frequencies.

Our study introduces two essential ingredients. The first
one is the FMC, yielding mode interaction networks that are
no longer described by mean-field theory, in which nontrivial
multimode emission spectra and mode phase correlations
above threshold occur. The second ingredient is a random
dilution of the interacting network, modeling possible topo-
logical disorder in arbitrary cavity structures, e.g., multicavity
channels not exactly equal to each other. We will show that,
as long as it is not too strong, the latter kind of dilution does
not alter at all the laser transition properties. Below a certain
dilution point, however, in the lasing phase the total optical
power condenses into a small set of connected modes, scaling
independently of the number of modes.
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II. THE MODEL

Expanding the electromagnetic field in the complete base
of N normal modes {En(r),νn} [13],

E(r,t) =
N∑

n=1

an(t)e−2πıνnt En(r) + c.c., (2)

the equilibrium dynamics of the time-dependent complex
amplitudes an(t) is given by the Hamiltonian [5]

H = −
N∑

k=1

gk|ak|2 − J

ML∑

{k1,k2,k3,k4}
ak1a

∗
k2

ak3a
∗
k4

, (3)

where gk and J are chosen as real numbers, neglecting
dispersion and the Kerr-lens effect. The physical meaning of
the coefficients comes from the equivalence of the Hamiltonian
dynamical equation with the Haus master equation [1]: gk =
g(νk) is the net gain profile, and J is the self-amplitude
modulation (SAM) coefficient. The ML sum runs over a subset
of quadruplets such that for each element (k1,k2,k3,k4) the
FMC holds. The latter implies that in the nonlinear term of
Eq. (3) three nonequivalent orderings of quadruplets contribute
to the sum, each one consisting of eight equivalent index
permutations [14]. The Hamiltonian is symmetrized with
respect to these orderings. The coupling strength in Eq. (3) is
taken as J = N/Nq , where Nq is the number of quadruplets,
making the Hamiltonian extensive.

The total optical energy stored in the system is E = Nε =∑N
k=1 |ak|2, and it is kept constant in the dynamics by external

power pumping. Equation (3) is a direct generalization of the
Hamiltonian studied in Ref. [5] and can be seen as the ordered
limit of the random laser theory analyzed in Refs. [3,7,8]. From
the point of view of statistical mechanics the driven optical
system composed by the cavity, the amplifying medium, and
the optical power pumped into the system can be described
by Eq. (3), which can be considered the Hamiltonian of a
system at equilibrium with an effective thermal bath. The
role of the inverse temperature is played by the pumping
rate squared: P2 = βJε2. Here β = 1/kbT is the inverse
heat-bath temperature, which regulates spontaneous emission.
It is usually represented as white noise in Langevin dynamics
[3–8,15,16].

III. MODE INTERACTION NETWORK

Thermodynamic phases are determined by the interaction
network as well. In the following we will analyze networks
with varying degrees of dilution. This will be expressed as the
number of quadruplets Nq vs the number of modes N . We will
discuss data for Nq = O(Nt ), t = 1,2,3,4.

Two essentially different types of topologies will be
investigated, depending on whether the frequency bandwidth
is narrow or finite. Both topologies can be further diluted upon
homogeneously randomly removing quadruplets. The narrow-
bandwidth topology (NBT) is low finesse, i.e., δν � γ , and the
role of frequencies is irrelevant. The fully connected instance,
consisting of Nq = N (N − 1)(N − 2)(N − 3)/8 interacting
quadruplets, corresponds to a closed Fabry-Pérot-like cavity
where all longitudinal modes are localized in the same
spatial region. Possible random diluted NBTs correspond

to more complicated geometries, including multichannels
setups. For finite bandwidth, instead, we will work in the
high-finesse limit, δν � γ , with sets of equispaced frequencies
[9–11,17,18]. We will term this a frequency comb topology
(FCT). In this case the list of quadruplets is extracted
from those nontrivially satisfying Eq. (1): modes are not all
equivalent to each other, and mean-field theory does not hold.

IV. NUMERICAL SIMULATIONS AND DATA ANALYSIS

We performed extensive Monte Carlo simulations of
equilibrium dynamics by means of the exchange MC [19]
algorithm and the synchronous, fully parallel MC [20–23].
The latter, indeed, remarkably turns out to reproduce reliable
dynamics in the present model [24]. In the NBT, system
sizes from N = 25 to 500 have been simulated for random
dilutions of Nq = O(Nt ), t = 2,3,4 [25]. For the FCT, we
simulated systems of size N = 100−1000 with the number
of frequencies Nf = N in each case and Nq = O(N2) and
O(N3) upon applying the FMC filter.

The gain g(νn) is taken as Gaussian with varying mean-
square displacement. We checked thermal equilibration, i.e.,
the onset of the pumped stationary regime, by looking at the
energy relaxation and at the symmetry of the distribution of
complex amplitude values deep in the lasing phase. In the
following we present our results about (i) laser threshold
identification, (ii) intensity spectra, and (iii) phase waves,
electromagnetic pulses, and their correlations.

A. Laser threshold

The estimate of the laser threshold is obtained from the
finite-size scaling (FSS) analysis of the behavior of the energy
vs pumping rate, as shown in Fig. 1 for the FCT (for the NBT,
the energy behavior is the same). For low P the system is
in an incoherent continuous-wave regime with uncorrelated
phases and zero energy per mode. As P increases, a phase
transition occurs, as indicated by a discontinuity in the energy.
For the NBT the N → ∞ critical point is analytically known
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FIG. 1. (Color online) Energy vs P (in arbitrary units) in the
frequency-comb case with Nq ∝ N 2. The arrow marks the analytic
critical point in the thermodynamic limit of the NBT. In the inset,
for N = Nf = 100 modes the spinodal line Psp is shown next to the
threshold critical line.
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TABLE I. Critical point for N → ∞ in various dilutions.

ν band Narrow band Frequency comb

Nq N 2 N 3 N 4 Exact N 2 N 3

Pc 1.56(3) 1.59(9) 1.6(3) 1.566 97 1.558(8) 1.57(1)

[3] and pointed out by an arrow in Fig. 1. For Nq = O(Nt ),
t = 2,3,4, the FSS of the discontinuity point is compatible with
the fully connected analytical limit, as reported in Table I. The
critical thresholds for the FCT case, estimated using FSS for
Nq = O(N2) and for Nq = O(N3), are reported in Table I. The
cw-ML laser phase transition is first order: in the inset of Fig. 1
both the spinodal and the critical points are displayed, e.g., for
N = 100 in a FCT. Spinodal points occur both in NBT and in
FCT. In Fig. 2 the average mode magnitudes r ≡ 〈|a|〉/√ε are
plotted. This is

√
2/π for randomly independently oscillating

amplitudes, and it discontinuously increases at the ML lasing
threshold, indicating intensity mode locking. For P → ∞, r

tends to 1 in the NBT and to 0.990(1) in the FCT case.

Power condensation

As the dilution is strong, i.e., Nq = O(N ), each mode
interacts in an O(1) number of quadruplets. Above the
threshold the total power E turns out to be taken by a small
number of connected modes, and the probability to find a
configuration with energy equipartition is negligible in the
thermodynamic limit. In the mean-field approximation one
can prove that in order to display power condensation it must
be Nq < O(N2) [24], as confirmed by numerical simulations.
In the following we focus on more connected networks.
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FIG. 2. (Color online) Average mode magnitude r = 〈|a|〉/√ε

vs optical power P (in a.u.) for different sizes (top) in the NBT
and (bottom) in the FCT.
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FIG. 3. (Color online) Intensity spectra for a FCT system of
Nf = N = 150. Nq = O(N 2) for increasing P from bottom to top.
(left) Gain g(λ) with larger variance, σλ = 3885. At P > Pc the
spectrum starts narrowing because of the nonlinear mode coupling.
(right) g(λ) with smaller variance, σλ = 243. Spectra follow the
peaked gain profile already in the cw regime. At Pc mode locking
sets in, enhancing the sharpening.

B. Intensity spectra

In Fig. 3 we show two instances of the spectra I (λj ) =
〈|aj |2〉 vs λj = c/νj in FCT systems with Gaussian gain
profiles with different variances. In the left panel the mean-
square displacement of the gain profile in the wavelength
dominion is large (σg = 3885) in comparison to the spectral
free range, whereas in the right panel it is of the same order
of magnitude (σg = 243). In the first case, below P the cw
spectrum is flat and suddenly sharpens at the ML threshold
Pc. To underline this, spectra are shown right below and above
Pc(N = 150) = 1.597(15) in Fig. 3. In the small σg case the
spectra already appear narrower in the cw regime, following
g(λ), as displayed in the right panel of Fig. 3 for the lowest
simulated pumping rate. At Pc, however, their narrowing
qualitatively changes and becomes progressively independent
of g(λ) as P increases, eventually taking the same spectral
shape as the previous case.

We show in Fig. 3 the cumulative detections of many
pulses, as in data acquisition from ultrafast ML lasers. In the
MC dynamics used in the simulation, however, each MC step
corresponds to a pulse generation. Within our approach it is,
then, possible to look at the dynamics at much shorter time
intervals, where the mode amplitude and intensity profile in λ

fluctuate from pulse to pulse. This is connected to changes in
the spectral phase delay of the electromagnetic pulse.

C. Electromagnetic pulses and phase delay

In terms of slow complex amplitudes [see Eq (2)], an(τ ) =
An(τ )eıφn(τ ), An = |an|, the electromagnetic pulse is

E(t |τ ) =
N∑

n=1

An(τ )eı[2πνnt+φn(τ )]. (4)

The time τ � t operatively labels a single MC step in our
simulations, i.e., the interval between two pulses. In Fig. 4
we show E(t |τ ) at four different times τ in the dynamics.
In the NBT, in the ML regime all modes acquire the same
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FIG. 4. (Color online) Electromagnetic field E(t) at different emissions in the system dynamics with a uniform comb distribution for mode
frequencies. N = Nf = 500. The bottom insets show phase-locked linear behavior φ(ν) corresponding to each pulse. The phase shift in the
peak of E(t) with respect to the maximum of the envelope corresponds to the slope of φ(ν). Time is in arbitrary units.

modulus and phase. In a FCT, instead, at Pc a nontrivial
phase locking occurs, such that the mode phases exhibit a
linear dependence on the mode frequencies: φn � φ0 + φ′νn,
as shown in the bottom insets of Fig. 4. The pulse is thus
unchirped [1]. The spectral phase delay, or group delay,
φ′ = dφ(ν)/dν|ν=νn

of the optical pulse does not depend on
the frequency of mode n. It changes, however, with time τ ,
from pulse to pulse. Within our approach we thus find the
typical spectral phase frequency profile φ(ν) at each given
pulse and its pulse-to-pulse dynamics.

1. Phase-wave lifetime

Let us define the time average over an equilibrated
set of data (τ � τtherm) on a time window T : 〈· · · 〉T ≡∑T

τ=0(· · · )/T . In the FCT, after a time T > τφ , the average
global phase correlation function Cφ(T ), defined as

Cφ(T ) ≡ 1

Nf

∑

δν

|Cδν(T )| , (5)

Cδν(T ) = 1

Nf

∑

ν

〈cos (φν − φν+δν)〉T , (6)

is observed to decay to zero. This is at odds with the NBT,
where, in the high-power regime, Cφ(T ) is finite also for T →
∞. For the FCT, the distribution of correlation times τφ as
the optical power varies across the lasing threshold is sharply
peaked around its logarithmic average ln τφ below threshold
(see Fig. 5). For increasing P > Pc the distribution tends to a
flat curve.

2. Vanishing two-mode correlators

A related phenomenon is that the average over T > τφ of
two-mode phase correlations Cδν(T ) [see Eq. (6)] vanishes,
as shown in Fig. 6, implying a zero ensemble average. This
occurs even though modes with frequencies ν, ν ′ = ν + δν

are correlated at each time τ (see bottom insets of Fig. 4)
and Cδν(T ) �= 0 when T � τφ . In Fig. 6 we show Cδν(T ) as
a function of δν = ν ′ − ν for T = 104 and T = 105. In the
top panel, at the shorter time window T = 104, one clearly
observes that Cδν is completely uncorrelated independent of

δν for P < Pc. As the pumping increases above the threshold,
Cδν displays a nontrivial behavior as a function of δν. Above
threshold, thus, the global phase correlation function Cφ [see
Eq. (5)] becomes larger the higher the pumping is. In other
words, the correlation time τφ grows withP and overcomes T :
τφ(P > Pc) > 104. In the bottom panel of Fig. 6 we consider,
instead, a time window T larger than the average correlation
time τφ(P) for most of the simulated pumping values P (see
Fig. 5): it can be observed that Cδν(105) � 0 for practically
almost all δν, except the smallest ones for large power. The
oscillations displayed by Cδν(T ) in Fig. 6 in the ML laser
regime are due to the fact that different phase delays are
involved in the thermal average. Indeed (see bottom insets
of Fig. 4), the slope of φ(ν) changes with time τ .

The origin of the vanishing of two-mode correlators is
reminiscent of symmetry conservation in gauge lattice theories
[26] and will be discussed elsewhere [24]. We just mention that
the main difference in the lasing regime for the two topologies
is that in the NBT the global U(1) symmetry is spontaneously
broken, whereas in the FCT it is conserved across the threshold.
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FIG. 5. (Color online) Distribution of the decay time of the equal-
time phase correlation function for a system of N = Nf = 200 modes
across the threshold Pc(N = 200) = 1.616(8). Time τ in is Monte
Carlo steps.
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V. CONCLUSIONS

We presented a statistical-mechanical approach to the study
of real-world ultrashort mode-locked multimode lasers in
closed optical cavities, including possible degrees of topolog-
ical disorder. In previous approaches, statistical-mechanical
systems with distinct resonances have been studied in the
mean-field approximation (see, e.g., Refs. [15,16,27]). The key
point is, however, that the mean-field solution is exact only in
the narrow-bandwidth limit. When describing inhomogeneous
topologies, such as the frequency comb topology of equispaced
well-refined resonances, the only thing that the mean-field
theory can account for is a shift in the pumping threshold

resulting from the dilution (in fact, just a modification of
the coupling constant). The nature of the predicted mode-
locked regime remains, indeed, identical to the one predicted
assuming a narrow bandwidth. This limit basically lies in
the very definition of the mean-field method: since the
fluctuations of the mode degrees of freedom are neglected,
a many-body problem is actually reduced to a one-body
problem, in which all modes exhibit a common average
phase and a common average intensity. The inhomogeneity
in the frequency dependence of the interaction network in
more realistic cases, in which modes with nearby frequencies
have stronger coupling, is simply neglected by construction.
Because of the mean-field assumption, previous approaches
have not, and could not have, accounted for the main properties
here reported: phase waves, nonequipartition threshold, and
vanishing two-mode correlators.

Our approach, going beyond mean-field theory with Monte
Carlo simulations of equilibrium dynamics, allows us to
reproduce and study the onset of the lasing regime and the
behavior of emission spectra and laser pulses and relative
group phase delays at any supplied power. The existence of
metastable lasing regimes marked by spinodal points in the
energy behavior (see the inset of Fig. 1) accounts for the
onset of optical bistability [28,29]. The phenomenon of power
condensation for extreme dilution of mode interaction and the
vanishing of the equal-time two-mode phase correlations for
long times are properties that can be experimentally tested.
Furthermore, this kind of approach opens the way to further
analyze the carrier-envelop offset phase behavior and the
tolerance to disorder in the coupling SAM coefficient. The
latter analysis is useful, e.g., for a stabilized microresonator
in chip-based devices [30,31] in which technical precision
undergoes micron-size constraints and controlling material
damage is a true challenge. Eventually, by including open-
cavity terms [32,33] and strong disorder in the nonlinear
coupling [3,6–8], our approach will be able to be applied to
the study of random lasers [34–38].
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