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Theory of microwave single-photon detection using an impedance-matched � system
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By properly driving a qubit-resonator system in the strong dispersive regime, we implement an “impedance-
matched” � system in the dressed states, where a resonant single photon deterministically induces a Raman
transition and excites the qubit. Combining this effect and a fast dispersive readout of the qubit, we realize a
detector of itinerant microwave photons. We theoretically analyze the single-photon response of the � system and
evaluate its performance as a detector. We achieve a high detection efficiency without relying on precise temporal
control of the input pulse shape and under a conservative estimate of the system parameters. The detector can
also be reset quickly by applying microwave pulses, which allows a short dead time and a high repetition rate.
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I. INTRODUCTION

Extensive efforts have been made in a variety of physical
systems to realize strong coupling between a single quantum
emitter and a one-dimensional photon field [1–10]. In such
one-dimensional optical systems, interaction between an emit-
ter and a photon is enhanced drastically due to the destructive
interference between the incident field and the radiation from
the emitter. This opens the possibility for deterministic control
of quantum systems by individual photons.

In particular, in a �-type three-level system that has
identical radiative decay rates from the top level and is coupled
to a semi-infinite one-dimensional field, a resonant single
photon deterministically induces a Raman transition in the �

system and switches its electronic state [11–14]. Recently, we
implemented such a � system by utilizing the dressed states
of a driven circuit-quantum-electrodynamics (circuit-QED)
system. Applying continuous microwave to the � system, we
confirmed that the field amplitude vanishes completely upon
its reflection (perfect absorption by “impedance matching”),
and that input photons are down-converted by the � system
[15–17]. This indicates highly efficient switching of the � sys-
tem induced by individual microwave photons. Deterministic
switching of a � system has also been demonstrated recently
in the visible-light domain by using a spherical cavity and an
atom [18,19].

Exploiting the large transition dipole of superconducting
qubits, circuit QED enables various microwave quantum-
optical phenomena that have not been reached by quantum
optics in the visible domain: The examples include direct
and strong coupling of qubits to itinerant waveguide photons
[20–22] and various effects in the strong-dispersive regime
of the qubit-cavity interaction [23–25]. However, an apparent
shortcoming of microwave quantum optics has been the lack of
efficient single photon detectors: The main difficulty is in the
energy scale of single microwave photons orders of magnitude
smaller than that of visible or infrared photons.

In recent proposals and an experiment, a current-biased
Josephson junction was used as a microwave photon detector
[26–28]: a metastable two-level system formed in the tilted

washboard potential resonantly absorbs an incoming photon
and switches into the voltage state of the junction to make
a “click”. While the successful operation was demonstrated
[28], the dark count and the dead time after the detection are
remaining issues. In this study, we theoretically analyze the
single-photon response of an impedance-matched � system
realized in a driven qubit-resonator system and demonstrates
its excellent performance as a single photon detector in the
microwave domain. In contrast to the optical photon counters
functioning in the continuous mode, the proposed detector
works in a time-gated mode: it discriminates whether or not
a photon arrived within a finite time window. The detector
operates with a low dark count rate and the detection efficiency
reaches close to unity. Moreover, the system is switched to
a discrete and definite quantum state upon detection, which
enables us to reset the system quickly and therefore to shorten
the dead time of the detector. In comparison with the works that
demonstrate deterministic capture of propagating microwave
pulses in a harmonic oscillator mode [29–32], our scheme
based on a � system has a merit that it is free from precise
temporal control of the input pulse shape and/or the system
parameters: a high switching efficiency can be attained as
long as the input photon has a narrower bandwidth than the
linewidth of the � system.

The rest of this paper is organized as follows. In Sec. II, we
theoretically describe the driven qubit-resonator system and
derive basic equations for the analysis. In Sec. III, we explain
two distinct functionalities of the device. In the � mode, which
is realized under a proper qubit drive, a single incident photon
excites the qubit deterministically. In the I mode, which is
realized when the qubit drive is off, the dispersive readout of
the qubit state is possible. In Sec. IV, we present our single-
photon detection scheme, which is composed of three stages:
capture, readout, and reset. In Sec. V, we discuss the capture
stage and show that a high detection efficiency is achievable
with practical parameter values. In Sec. VI, we discuss the
reset stage and show that the present system can be initialized
within a few hundred nanoseconds. Section VII summarizes
this study.
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FIG. 1. (Color online) Schematic of the setup. A superconduct-
ing qubit (two-level atom) is coupled dispersively to a resonator. The
resonator is coupled to a semi-infinite waveguide (WG1), through
which a signal photon is input. The qubit is coupled to another
waveguide (WG2), through which a drive pulse is applied.

II. SYSTEM

Here, we theoretically describe the device considered in
this study [33,34]. Its schematic is shown in Fig. 1. A
superconducting qubit, which can be regarded as a two-level
atom, is dispersively coupled to a transmission line resonator.
The resonator is further coupled to a semi-infinite waveguide
(WG1), through which a signal photon pulse to be detected is
input. Our objective is to determine whether the signal pulse
contains a photon or not. We also use this port for readout of the
qubit and for resetting the system. Through another waveguide
(WG2), we apply drive pulses to the qubit in order to engineer
the dressed states of the qubit-resonator system.

A. Hamiltonian

Setting � = v = 1, where v is the microwave velocity in
the waveguides, the Hamiltonian of the overall system is
written as

H = Hsys + Hdamp, (1)

Hsys = ωra
†aσσ † + [ωq + (ωr − 2χ )a†a]σ †σ, (2)

Hdamp =
∫

dk[ka
†
kak +

√
κ ′/2π (a†ak + a

†
ka)]

+
∫

dk[kb
†
kbk +

√
γ ′/2π (σ †bk + b

†
kσ )], (3)

where a (σ ) is the annihilation operator for the resonator
(qubit) and ak (bk) is the annihilation operator for microwave
photon propagating in WG1 (WG2) with wave number
k. ωr (ωq) is the resonance frequency of the resonator (qubit),
χ is the dispersive frequency shift, and κ ′ (γ ′) is the radiative
decay rate of the resonator (qubit) into WG1 (WG2). The
parameter values are listed in Table I.

Three comments are in order regarding this Hamiltonian.
(i) The qubit-resonator system is described by the Jaynes-
Cummings Hamiltonian, Hsys = ω̄ra

†a + ω̄qσ
†σ + g(a†σ +

σ †a), where ω̄r and ω̄q are the bare frequencies of the resonator
and qubit and g is their coupling. In the dispersive regime
(|ω̄r − ω̄q | � g),Hsys is recast into a diagonal form of Eq. (2).
The renormalized frequencies are given by ωr = ω̄r + χ

and ωq = ω̄q − χ , where χ = g2/(ω̄r − ω̄q). (ii) Although
omitted for simplicity, the resonator and qubit are subject to
nonradiative decay to the environment. We denote the total
decay rate of the resonator (qubit) by κ (γ ). (iii) In practice, we

TABLE I. Parameter values for ωq (qubit frequency), ωr (res-
onator frequency), χ (dispersive shift), κ (total decay rate of the
resonator), κ ′ (radiative decay rate of the resonator to WG1), γ (total
decay rate of the qubit), γ ′ (radiative decay rate of the qubit to WG2),
and ωd (qubit drive frequency).

ωq 2π × 5 GHz
ωr 2π × 10 GHz
χ 2π × 40 MHz

κ 2π × 20 MHz
κ ′ 2π × 20 MHz
γ 2π × 0.1 MHz
γ ′ 2π × 0.1 kHz

ωd ωq − 2π × 70 MHz

switch to the rotating frame to remove the natural phase factors.
We subtractH0 = ωsa

†a + ωdσ
†σ fromHsys of Eq. (2), where

ωs (ωd ) is the central frequency of the signal photon (drive
pulse).

B. Heisenberg equations

We introduce the real-space representation of the field
operator for WG1 by

ãr = 1√
2π

∫
dkeikrak. (4)

In this representation, the r < 0 (r > 0) region corresponds to
the incoming (outgoing) field. The field operator b̃r for WG2
is defined similarly. From Hdamp of Eq. (3), we can derive the
following input-output relations [35]:

ãr (t) = ãr−t (0) − i
√

κ ′a(t − r)θ (r)θ (t − r), (5)

b̃r (t) = b̃r−t (0) − i
√

γ ′σ (t − r)θ (r)θ (t − r). (6)

The conventional input and output field operators are defined
at r = ±0 by ain(t) = ã−0(t) and aout(t) = ã+0(t). bin(t), and
bout(t) are defined similarly. From Eqs. (1), (5), and (6), the
Heisenberg equation for any system operator S (composed of
σ , a, and their conjugates) is given by

d

dt
S = i[Hsys,S] + κ

2
(2a†Sa − a†aS − Sa†a)

+ γ

2
(2σ †Sσ − σ †σS − Sσ †σ )

+ i
√

κ ′a†
in(t)[a,S] + i

√
κ ′[a†,S]ain(t)

+ i
√

γ ′b†in(t)[σ,S] + i
√

γ ′[σ †,S]bin(t). (7)

C. Microwave response

In our setup, a signal photon is input through WG1 and a
classical drive pulse is applied through WG2. We denote the
wave function of the signal photon by fs(t) and the amplitude
of the drive pulse by fd (t). Note that fs(t) is normalized as∫

dt |fs(t)|2 = 1. Extension to the two-photon input through
WG1 is straightforward (see Appendix).

Analysis of the microwave response to a single photon
can be simplified by (i) replacing the single-photon state
|1〉 with a coherent state |α〉, (ii) performing perturbation
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calculation with respect to α, and (iii) picking up the
relevant terms afterwards [36]. Therefore, we investigate a
situation in which two classical pulses, αfs(t) and fd (t),
are applied through WG1 and WG2, respectively. Since

a classical pulse (coherent state) is an eigenstate of an
input field operator, we can rigorously set 〈[a†,S]ain(t)〉c =
αfs(t)〈[a†,S]〉c and 〈[σ †,S]bin(t)〉c = fd (t)〈[σ †,S]〉c. Then,
the expectation value of an operator S evolves as

d

dt
〈S〉c = i〈[Hsys,S]〉c + κ(〈a†Sa〉c − 〈a†aS〉c/2 − 〈Sa†a〉c/2) + γ (〈σ †Sσ 〉c − 〈σ †σS〉c/2 − 〈Sσ †σ 〉c/2)

+ i
√

κ ′α∗f ∗
s (t)〈[a,S]〉c + i

√
κ ′αfs(t)〈[a†,S]〉c + i

√
γ ′f ∗

d (t)〈[σ,S]〉c + i
√

γ ′fd (t)〈[σ †,S]〉c. (8)

We expand 〈S〉c as 〈S〉c = ∑∞
m,n=0(α∗)mαn〈S〉mn

c . Then, 〈S〉mn
c evolves as

d

dt
〈S〉mn

c = i〈[Hsys,S]〉mn
c + κ(〈a†Sa〉mn

c − 〈a†aS〉mn
c /2 − 〈Sa†a〉mn

c /2) + γ (〈σ †Sσ 〉mn
c − 〈σ †σS〉mn

c /2 − 〈Sσ †σ 〉mn
c /2)

+ i
√

κ ′f ∗
s (t)〈[a,S]〉(m−1)n

c + i
√

κ ′fs(t)〈[a†,S]〉m(n−1)
c + i

√
γ ′f ∗

d (t)〈[σ,S]〉mn
c + i

√
γ ′fd (t)〈[σ †,S]〉mn

c . (9)

with the convention that 〈S〉mn
c = 0 for negative m or n.

Our objective is to evaluate the expectation value for a
single-photon input, 〈S〉s . As discussed in Appendix, it is given
by

〈S〉s = 〈S〉00
c + 〈S〉11

c . (10)

Therefore, we solve the simultaneous differential equations for
〈S〉00

c , 〈S〉01
c , 〈S〉10

c , and 〈S〉11
c to evaluate 〈S〉s .

III. I AND � MODES

As discussed in Refs. [15,16], for a drive field with properly
chosen power and frequency, the dressed states of a qubit-
resonator system constitutes an impedance-matched � system,
which absorbs an input photon with a near-unity efficiency. To
observe this, we first consider a case with a continuous drive
in this section. The drive field fd (t) is given by

fd (t) = �d√
γ ′ e

−iωd t , (11)

where ωd is the drive frequency and �d is the drive amplitude
expressed in terms of the Rabi frequency. In the frame rotating
at ωd , the Hamiltonian for the driven qubit-resonator system
is written as

Hsys+dr = ωra
†aσσ † + [(ωq − ωd ) + (ωr − 2χ )a†a]σ †σ

+�d (σ † + σ ). (12)

We label the state vectors of the system with |q,n〉, where
q(=g,e) denotes the qubit state and n(=0,1, . . .) denotes the
resonator photon number. Throughout this study, only the
lowest four states (|g,0〉, |e,0〉, |g,1〉, and |e,1〉) are relevant.
When the drive is off (�d = 0), their energies are respectively
given by ω|g,0〉 = 0, ω|e,0〉 = ωq − ωd , ω|g,1〉 = ωr and ω|e,1〉 =
ωq − ωd + ωr − 2χ . We choose the drive frequency ωd to
satisfy ωq − 2χ < ωd < ωq . Then, the level structure becomes
nested, i.e., ω|g,0〉 < ω|e,0〉 < ω|e,1〉 < ω|g,1〉 [Fig. 2(a)]. When
the drive is on (�d > 0), |g,0〉 and |e,0〉 (|g,1〉 and |e,1〉) are
mixed to form the dressed states |̃1〉 and |̃2〉 (|̃3〉 and |̃4〉),
where the dressed states are labeled from the lowest in energy
[Fig. 2(b)]. The radiative decay rate from |̃i〉 to |j̃〉 emitting a
photon into WG1 is given by κ̃ij = κ ′|〈̃i|a†|j̃〉|2.

Figure 2(c) plots κ̃ij as functions of the drive amplitude.
The drive frequency ωd is fixed at the value in Table I
throughout this study. When the drive is off, κ̃32 = κ̃41 = κ ′
and κ̃31 = κ̃42 = 0. Namely, the radiative decay occurs only
in one direction as depicted in Fig. 2(a). We refer to this as
the I mode of the qubit-resonator system. In this mode, the
microwave transition occurs conserving the qubit state, and
the transition frequency differs by 2χ depending on the qubit
state. We can use this mode for the dispersive readout of the
qubit state.

In contrast, at a proper drive power [�imp
d in Fig. 2(c)],

the four decay rates become identical, i.e., κ̃31 = κ̃32 = κ̃41 =
κ̃42 = κ ′/2. Then, the three levels |̃1〉, |̃2〉, and |̃u〉 (u = 3 or 4)
function as an impedance-matched � system: a single photon
resonant to the |̃1〉 → |̃u〉 transition deterministically in-
duces the Raman transition of |̃1〉 → |̃u〉 → |̃2〉 and switches
the quantum state of the � system. We refer to this as
the � mode of the qubit-resonator system [Fig. 2(b)]. The
underlying physical mechanism for this phenomenon is the
destructive interference between the input and elastically
scattered photons [15]. Figure 2(d) shows the reflection
coefficient |r| of a weak continuous signal field applied through
WG1, as a function of the drive amplitude �d and the signal
frequency ωs . We observe two impedance-matching spots
(|r| 
 0) at (�d,ωs) 
 (�imp

d ,ω̃31) and (�imp
d ,ω̃41), where ω̃ij

is the transition frequency between dressed states |̃i〉 and |j̃ 〉.
We have two comments regarding Fig. 2(d). (i) We observe
that ωs of the upper (lower) spot deviates slightly from ω̃41

(ω̃31). This is due to the small energy difference between
levels |̃3〉 and |̃4〉 that is comparable to the linewidth of the �

system (∼κ ′/2). In this case, weak elastic scattering induced by
level |̃3〉 (|̃4〉) is not negligible. (ii) In our former experiment,
�d of the two spots differed considerably [17]. That was
because we used a relatively strong signal field to improve
the signal to noise ratio. Here, we consider the weak-field
limit to discuss the single-photon response.

IV. DETECTION SCHEME

As we observed in the previous section, the present
qubit-resonator system has two distinct functionalities. In
the � mode, the system captures a single photon nearly
deterministically and makes a transition to the qubit excited
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FIG. 2. (Color online) (a) I mode of the qubit-resonator system. This is attained when the qubit drive is off. Arrows indicate the directions
of radiative decays. (b) � mode of the qubit-resonator system. The four decay rates are identical. This is attained when a proper drive field
is applied to the qubit. (c) Radiative decay rates κ̃31, κ̃32, κ̃41, and κ̃42 as functions of the drive amplitude. The four rates become identical
at �

imp
d /2π = 13.2 MHz. (d) Reflection coefficient |r| of a weak signal field applied through WG1. White dashed lines show ω̃31 and ω̃41.

Impedance matching (|r| 
 0) occurs at (�d,ωp) 
 (�imp
d ,ω̃31) and (�imp

d ,ω̃41).

state. In the I mode, the system functions as an oscillator
whose resonance frequency depends on the qubit state. We
can read out the qubit state efficiently with a single probe
pulse. These two modes can be switched adiabatically by a
temporally smooth qubit drive pulse.

In the single-photon detection considered here, it is assumed
that the arrival time and the length of the signal pulse are
known in advance: we determine whether the pulse contains a
single photon or not by this measurement. Our single-photon
detection proceeds in the following three steps. (i) Initially,
the qubit-resonator system is in its ground state |g,0〉 and a
signal pulse is input through WG1. Through WG2, we apply
a drive pulse that covers the signal pulse in time, and switch
the system to the � mode during this period. At the end of
this stage, the photon number in the signal pulse (0 or 1) is
mapped onto the qubit state (g or e). We refer to this as the
capture stage and discuss in detail in Sec. V. (ii) Next, we
perform dispersive readout of the qubit. In order to prevent
the |̃2〉 → |̃u〉 → |̃1〉 transition (u = 3 or 4) induced by the
probe, we turn off the qubit drive and keep the system in the
I mode during this process. We apply a classical probe pulse
to the resonator and measure the phase shift of the reflected
pulse. We refer to this as the readout stage. We do not touch
this stage in this paper, since dispersive readout of the qubit
has been discussed in prior works that demonstrated high-
fidelity single-shot readout [37–43]. (iii) The qubit-resonator
system is initialized (i.e., decays to its ground state |g,0〉)
automatically by the natural qubit decay. However, in order to
shorten the dead time of the detector, we artificially reset the
system by applying microwave pulses. For this purpose, we
use the inverse process of stage (i): We apply a drive pulse
through WG2 to form a � system and a reset pulse through
WG1. Note that the reset pulse can be a classical and strong
one in contrast with the capture stage. We refer to this as the
reset stage and discuss in detail in Sec. VI.

V. CAPTURE OF SIGNAL PHOTON

In this section, we present the numerical results for the
capture stage of Fig. 3, where a signal pulse to be detected
and a qubit drive pulse are input simultaneously. We assume a

Gaussian pulse with length l for the signal pulse:

fs(t) =
(

8 ln 2

πl2

)1/4

2−t2/(l/2)2
e−iωs t . (13)

Note that fs is normalized as
∫

dt |fs(t)|2 = 1. On the other
hand, we assume the following pulse shape for the qubit drive:

fd (t) = �d√
γ ′ e

−iωd t ×
{

1 (|t | � βl/2)
2−(|t |−βl/2)2/(w/2)2

(|t | > βl/2)
.

(14)

Namely, a square pulse with length βl is smoothed by Gaussian
functions with width w. We smooth the drive pulses in order
to switch the I and � modes adiabatically and to suppress
unwanted qubit excitations. A real positive constant β is
chosen so that fd covers fs in time. For Gaussian signal pulses,
we set β = 2. The envelope functions of the signal photon and
the drive pulse are drawn in Fig. 4. In the capture stage, we set
the drive amplitude at �

imp
d indicated in Fig. 2(c).

A. Zero-photon input

Here, we discuss the case in which the signal pulse
contains no photons. Namely, we observe the dynamics
induced solely by the drive pulse applied through WG2. In

waveguide 1

waveguide 2

capture readout reset

time

time

FIG. 3. (Color online) Pulse sequence for single-photon detec-
tion. (i) Capture stage. We simultaneously input a signal photon
through WG1 and a classical drive pulse through WG2. (ii) Readout
stage. We apply a classical readout pulse through WG1 and switch
off a drive pulse through WG2. (iii) Reset stage. We simultaneously
apply a classical reset pulse through WG1 and a classical drive pulse
through WG2. The carrier frequencies of the three pulses applied
through WG1 are different from each other.
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signal photon
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FIG. 4. (Color online) Envelopes of the signal photon and the
qubit drive pulse. We use a smooth drive pulse in order to switch the
I and � modes adiabatically.

Fig. 5, we plot the time evolution of the qubit excitation
probability, p0(t) = 〈σ †σ 〉. (The subscript 0 represents the
photon number in the signal pulse.) For reference, we also
plot the excitation probability p0(t) under the adiabatic
approximation, which is obtained as follows. The system
Hamiltonian including the qubit drive is written, in the
rotating frame, as Hsys+dr = ωra

†aσσ † + [(ωq − ωd ) +
(ωr − 2χ )a†a]σ †σ + √

γ ′|fd (t)|(σ † + σ ). Its lowest two
eigenstates |̃1〉 and |̃2〉 are given by |̃1〉 = cos θ |g,0〉 −
sin θ |e,0〉 and |̃2〉 = sin θ |g,0〉 + cos θ |e,0〉, where

θ (t) = 1

2
arctan

(
2
√

γ ′|fd (t)|
ωq − ωd

)
. (15)

Under the adiabatic assumption, the system always stays
in its ground state, |̃1〉. The excitation probability,
p0(t) = |〈e,0|̃1〉|2, is therefore given by

p0(t) = sin2 θ (t). (16)

We observe in Fig. 5 that p0(t) is at most a few percents and
roughly agrees with p0(t). The deviation between them orig-
inates in the nonadiabatic transition, which is suppressed by
increasing w. Immediately after the drive is switched off, p0(t)
comes back close to zero and becomes nearly independent of
time. Hereafter, we set w = 30 ns and define the detection
probability P0 as the qubit excitation probability at the end of
this stage. Namely, P0 = p0(tf ), where we set tf = βl/2 + 50
ns. Under this choice of w, the detection probability is
negligibly small for the zero-photon input. This means that the
dark counts are suppressed nearly completely in the present
scheme. For example, P0 
 10−4 for l = 200 ns and β = 2.

B. One-photon input

Here, we discuss the case in which the signal pulse contains
one photon. We denote the qubit excitation probability for

one-photon input by p1(t). We plot p1(t) in Fig. 6(a), where
the signal frequency is set at ωs/2π = 10.007 GHz [the upper
impedance-matching spot in Fig. 2(d)]. It is observed that
p1(t) increases rapidly during the signal pulse duration (|t | �
l/2): the excitation probability roughly evolves as p1(t) ∼∫ t

dτ |fs(τ )|2. At the end of the capture stage, a high detection
probability P1 = p1(tf ) is achieved, in clear contrast with the
zero-photon case where P0 is negligibly small.

Figure 6(b) shows the dependence of P1 on the signal
pulse length l. Here we assumed three values of the qubit
decay rate: γ /2π = 0.1 MHz (red solid), 0.02 MHz (blue
dashed), and 0 MHz (green dotted). In the ideal limit of infinite
qubit lifetime (γ = 0), the detection probability increases
monotonically in l and a near-unity probability is attained for
l � κ−1. This is because a longer pulse is advantageous for
the destructive interference between the input and elastically
scattered photons, which is the key physical mechanism for the
deterministic switching of the � system. However, in reality,
the detection probability is decreased by the decay of the qubit
into other channels during the pulse duration. A longer pulse is
disadvantageous in this regard. We thus have an optimum pulse
length lopt that maximizes the detection probability. Under a
practical qubit decay rate (γ /2π = 0.1 MHz), P1 amounts to
0.89 at lopt ∼ 100 ns. If the qubit lifetime is improved five
times (γ /2π = 0.02 MHz), P1 reaches 0.96 at lopt ∼ 200 ns.
Note that these detection probabilities represent the switching
probability in the capture stage of Fig. 3, which does not
include the potential errors in the qubit readout stage.

Figure 6(c) plots P1 as a function of the drive power and
the signal frequency for a signal pulse length l = 100 ns. We
observe qualitative agreement with the reflectivity plot of
Fig. 2(d): P1 is maximized when the drive amplitude satis-
fies the impedance-matching condition (�d = �

imp
d ) and the

photon frequency is tuned closely to ω̃31 or ω̃41. The detection
bandwidth is several ten megahertz, which is determined by
the linewidth of the resonator. The center frequency of the
detection band depends on the system parameters and the
frequency and power of the drive field.

C. Two-photon input

As we discussed in previous subsections, our device
discriminates with a high efficiency whether the signal pulse
contains a photon or not. Here we present the results for
two-photon input to observe the multiphoton effects in the
signal pulse. In Fig. 7(a), we compare the time evolution of
p1(t) and p2(t). When the signal photons are out of resonance
with the � system (ωs/2π = 10.030 GHz) and therefore the
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FIG. 5. (Color online) Time evolution of
the qubit excitation probability, for a signal
pulse containing zero photon: the actual evolu-
tion p0(t) (red solid) and the adiabatic approx-
imation p0(t) (blue dashed). The parameters
used are: �d/2π = �

imp
d /2π = 13.2 MHz, l =

100 ns, β = 2, and w = 20 ns in (a) and w =
30 ns in (b).
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FIG. 6. (Color online) (a) Time evolution of the qubit excitation probability p1(t) for a signal pulse containing one photon (red solid). The
result for zero-photon case, p0(t), is also plotted for reference (blue dashed). The parameters used are: l = 100 ns, β = 2, w = 30 ns, and
ωs/2π = 10.007 GHz. (b) Dependence of the detection probability P1 on the signal pulse length l for various values of γ /2π : 0.1 MHz (red
solid), 0.02 MHz (blue dashed), and 0 MHz (green dotted). (c) Dependence of the detection probability P1 on the drive amplitude �d and the
signal photon frequency ωs .

excitation probabilities are low, p2(t) is roughly twice as large
as p1(t). The two photons excites the qubit independently in
this case. In contrast, when the signal photons are on resonance
(ωs/2π = 10.007 GHz) and a high efficiency is attained for
the one-photon input, p2(t) becomes comparable as p1(t)
due to the saturation of the � system. Figure 7(b) plots the
ratio of the detection probabilities, P2/P1, as a function of
�d and ωs . By comparing Figs. 6(c) and 7(b), we observe
that P2 
 2P1 holds when P1 � 0.2 and P2 � P1 holds when
P1 � 0.7.

D. Pulse-shape dependence

Up to here, we assumed a Gaussian pulse for the signal
photon. Here, in order to observe the effects of the pulse shape,
we consider square and exponential shapes for the signal pulse:

f sq
s (t) = e−iωs t

√
l

×
{

1 (|t | � l/2)
0 (|t | > l/2) , (17)

f exp
s (t) =

√
2 ln 2

l
e−iωs t ×

{
2−(t/ l+β/2) (t > −βl/2)
0 (t < −βl/2)

.

(18)

Note that the amplitude decays exponentially in f
exp
s , as in

the single photons generated by spontaneous emission of
an emitter. Regarding the drive pulse of Eq. (14), we set
β = 1 (β = 3) for the square (exponential) shape to cover the
signal pulse. We employ the same definition for the detection
probability: P1 = p1(tf ), where tf = βl/2 + 50 ns.

Figure 8 shows the dependence of the detection probability
on the pulse length l. For the cases of infinite qubit lifetime

[Fig. 8(a)], the detection efficiencies increase monotonically.
A high detection probability exceeding 0.9 is obtained for
l � 100 ns, regardless of the pulse shape. However, if we take
account of the finite qubit lifetime [Figs. 8(b) and 8(c)], the
detection probability decreases due to the qubit decay. A square
pulse is advantageous in this regard, since we can use a shorter
drive pulse (smaller β) and suppress the qubit relaxation during
the capture stage. Overall, regardless of the pulse shape, a high
detection efficiency exceeding 0.9 is possible if the qubit has
a sufficient lifetime (γ /2π � 0.02 MHz).

VI. RESET OF THE SYSTEM

In the present device, the qubit-resonator system is automat-
ically reset to the ground state |g,0〉 through the qubit decay.
However, in order to shorten the dead time of the detector, we
reset the system through microwave transitions. In the reset
stage of Fig. 3, we simultaneously apply a drive pulse to the
qubit through WG2 and a reset pulse to the resonator through
WG1: the drive pulse sets the system to the � mode, and the
reset pulse induces the |̃2〉 → |̃u〉 → |̃1〉 transition (u = 3 or
4). The drive pulse profile is the same as that in the capture
stage, fd (t) of Eq. (14). However, as we observe below, a
stronger drive (�d > �

imp
d ) is advantageous in this stage. As

the reset pulse, we use a classical Gaussian pulse,

fr (t) =
√

〈n〉 ×
(

8 ln 2

πl2

)1/4

2−t2/(l/2)2
e−iωr t , (19)

where 〈n〉 is the mean photon number in the reset pulse.
Hereafter, we set ωr close to ω̃32 and use |̃2〉 → |̃3〉 → |̃1〉
transition for resetting. Furthermore, we fix the pulse length at
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l = 100 ns and β = 2, and set the initial and final moments of
the reset stage at ti = −βl/2 − 50 ns and tf = βl/2 + 50 ns.

In Fig. 9(a), we show the time evolution of the qubit
excitation probability pg(t) in the reset stage, starting from
|g,0〉. For ti < t < −βl/2, an adiabatic |g,0〉 → |̃1〉 transition
is induced by the drive pulse. For −βl/2 < t < βl/2, the
excitation probability is perturbed by the reset pulse only
slightly, which is due to the large detuning of ωr from both ω̃31

and ω̃41. For βl/2 < t < tf , through an adiabatic |̃1〉 → |g,0〉
transition the system returns to the ground state as the drive
pulse is switched off. At the end of the stage, the unwanted
qubit excitation is suppressed nearly completely. For example,
the excitation probability Pg = pg(tf ) is below 0.005 for
〈n〉 � 20.

In Fig. 9(b), we show the qubit excitation probability pe(t)
starting from |e,0〉. For ti < t < −βl/2, an adiabatic |e,0〉 →
|̃2〉 transition is induced by the drive pulse. For −βl/2 < t <

βl/2, we observe rapid decrease of pe(t), which is due to the
|̃2〉 → |̃3〉 → |̃1〉 transition induced by the reset pulse. The
reset pulse power 〈n〉 determines the transition rate. When
〈n〉 � 10, the system transits to |̃1〉 nearly completely at t =
βl/2. For βl/2 < t < tf , through an adiabatic |̃1〉 → |g,0〉
transition the system is reset to the ground state. The excitation
probability Pe at the end of the stage is 0.015 (0.007) for
〈n〉 = 10 (20). This is in clear contrast with the slow natural
decay of the qubit, where the excitation probability remains
0.83 at t = tf .

In Fig. 9(c), Pe is plotted as a function of the drive amplitude
�d and the reset pulse frequency ωr . We observe that the
impedance-matching condition (�d = �

imp
d ) is not necessarily

required in the reset stage. The system is reset efficiently
when ωr 
 ω̃32 and �d > �

imp
d , which implies κ̃31 > κ̃32 from

Fig. 2(a). Although the reset efficiency per one reset photon is
lowered by the unbalanced decay rate, many photons (〈n〉 �
10) involved in the pulse enables highly efficient resetting.

VII. SUMMARY

We theoretically analyzed the microwave response of a
driven qubit-resonator system and demonstrated its excellent
performance as a detector of itinerant microwave photons.
The detection of microwave photon proceeds by switching
two modes adiabatically: Under a proper qubit drive, the
system functions as an impedance-matched � system, which
efficiently absorbs itinerant photons (� mode). Due to the
destructive interference between the incident and elastically
scattered photons, a high efficiency is attained for temporally
long pulses, regardless of their shapes. In contrast, without
a qubit drive, the system functions as an oscillator whose
resonance frequency depends on the qubit state (I mode).
We can perform dispersive readout of the qubit state in this
mode. The detector is operated in the following cycle: In the
capture stage, we set the system in the � mode and map
the presence (absence) of a photon in the signal pulse to the
excited (ground) state of the qubit. In the readout stage, we set
the system in the I mode and measure the qubit state. In the
reset stage, in order to shorten the dead time of the detector,
we restore the system to its ground state through microwave
transitions. The detection efficiency readily exceeds 0.9 for
realistic parameters and the dark counts are suppressed nearly
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completely. The present scheme provides a long-sought single-
photon detector in the microwave domain and widens the
options in microwave quantum-optics experiments. It could
be used for the characterization of photon number statistics in
nonclassical itinerant microwave fields and the measurement
of flying qubits encoded in propagating microwave photons.
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APPENDIX: RELATION BETWEEN COHERENT-STATE
AND FOCK-STATE INPUTS

Here we derive Eq. (10), which connects the expectation
values for a coherent-state input to those for a Fock-state input

[36]. We denote a coherent state by |α〉 and a Fock state by
|m〉 (m = 0,1, . . .). We denote the expectation value of an
operator S(t) for the coherent-state input by 〈S〉c = 〈α|S|α〉
and its component proportional to (α∗)mαn by 〈S〉mn

c . On the
other hand, we denote the matrix elements in the Fock bases
by 〈S〉mn = 〈m|S|n〉.

Using the Fock-state expansion of a coherent state, |α〉 =
e−|α|2/2 ∑∞

n=0 αn|n〉/√n!, 〈S〉c is written as

〈S〉c = e−|α|2 ∑
m,n

(α∗)mαn

√
m!n!

〈S〉mn. (A1)

Picking up the terms proportional to (α∗)0α0, (α∗)1α1 and
(α∗)2α2, we have 〈S〉00

c = 〈S〉00, 〈S〉11
c = 〈S〉11 − 〈S〉00 and

〈S〉22
c = 〈S〉22/2 − 〈S〉11 + 〈S〉00/2. Therefore,

〈S〉00 = 〈S〉00
c , (A2)

〈S〉11 = 〈S〉00
c + 〈S〉11

c , (A3)

〈S〉22 = 〈S〉00
c + 2〈S〉11

c + 2〈S〉22
c . (A4)
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