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Strongly interacting quantum gases in one-dimensional traps
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Under second-order degenerate perturbation theory, we show that the physics of N particles with arbitrary
spin confined in a one-dimensional trap in the strongly interacting regime can be described by superexchange
interaction. An effective spin-chain Hamiltonian (non-translationally-invariant Sutherland model) can be
constructed from this procedure. For spin-1/2 particles, this model reduces to the non-translationally-invariant
Heisenberg model, where a transition between Heisenberg antiferromagnetic (AFM) and ferromagnetic (FM)
states is expected to occur when the interaction strength is tuned from the strongly repulsive to the strongly
attractive limit. We show that the FM and the AFM states can be distinguished by two different methods: the
first is based on their distinct responses to a spin-dependent magnetic gradient, and the second is based on their
distinct momentum distributions. We confirm the validity of the spin-chain model by comparison with results
obtained from several unbiased techniques.
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I. INTRODUCTION

One-dimensional (1D) quantum systems have received
much attention during the past many decades. This is due
to the fact that quantum effects are more pronounced in
reduced dimensions, and also to the fact that many 1D models,
such as the Lieb-Liniger model [1] and the Gaudin-Yang
model [2,3], can be solved exactly with the Bethe ansatz
method [4,5]. Most exactly solvable models require the
underlying systems to be translationally invariant and the
models can then be integrable. The presence of an external
trapping potential in general breaks the integrability. One
notable exception to this is a system of 1D spinless bosons
with infinite contact repulsion (the so called Tonks-Girardeau
gas) confined in an arbitrary trapping potential, which can be
mapped into a noninteracting spinless Fermi gas [6,7] and has
been realized in experiments using ultracold atoms [8–10].
However, if the particles possess spin degrees of freedom, the
problem becomes much more complicated. In recent years,
there has been work on constructing the ground state of 1D
spinful bosons and fermions with infinite or nearly infinite
contact interaction [11–15]. It has been shown that, at exactly
infinite interaction, the ground state of such spinful particles
possesses degeneracy as the energy is independent of the spin
configuration. Slightly away from this infinite-repulsion limit,
a perturbation theory can be constructed using 1/g (where g is
the strength of the contact interaction) as the small parameter.
In this way, the ground state is governed by an effective
Hamiltonian defined within this degenerate subspace [16,17].

In this work, we will explicitly construct an effective model
for 1D strongly interacting particles using a perturbation
approach. Here the unperturbed system consists of particles
with infinite contact interaction, i.e., g = ∞. At finite but
large |g|, we take 1/g as the small perturbation parameter.
We show that we need to take the perturbation to second order
in order to break all the spin degeneracy. In this way, we can
construct an effective Hamiltonian which takes the form of
a non-translationally-invariant Sutherland model [18], which
arises from the effective superexchange interaction between

neighboring particles. One can intuitively understand the
emergence of the superexchange term as follows. At g = ∞,
particles are impenetrable in 1D and they cannot exchange
positions with their neighbors. Away from g = ∞, there will
be a small but finite probability that two neighboring particles
can exchange positions, which gives rise to the effective
superexchange interaction. For spin-1/2 fermions, which we
focus on in this work, the exchange operator can be written in
terms of spin operators, and the Sutherland model reduces to
the Heisenberg model. It immediately follows that the ground
state of spin-1/2 fermions is a Heisenberg anti-ferromagnetic
(AFM) state in the strongly repulsive limit and a ferromagnetic
(FM) state in the strongly attractive limit (we exclude the
tightly bound molecular states on the attractive side, i.e., we
consider the upper branch of the system). We investigate the
properties of such a system and demonstrate experimental
signatures that allow us to distinguish the AFM and the FM
states. using both the effective model and several unbiased
methods, and show that the former is indeed valid in the
strongly interacting regime.

The main advantages of the effective model are twofold.
First, from a conceptual point of view, the effective model
provides additional insights into the quantum magnetic
properties of strongly interacting particles in 1D. Second, from
a practical point of view, the effective model is much easier
to handle in comparison to unbiased methods. As a result,
the effective model allows us to deal with greater particle
numbers and to investigate the dynamics to longer time scales.
To this end, we benchmark our effective model against several
unbiased methods and show that the former is indeed valid in
the strongly interacting regime. These benchmark calculations
also demonstrate that calculations based on the effective model
are much more efficient and take much less time than those
based on unbiased methods.

The rest of the paper is organized as follows. In Sec. II, we
derive the effective spin-chain Hamiltonian using a second-
order perturbation theory. We compare the energy spectrum
obtained from this Hamiltonian with that obtained from a
numerically exact Green’s function method. In Sec. III, we
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calculate the density profiles of the 1D trapped system in
both real and momentum spaces. We show that the FM and
the AFM states possess identical real-space density profiles,
but with distinctive momentum distributions. In Sec. IV, we
study the system’s response to a spin-dependent magnetic
gradient, which breaks the SU(2) symmetry and hence mixes
the AFM and the FM states. In Sec. V, we show how the
spin symmetry-breaking term helps to realize the FM state in
practice. Finally, in Sec. VI, we discuss the advantages of the
effective model over those unbiased methods, which serve as
an important motivation for this work. Many of the technical
details can be found in the Appendixes.

II. EFFECTIVE SPIN-CHAIN MODEL

We consider a one-dimensional system with N strongly
interacting spinful particles with mass m trapped in an arbitrary
external potential, with the Hamiltonian

H =
N∑

i=1

[
−1

2

∂2

∂x2
i

+ V (xi)

]
︸ ︷︷ ︸

Hf

+ g
∑
i<j

δ(xi − xj )

︸ ︷︷ ︸
Hint

. (1)

Here we have set � = m = 1. For infinite repulsion the parti-
cles become impenetrable and behave like spinless fermions.
If the N particles are spinless bosons, the many-body wave
function can be constructed by Bose-Fermi mapping [6]. For
spinful fermions, the corresponding wave function can be
generalized [11] to

�(x1 · · · xN,σ1 · · · σN ) =
∑
P

(−1)P P [ϕAθ1 ⊗ χ ], (2)

where ϕA is a Slater determinant which represents the
eigen wave function of N spinless fermions governed by
Hamniltonian Hf . Here θ1 is a sector function (i.e., generalized
Heaviside step function) of spatial coordinates, whose value
is 1 in the spatial sector x1 < x2 < · · · < xN and zero in any
other spatial sectors. χ is a spin wave function, and P is the
permutation operator whose convention of acting on spatial
and spin wave functions is presented in Appendix A.

To obtain an effective Hamiltonian for spinful fermions in
the strongly interacting regime, we use perturbation theory.
To this end, we consider Hf as the perturbation, and Hint

as the unperturbed Hamiltonian. This is in the same spirit as
the procedure for constructing the effective spin model from
the Hubbard model in the large-interaction limit [19]. The
unperturbed Hamiltonian Hint has a degenerate ground-state
subspace with zero eigenenergy E

(0)
int = 0. This subspace is

the space of all the antisymmetric wave functions satisfying
the boundary condition �xi=xj

= 0 [6,11]. Equation (2) with a
full set of ϕA’s constitutes a complete basis for this subspace.
We define a projection operator P0 into this subspace and its
complementary operator P1 = 1 − P0. Now let us consider
the effect of Hf on this subspace under the framework
of degenerate perturbation theory. The first-order effective
Hamiltonian reads H (1) = P0HfP0. The ground states of H (1)

still form a degenerate subspace whose eigenvectors take the
same form as Eq. (2) with ϕA representing the lowest-energy
Slater determinant for Hf . (From now on, we denote by ϕA

such a lowest-energy Slater determinant.) To lift the remaining

spin degeneracy, we therefore have to carry out the perturbation
calculation to second order. Let Q0 be the projection operator
into the ground-state subspace of H (1). Applying standard
degenerate perturbation theory, we obtain the second-order
effective Hamiltonian as (see Appendix B for details).

H (2) = Q0HfP1
1

E
(0)
int − Hint

P1HfQ0. (3)

After some algebra (for details, see Appendix C), we find that,
after neglecting a constant Q0HfQ0, the effective second-
order Hamiltonian can be written as

Heff = − 1

g

N−1∑
i=1

Ci(1 − Ei,i+1), (4)

where Ei,i+1 is the exchange operator acting on a spin state χ

within the subspace defined byQ0, whose effect is to exchange
the ith and (i + 1)th particles, and the coefficients

Ci = N !
∫ ∏

j

dxj |∂iϕA|2 δ(xi+1 − xi)θ
1
[i+1,i] (5)

are positive constants independent of spin, where

θ1
[i,i−1] = θ1/θ (xi − xi−1),

is a reduced sector function (see Appendix C). Heff takes the
form of the non-translationally-invariant Sutherland model and
physically arises from the effective superexchange interaction
when g deviates away from infinity, as we mentioned earlier.
In the case of spinful bosons, following the same procedure
leads to an effective Hamiltonian similar to (4) with the minus
sign before Ei,i+1 replaced by a plus sign. This spin-chain
model preserves the SU(2s + 1) symmetry, where a single
particle has spin s. Because this is a bipartite Hamiltonian, the
Lieb-Mattis theory [1,19] is also satisfied. Since it is made up
of permutation operators, it can also be block diagonalized
in the irreducible representation of the permutation group
SN [20,21].

We comment here that Eq. (2) can be written in a differ-
ent form, � = ϕA

∑
P c{σ },P P θ1, with c{σ },P = 1/(N↑!N↓!)

〈{σ }|Pχ〉 being weights in different sectors for a spin
configuration {σ }. These weights can be regarded as variational
parameters and determined by ∂E/∂cP = 0 together with
the Bethe-Peierls boundary condition [16,22]. For strong but
finite interaction, the eigenenergies read E = E0 − K/g +
O(1/g2); here K is the Tan contact [23]. An effective spin
model can be constructed from this variational approach, as
has been done by several groups [16,17,22,24]. Our result
based on the perturbation calculation is consistent with these
results.

To benchmark the spin-chain model, we show in Fig. 1(a)
the low-energy spectrum of a three-body system. Similar
benchmark calculations were also performed in Refs. [17,24].
In this work, we focus on spin-1/2 fermions, and label the two
spin species as ↑ and ↓. The external potential is chosen to be
a harmonic potential with frequency ω. In our calculation,
we take ω = 1 along with � and m, and the observables
are normalized to dimensionless values: x ∼ x/

√
�/(mω),

p ∼ p/
√

�mω, and E ∼ E/�ω. The main figure of Fig. 1(a)
is obtained by the unbiased Green’s function method based on
the original many-body Hamiltonian (1) [25]. In the inset, we

043634-2



STRONGLY INTERACTING QUANTUM GASES IN ONE- . . . PHYSICAL REVIEW A 91, 043634 (2015)

−1 −0.5 0 0.5 1
2

3

4

5

6

1/g

E

−0.05 0 0.05

3.8

4

4.2

AFM

FM

(a) G=0

−1 −0.5 0 0.5 1
2

3

4

5

6

1/g

E

−0.05 0 0.05

3.8

4

4.2

(b) G=0.05

FIG. 1. (Color online) Energy spectrum of the relative motion as
a function of 1/g for three fermions with (N↑,N↓) = (1,2), without (a)
and with (b) the spin-dependent magnetic gradient. For (b), we have
G = 0.05. The main figures are obtained using the Green’s function
method. The red dotted lines in the negative-g area represent the
tightly bound molecular states. The inset figures show the comparison
between the spectrum obtained from the Green’s function method
(dots) and that from the effective spin-chain model (solid lines) near
1/g = 0. In all the figures presented in this paper, we have adopted
trap units with � = m = ω = 1. Consequently, the energy E is in
units of �ω, and the interaction strength g is in units of

√
�3ω/m.

compare this exact spectrum (dots) with the spectrum obtained
from the spin-chain Hamiltonian Heff (solid lines). As one
can see, in the strong-interaction regime with 1/|g| 
 1, the
spin-chain model faithfully reproduces the exact spectrum of
the upper branch when the tightly bound molecular states on
the attractive (g < 0) side are ignored.

We can gain some insights into the spectrum of Heff by
noting that the eigenvalues of the exchange operator Ei,i+1

are ±1. Therefore, for g > 0, the spectrum of Heff has a
lower bound of −(2/g)

∑N−1
i=1 Ci (corresponding to a fully

antisymmetric spin configuration with Ei,i+1 = −1 for any i),
and an upper bound of 0 (corresponding to a fully symmetric
spin configuration with Ei,i+1 = 1 for any i). We remark that
the fully antisymmetric spin configuration can be realized

only for 2s + 1 � N . For not too small N , this requires
a fermionic species with large spin s. Recent cold-atom
experiments have witnessed realization of high-spin Fermi
gases in alkaline-earth atoms [26–29]. For g < 0, the spectrum
is inverted and bound between 0 and |2/g|∑N−1

i=1 Ci .

III. DENSITY PROFILES IN REAL
AND MOMENTUM SPACES

Let us now examine in detail the density profiles in both
real and momentum spaces for the ground state of Heff . For
spin-1/2 fermions, the exchange operator can be written in
terms of the spin operators:

Ei,j = (1 + �σi · �σj )/2 ,

where �σi are the Pauli spin matrices for the ith atom. Hence
we can rewrite the effective Hamiltonian (4) as

Heff = − 1

g

N−1∑
i=1

Ci(1 − �σi · �σi+1)/2 , (6)

which takes the form of the non-translationally-invariant
Heisenberg model with Ci/(2g) playing the role of the
superexchange coefficient between the ith and the (i + 1)th
spins. The effective spin-spin interaction is ferromagnetic for
g < 0 and antiferromagnetic for g > 0. We therefore label the
corresponding ground state FM for g < 0 and AFM for g > 0,
as shown in the inset of Fig. 1(a), which is consistent with the
Bethe ansatz result for the homogeneous case [30,31]. Note
that, as the number of atoms in each spin species is individually
conserved, the spin configuration for the FM state here can be
written as (S−)N↓ |↑↑ · · · ↑〉, with S− = ∑

i σ
−
i /2 being the

total spin lowering operator.
To find the density profiles in both real and momentum

spaces, let us first introduce the one-body density matrix
element defined as

ρσ ′σ (x ′,x) =
∑

σ2···σN

∫
dx2 · · · dxN

×�∗(x ′,x2, . . . ,xN ,σ ′,σ2, . . . ,σN )

×�(x,x2, . . . ,xN ,σ,σ2, . . . ,σN ), (7)

from which the real-space and momentum-space density
profiles can be calculated as

ρσ (x) = Nρσ,σ (x,x),

ρσ (p) = (N/2π )
∫

dx

∫
dx ′ e−ip(x−x ′)ρσ,σ (x ′,x).

In Appendix D, we provide the details of calculating the one-
body density matrix element given a many-body wave function
as in Eq. (2).

In Fig. 2, we present the density profiles for N = 2 spin-1/2
fermions with (N↑,N↓) = (1,1). For this two-body problem,
exact analytic solutions for arbitrary interaction strength g

can be found [32]. Results desplayed in Fig. 2 are obtained
from the exact method. As a result, we are not limited to
large |g|. Note that the FM state corresponds to a fully
symmetric spin configuration χ , and its density profiles, which
are g independent, are identical to a system of N spinless
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FIG. 2. (Color online) Real-space density profiles (upper panel)
and momentum-space density profiles (lower panel) for (N↑,N↓) =
(1,1) versus 1/g for AFM (red solid lines) and FM (black dotted
lines) states. In our trap units, position x is in units of

√
�/(mω), the

real-space density ρ(x) is in units of
√

mω/�, the momentum p is in
units of

√
�mω, and the momentum-space density ρ(p) is in units of

1/
√

�mω.

fermions. More specifically, ρσ (x) = (Nσ/N )
∑N−1

i=0 |φi(x)|2,
where φi(x) is the ith eigen wave function of the single-particle
Hamiltonian; and ρσ (p) decays as exp(−p2) in the large-p
limit.

The AFM state, on the other hand, possesses a fully
antisymmetric spin configuration and its density profiles are
sensitive to the value of g. As 1/g → 0, the real-space
density profile of the AFM state approaches that of the FM
state, whereas the momentum-space density profile remains
distinct for these two states. Hence, in the strong-interaction
limit, the density profiles for the AFM and the FM states
are indistinguishable in real space, but distinguishable in
momentum space. This statement remains true for N > 2.

As a further example, we consider a system of (N↑,N↓) =
(4,4) spin-1/2 fermions in the strongly interacting limit. In
Fig. 3 we show the momentum-space density profiles. The
black dashed line corresponds to the momentum distribution
of the FM state (which is the same as the momentum
distribution of N spinless fermions), and the red solid line
to that of the AFM state. The AFM state has a nonzero
Tan contact K , and in the large-momentum limit, we have
ρ(p) = K/(2πp4) [33]. This is confirmed by our numerics
as shown in the inset of Fig. 3. For comparison, we also
show the momentum distribution of a fully antisymmetric spin
state, which coincides with the momentum distribution of N

spinless bosons in the Tonks-Girardeau limit. As we mentioned
earlier, the fully antisymmetric spin state is possible only when
2s + 1 � N [34]. We emphasize again that these different
states have identical real-space density profiles, but can be
distinguished by their distinctive momentum distributions.

IV. RESPONSE TO SPIN-DEPENDENT
MAGNETIC GRADIENT

The form of the spin-chain effective Hamiltonian Heff

makes it clear that a quantum phase transition is induced
as 1/g is tuned across zero, which can be achieved using
the technique of confinement-induced resonance [35,36]. In
practice, however, more effort is required to observe this
phase transition. The AFM ground state for g > 0 can be

−5 0 5
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p

ρ
(p

)

spinless fermion, FM
spinless TG boson
spin 1/2, AFM

5 15
0

0.01

p
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(p

)

ρ(p)
K

2πp

FIG. 3. (Color online) Momentum distribution for (N↑,N↓) =
(4,4). The black dashed curve is for the fully spin symmetric FM state,
which has the same momentum distribution as N spinless fermions.
The red solid curve is for the AFM state. The blue dash-dotted curve is
for the fully spin antisymmetric state, which has the same momentum
distribution as N spinless Tonks-Girardeau bosons. The inset shows
the momentum distribution for the AFM state in the large-momentum
limit, in comparison to the theoretical prediction K/(2πp4) (green
dotted curve), where K is the Tan contact.

straightforwardly prepared. Such is not the case for the FM
state on the attractive side with g < 0. This is due to the
fact that, for g < 0, there exist many bound molecular states
with lower energies than the FM state, as can be seen from
Fig. 1(a). If one simply prepares the system on the attractive
side, these molecular states, not the FM state, will be realized.
Hence to create the FM state, one needs to start from the
AFM state on the repulsive side and adiabatically tune the
interaction strength to the attractive side. However, the spin
states are protected by symmetry: If we start from the AFM
state and tune 1/g across zero, the system will remain as
an AFM state and realize a fermionic super-Tonks-Girardeau
state [37,38], as there is no coupling between the AFM and
the FM states. To overcome this problem, we need to add
a spin symmetry-breaking term. One possibility is to add a
spin-dependent gradient term. We will consider in detail how to
realize the FM state in the next section. Here we first investigate
how the AFM and the FM states respond to such a gradient
term.

To this end, we introduce a weak spin-dependent magnetic
gradient which adds a term −G

∑
i xiσ

z
i to the Hamiltonian

(1), where G, which we will take to be non-negative, charac-
terizes the magnitude of the magnetic gradient. The effective
spin-chain Hamiltonian will be modified corresondingly as

Heff = − 1

g

N−1∑
i=1

Ci(1 − �σi · �σi+1)

/
2 − G

N∑
i=1

Diσ
z
i , (8)

where Di = N !
∫

xi |ϕA|2θ1 ∏N
j=1 dxj represents the position

of the ith atom. In Fig. 1(b), we plot the energy spectrum
for a three-particle system in the presence of a weak spin
gradient, obtained from both the Green’s function method
and the effective model. Again we see excellent agreement
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in the strongly interacting regime. Comparing the insets of
Figs. 1(a) and 1(b), one can easily see that the gradient term lifts
the spin degeneracy at 1/g = 0, and the ground state is now
separated from excited states by a finite gap, which facilitates
the adiabatic preparation of the FM state to be discussed later.

The spin gradient tends to separate the two spin species [39].
To quantify this effect, we define


 = 1

N

N∑
i=1

〈
xiσ

z
i

〉
, (9)

which measures the center-of-mass separation between the two
spin species. Here the expectation value is taken with respect
to the ground state of the effective Hamiltonian (8). In the
absence of the gradient (G = 0), 
 = 0 for both the FM and
the AFM states. Under the effective spin-chain model, 
 is a
function of Gg only.

As a first example, we again consider a two-particle
system with (N↑,N↓) = (1,1). For this simple system, the
Hamiltonian (8) can be easily diagonalized, and 
 has an
analytic expression:


 =
√

2

π

[2G|g| +
√

1 + 4(G|g|)2]2 − 1

[2G|g| +
√

1 + 4(G|g|)2]2 + 1
.

Note that since 
 depends only on |g|, we conclude that the
FM and the AFM states respond identically to the gradient in
the two-body case. We plot 
 as a function of G|g| in Fig. 4(a).
In the figure, we also plot the results obtained from an exact
solution using the Green’s function method with g = ±20,
which are in good agreement with the effective model. The
details of this solution can be found in Appendix E.
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FIG. 4. (Color online) Separation between the two spin species as
a function of G|g| for (a) (N↑,N↓) = (1,1), (b) (N↑,N↓) = (1,2), and
(c) (N↑,N↓) = (2,2). The black dashed curves are for the ground state
with negative g, and the red solid curves are for the ground state with
positive g. The symbols in (a) are obtained from the analytic solution
detailed in Appendix E. The symbols in (c) are TEBD results. (d) The
susceptibility d


|g|dG
|G=0 as a function of N for N↑ = N↓ = N/2. In

our trap units, 
 is in units of
√

�/(mω), and Gg in units of �
2ω2.

By contrast, for N > 2, the ground states for g > 0 and g <

0 will respond differently to the gradient. In Figs. 4(b) and 4(c),
we plot 
 as a function of G|g| for the cases (N↑,N↓) = (1,2)
and (2,2), respectively. The dashed and solid curves correspond
to the ground states of negative and positive g, respectively.
In general, the ground state on the attractive side will have
a stronger response. To benchmark the effective model, we
studied this problem using the time-evolving block decimation
(TEBD) method [40–43]. In the TEBD method, a many-body
wave function is represented by a matrix-product state (MPS),
which approximates a many-body wave function by making
a truncation of the entanglement spectrum. For a 1D gapped
system, whose entanglement is short ranged, the truncation
error is well controlled, and the TEBD method therefore
represents an unbiased method and has been implemented
widely to study 1D systems. The symbols in Fig. 4(c) are
the TEBD results for positive g. One can see that for large g,
the results obtained from the TEBD and the effective models
agree with each other very well.

To further quantify the response to the gradient and show
the difference between the AFM and the FM states, we
define the magnetic gradient susceptibility as 1

|g| (d
/dG)G=0,
and the following relation can be readily derived:

1

|g|
d


dG

∣∣∣∣
G=0

= 2

|g|N2

∑
n�=0

∣∣〈0| ∑N
i=1 xiσ

z
i |n〉∣∣2

En − E0
, (10)

where |n〉 represents the nth eigenstate of the spin-chain
Hamiltonian with G = 0, and En is the corresponding eigenen-
ergy. |0〉 represents the ground state, which is the AFM
(FM) state for positive (negative) g. In Fig. 4(d) we plot this
susceptibility as a function of the total particle number N for
the case with N↑ = N↓ = N/2. One can see that, as long as
N > 2, the FM state possesses a larger susceptibility, i.e., is
more prone to spin segregation under the gradient, than the
AFM state. Furthermore, the susceptibility for the FM state
grows rather rapidly as N increases, whereas that for the AFM
state is not very sensitive to N .

V. ADIABATIC PREPARATION
OF FERROMAGNETIC STATE

In the previous section, we suggested a method of applying
a weak spin-dependent magnetic gradient to approach the FM
state in experiment. Here we will discuss the method in detail.
The experimental protocol is the following: (1) The system
is initially prepared in the ground state with strong repulsion
(g > 0) and a relatively large magnetic gradient. In the example
presented in Fig. 5, we choose the initial values 1/g = 0.01
and G = 0.1. (2) From t = 0 to T1, G is fixed at the initial
value while the interaction strength is tuned to the attractive
side as 1/g(t) = 0.01 cos(πt/T1), which can be achieved with
the confinement-induced-resonance method. (3) Finally, from
t = T1 to T1 + T2, g is fixed at its value at T1, while the gradient
strength G is slowly turned off. We vary G such that the
instantaneous spin separation 
 follows the form


(t) = 
[G(t)] = 
(T1) cos2

[
π (t − T1)

2T2

]
. (11)

043634-5



LI YANG, LIMING GUAN, AND HAN PU PHYSICAL REVIEW A 91, 043634 (2015)

0 20 300
−0.5

0

0.5

1

1.5

t/Tho

Δ

0.98

1

1.01

t/Tho
fid

el
ity

−0.01
0

0.01

0
0.05
0.11/g(t)

G(t)

100Tho 300Tho200Tho

III

(a)

(b)

FIG. 5. (Color online) Adiabatic preparation of the FM state. At
t = 0, the system is prepared in the ground state with 1/g = 0.01 and
G = 0.1. (a) The value of the experimentally controlled parameters
1/g(t) and G(t) for a total adiabatic evolution time 300Tho. (b) The
solid lines represent 
(t) obtained by solving the time-dependent
Schrödinger equation under the effective Hamiltonian Heff . The
dashed lines represent Eq. (11), which is the 
(t) of the instantaneous
ground state for the given values of g(t) and G(t). Three different total
adiabatic evolution times are calculated, 100Tho, 200Tho, and 300Tho.
The inset shows the fidelity of the adiabatically prepared state for the
total evolution time 300Tho.

The experimentally controlled parameters are plotted in
Fig. 5(a) for T1 = 20 Tho and T2 = 280 Tho, where Tho = 2π/ω

is the harmonic trap period.
In Fig. 5(b) we display the evolution of the spin separation

parameter 
 in an example system with (N↑,N↓) = (2,2),
T1 = 20 Tho, and T1 + T2 = 100 Tho, 200 Tho, and 300 Tho. The
dashed curves represent the targeted instantaneous value as
shown in Eq. (11), while the solid curves are obtained by
solving the time-dependent Schrödinger equation under the
effective Hamiltonian Heff . As expected, the larger the T2,
the better is the agreement between the solid and dashed
curves. In the inset, we also show the fidelity, which is the
overlap between the calculated wave function from evolving
the Schrödinger equation and the instantaneous ground-state
wave function given the values of g and G at the moment, for
the case T1 + T2 = 300Tho. One can see that an FM state can
be realized with very high fidelity. For a shorter total evolution
time with T1 + T2 = 100Tho, we still obtain a fidelity higher
than 94%.

Although we have proposed to use a spin-dependent
magnetic gradient to break the spin symmetry and facilitate
the adiabatic preparation of the FM state, in reality any
spin symmetry-breaking term can do the job. Experimentally,
this mean one needs to introduce some perturbation to the
system to which the two atomic spin states will respond
differently. A possibility is to apply off-resonant light with
proper polarization such that it induces different light shifts
in different atomic spin states. This idea has been recently
implemented to create spin-dependent optical lattices for cold
atoms [44,45].

Finally, we comment on the stability of the FM state. Due
to the presence of the tightly bound molecular states on the
attractive side, the FM can only be metastable. In 2009, Haller
et al. realized such a metastable state in a system of spinless
bosons [10], and the resulting state is the so called super Tonks-
Girardeau (STG) gas. In that experiment, a typical lifetime of
about 100 ms is found. We expect the lifetime of the FM
state in a spin-1/2 Fermi gas should be longer than that of
the bosonic STG gas. This is because the low-lying molecular
states for fermions must be spin singlets. Therefore the spin-
symmetric FM state will be protected by its spin symmetry
against decaying into the molecular states.

VI. DISCUSSION

We have shown here, for large interaction strength |g|, that
the original Hamiltonian Eq. (1) can be mapped into a spin-
chain model governed by an effective Hamiltonian Heff in the
form of Eq. (4), which is expected to completely describe
the physics of the upper branch in the strongly interacting
regime. The great advantage of the effective model is that
(1) it provides valuable insights into the quantum magnetic
properties of strongly interacting one-dimensional quantum
gases, and (2) it is much easier and more efficient to solve in
comparison to the original many-body Hamiltonian. We have
benchmarked the static properties of the effective model with
several unbiased methods (see Figs. 1 and 4).

As we mentioned earlier, recently several other groups have
obtained the same spin-chain effective Hamiltonian using a
variational method [16,17,22,24]. Our perturbational approach
is inspired by the similar technique used to construct effective
spin models from the Hubbard Hamiltonian in the large-U
limit. Using this technique, the superexchange interaction
arises naturally. The Hubbard Hamiltonian describes lattice
systems. Our work thus broadens this approach to a continuum
model. From the perturbation calculation presented in this
work, we may readily obtain many-body wave functions
accurate to order 1/g. Furthermore, it is in principle possible
to extend the perturbation approach to higher orders to obtain
more accurate results. These features will be exploited in the
future to study more detailed properties of the system.

In Fig. 6 we present another example. Here we consider
a quench dynamics in which the system is initially prepared
in the ground state with 1/g = 0.01 and G = 0.05. At t = 0,
the spin gradient is suddenly turned off and the evolution of
the center-of-mass separation between the two spin species

 is calculated by solving the time-dependent Schrödinger
equation. We solve the Schrödinger equation using both the
effective spin-chain model governed by Heff , and the TEBD
method governed by the original many-body Hamiltonian.
As can be seen from Fig. 6, the effective model nicely
reproduces the TEBD result. We therefore demonstrated that
the spin-chain model can be applied to study the dynamics
of the system. This example also serves to showcase the
advantages of the effective model in the dynamical situation:
due to its smaller Hilbert space, it can capture the behavior of
the system on a much longer time scale. Furthermore, it takes
a few days to obtain the TEBD result as displayed in Fig. 6, in
comparison to a few tens of seconds for the spin-chain result.
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FIG. 6. (Color online) Quench dynamics for (N↑,N↓) = (2,2).
The initial state is prepared as the ground state with 1/g = 0.01
and G = 0.05. At t = 0, G is set to zero, and the system starts to
evolve in time. The red solid line is 
(t) calculated using the TEBD
method, and the blue dashed line is calculated using the effective
spin-chain model. The inset figure shows the evolution for a much
longer time under the spin-chain model. In our trap units, t/g is in
units of

√
m/(�3ω3).

Another great advantage of the spin-chain model is its wide
applicability [16]. The effective Hamiltonian (4) is valid for
spinful fermions, and by changing the minus sign in front of
the exchange operator Ei,i+1, it describes strongly interacting
bosons. The coefficients Ci , as given in Eq. (5), depend only on
the total number of atoms and the external trapping potential,
and are independent of whether the particles are bosons
or fermions, nor are they dependent on the single-particle
spin s. The formalism to derive the effective Hamiltonian
is independent of particle numbers N . Hence it works for
any N . However, for N particles, each coefficient Ci invovles
an N -dimensional integral, which becomes quite difficult to
evaluate as N increases. In Ref. [24], the authors conjectured
that, for a harmonic trap, these coefficients are given by

Ci = K
−(i − N/2)2 + N2/4

N (N − 1)/2
, (12)

where K is the Tan contact for the AFM state corresponding
to (N↑,N↓) = (N − 1,1). In Fig. 7, we plot the calculated Ci

for N = 8 and 13 (symbols), in comparison with the above
expression (lines), and find good agreement. Hence, at least
for harmonic trapped systems, once we know the Tan contact,
all the Ci coefficients can be obtained approximately using
Eq. (12). We should also remark that recent experimental
progress has made it possible to investigate few-particle cold
atom systems with well-controlled particle numbers in the
laboratory [47,48].

Finally we comment that we have considered here a system
of 1D trapped spinful particles with strong contact interaction,
and assumed that the interaction is spin independent [i.e.,
SU(2s + 1) symmetric], characterized by a single interac-
tion parameter g. It is possible, within the framework of
the perturbation method developed here, to generalize the
formalism into a situation with spin-dependent interaction

FIG. 7. (Color online) Dimensionless coefficients Ci for N = 8
and 13, calculated using the Monte Carlo integral method (Veges
algorithm [46]). The solid lines are obtained using the approximate
expression (12).

strengths, as long as all interaction strengths are sufficiently
large [22]. Finally, it is also possible to generalize our work
to Bose-Fermi mixtures [49,50], which can be compared with
recent few-body studies of such mixtures [51–54]. We will
consider these generalizations in future work.
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APPENDIX A: CONVENTION FOR
THE PERMUTATION OPERATORS

This section contains the convention about the permutation
operators and their action on spatial and spin wave functions.
A permutation operator P can be expressed as(

1 2 · · · N

P1 P2 · · · PN

)
, (A1)

which means that the original particle index i, after the
permutation, is changed into Pi .

The action of the permutation operator P on a spatial wave
function is defined by

P ψ(x1,x2, . . . , xN ) = ψ(xP1 ,xP2 , . . . ,xPN
). (A2)

Similarly its action on a spin wave function is defined by

P χ (σ1,σ2, . . . ,σN ) = χ (σP1,σP2 , . . . ,σPN
) , (A3)

where σi stands for the spin state of the ith particle. The spin
wave function χ is a rank-N SU(n) tensor with n = 2s + 1, if
all the particles are spin-s particles.

A general spin state can be written as a superpositon of basis
tensors (or spin Fock states). A basis tensor can be written as
δσ1f1δσ2f2 · · · δσNfN

≡ |f1f2 · · · fN 〉, which means the ith spin
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is in the fi state. By definition, the permutation operator acting
on a spin basis yields

P |f1f2 · · · fN 〉 = Pδσ1f1δσ2f2 · · · δσNfN

= δσP1 f1δσP2 f2 · · · δσPN
fN

= δσ1fP
−1
1

δσ2fP
−1
2

· · · δσNf
P

−1
N

= |fP −1
1

fP −1
2

· · · fP −1
N

〉. (A4)

We denote byEi,j the exchange permutation operator, which
simply exchanges indices i ↔ j :

Ei,j |f1 · · · fi · · · fj · · · fN 〉 = |f1 · · · fj · · · fi · · · fN 〉. (A5)

We also denote by the symbol (m · · · n) a loop permu-
tation operator, which, if m � n (m � n), permutes the
indices by m ← m + 1 ← m + 2 · · · ← n ← m (m ← m −
1 ← m − 2 · · · ← n ← m).

APPENDIX B: SECOND-ORDER DEGENERATE
PERTURBATION THEORY

Consider a Hamiltonian
H = H0 + V, (B1)

where H0 is the unperturbed Hamiltonian, which possesses
a degenerate manifold with eigenenergy E(0). We define as
P0 the projection operator onto this degenerate subspace.
V represents the perturbation Hamiltonian. To calculate the
zeroth-order wave function and first-order energy correction,
we need to diagnalize P0VP0 in P0 subspace. Suppose that
the first-order energy spectrum still contains a degenerate
manifold with energy E(1), and we define Q0 as the projection
operator onto this remaining degenerate subspace (obviously
Q0 ⊂ P0). To lift the degeneracy in Q0, we have to consider
second-order perturbation.

To distinguish the states in Q0 by energy, we need to
diagonalize the following operator in the Q0 subspace:

Q0VP1
1

E(0) − H0
P1VQ0, (B2)

where P1 = 1 − P0 is the complementary space to P0 [55].
By doing this, we can obtain the zeroth-order wave functions
|l(0)〉 and second-order energy correction E(2). To calculate
the first-order wave function correction |l(1)〉, we can use the
following two formulas:

P1|l(1)〉 = P1
1

E(0) − H0
P1VQ0|l(0)〉, (B3)

Q1|l(1)〉 = Q1
1

E(1) − V
Q1VP1

1

E(0) − H0
P1VQ0|l(0)〉,

(B4)

whereQ1 = P0 − Q0 is the complementary space ofQ0 inP0.
The first-order wave function correcton within theQ0 subspace
can be fixed to be zero, because we have this freedom before
normalizing the total wave function.

APPENDIX C: DERIVATION OF THE EFFECTIVE
SPIN-CHAIN MODEL

For N particles with contact interaction in a trap, the
Hamiltonian is given in the main text as Eq. (1):

H =
N∑

i=1

[
−1

2

∂2

∂x2
i

+ V (xi)

]
︸ ︷︷ ︸

Hf

+ g
∑
i<j

δ(xi − xj )

︸ ︷︷ ︸
Hint

. (C1)

In the strongly interacting regime, we take the interaction
Hamiltonian Hint as the unperturbed Hamiltonian, and the
single-particle Hamiltonian Hf as a perturbation. The ground-
state Hint is degenerate with energy E

(0)
int = 0.

This section details how to derive a spin-chain model from
the second-order perturbation effective Hamiltonian (B2), with
H0 replaced by Hint and V replaced by Hf . First consider the
operator P1HfQ0 acting on an arbitrary state in Q0 in the
form of Eq. (2) in the main text, which we label here by
|χ〉 = ∑

P (−1)P P (ϕAθ1 ⊗ χ ):

P1HfQ0|χ〉 = P1

N∑
i=1

[
−1

2
∂2
i + V (xi)

]∑
P

(−1)P P (ϕAθ1 ⊗ χ )

= P1

∑
P

(−1)P P

{
N∑

i=1

[
−1

2
∂2
i + V (xi)

]
(ϕAθ1) ⊗ χ )

}

= P1

∑
P

(−1)P P

{
N∑

i=1

1

2

[−2∂iϕA∂iθ
1 − ϕA∂2

i θ1
] ⊗ χ

}

= P1

∑
P

(−1)P P

{
N∑

i=1

1

2
[−∂iϕA∂iθ

1] ⊗ χ

}
. (C2)

In the third equality we have used the fact that P1 projects out the wave function belonging to the subspace Q0, and in the final
equality we have used ϕA∂iθ

1 = 0, because ∂iθ
1 generates δ functions at xi = xi±1 and the Slater determinant ϕA|xi=xi±1 = 0.

Now let us see how ∂iθ
1 generates δ functions. The sector function θ1 can be written as a chain product of step functions:

θ1 = θ (x2 − x1)θ (x3 − x2) · · · θ (xi − xi−1)θ (xi+1 − xi) · · · θ (xN − xN−1). (C3)
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We therefore have

∂iθ
1 = ∂i[θ (x2 − x1)θ (x3 − x2) · · · θ (xi − xi−1)θ (xi+1 − xi) · · · θ (xN − xN−1)]

= δ(xi − xi−1)[θ (x2 − x1)θ (x3 − x2) · · · θ (xi−1 − xi−2)θ (xi+1 − xi) · · · θ (xN − xN−1)]

−δ(xi+1 − xi)[θ (x2 − x1)θ (x3 − x2) · · · θ (xi − xi−1)θ (xi+2 − xi+1) · · · θ (xN − xN−1)], (C4)

which we rewrite in a simplified notation as

∂iθ
1 = δ(xi − xi−1)θ1

[i,i−1] − δ(xi+1 − xi)θ
1
[i+1,i], (C5)

where θ1
[i,i−1] = θ1/θ (xi − xi−1) is the reduced sector function.

Let us now consider the summation
∑N

i=1
1
2 [−∂iϕA∂iθ

1]. Since ∂iθ
1 and ∂i+1θ

1 both generate δ(xi − xi+1), they can be paired
up:

N∑
i=1

1

2
[−∂iϕA∂iθ

1] = 1

2

[
−

N∑
i=2

∂iϕAδ(xi − xi−1)θ1
[i,i−1] +

N−1∑
i=1

∂iϕAδ(xi+1 − xi)θ
1
[i+1,i]

]

= 1

2

N−1∑
i=1

(∂iϕA − ∂i+1ϕA)δ(xi+1 − xi)θ
1
[i+1,i] =

N−1∑
i=1

∂iϕAδ(xi+1 − xi)θ
1
[i+1,i], (C6)

where, in the last step, we have used ∂i+1ϕAδ(xi+1 − xi) = Ei+1,i [∂i+1ϕAδ(xi+1 − xi)] = −∂iϕAδ(xi+1 − xi), where Ei+1,i is an
exchange operator that exchanges the index i + 1 ↔ i. Until now, we have shown that in the identity spatial sector x1 < x2 <

· · · < xN , the operator P1HfQ0 generates (N − 1) δ functions of neighboring spatial coordinates. The whole expression for
P1HfQ0|χ〉 is then

P1HfQ0|χ〉 =
∑
P

(−1)P P

{
N−1∑
i=1

∂iϕAδ(xi+1 − xi)θ
1
[i+1,i] ⊗ χ

}
. (C7)

Next we act with P1(E(0)
int − Hint)−1P1 on Eq. (C7). Using the fact that, when more than two particles are at the same position,

all the ∂iϕA’s will vanish and so will Eq. (C7), we can deal with the N (N − 1)/2 δ-functions in Hint and in Eq. (C7) separately,
which means

P1
1

E
(0)
int − Hint

P1HfQ0|χ〉 = − 1

g
P1

∑
P

(−1)P P

{
N−1∑
i=1

∂iϕA

δ(xi+1 − xi)

δ(xi+1 − xi)
θ1

[i+1,i] ⊗ χ

}

= − 1

g
P1

∑
P

(−1)P P

{
N−1∑
i=1

∂iϕAθ1
[i+1,i] ⊗ χ

}
. (C8)

In the final step we act with 〈χ ′|Q0HfP1 on Eq. (C8). 〈χ ′|Q0HfP1 is the Hermitian conjugate of a wave function having the
form of Eq. (C7) with a different spin state χ ′ but the same ϕA. Looking at Eq. (C7), since each spatial sector has N − 1 terms,
where each term is composed of a δ function and a reduced sector function, there will be in total N !(N − 1) terms appearing in this
expression. However, only N !(N − 1)/2 terms have different δ functions and reduced sector functions. For example, consider a
sector P (which labels the sector xP1 < · · · xPi

< xPi+1 · · · < xPN
) and one of its neighboring sectors P ′ = PEi,i+1 (which labels

the sector xP1 < · · · xPi+1 < xPi
· · · < xPN

), they both possess the term δ(xPi+1 − xPi
)θP

[Pi+1,Pi ]. There is also another way to think
about this: there are in total N (N − 1)/2 different δ functions and for each δ function there are (N − 1)! different reduced sector
functions, so a total of N (N − 1)/2 · (N − 1)! = N !(N − 1)/2 different terms. Those different terms are orthogonal to each
other, because they have different δ functions and reduced sector functions as well as the fact that when more than two particles
are at the same position, ∂iϕA will vanish. For example, one of those N !(N − 1)/2 terms belonging to sectors P and P ′ may be

(−1)P P
{
∂iϕAδ(xi+1 − xi)θ

1
[i+1,i] ⊗ χ ′} + (−1)P

′
P ′ {∂iϕAδ(xi+1 − xi)θ

1
[i+1,i] ⊗ χ ′}

= (−1)P P
{
∂iϕAδ(xi+1 − xi)θ

1
[i+1,i] ⊗ χ ′} − (−1)P PEi,i+1

{
∂iϕAδ(xi+1 − xi)θ

1
[i+1,i] ⊗ χ ′}

= (−1)P P
{
∂iϕAδ(xi+1 − xi)θ

1
[i+1,i] ⊗ [1 − Ei,i+1]χ ′} . (C9)

Equation (C8), similar to 〈χ ′|Q0HfP1, also has N !(N − 1)/2 orthogonal terms corresponding to different reduced sector
functions and “δ functions,” as the projection operator P1 plays the role of the δ functions. So, finally, the matrix elements of the
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second-order perturbation effective Hamiltonian Eq. (B2) can be evaluated as

〈χ ′|Q0HfP1
1

E
(0)
int − Hint

P1HfQ0|χ〉 = − 1

g

∫ N∏
j=1

dxj

{
1

2

∑
P

(−1)P P

[
N−1∑
i=1

∂iϕAδ(xi+1 − xi)θ
1
[i+1,i] ⊗ [1 − Ei,i+1]χ ′

]}†

×P1

{
1

2

∑
P ′

(−1)P
′
P ′

[
N−1∑
i=1

∂iϕAθ1
[i+1,i] ⊗ [1 − Ei,i+1]χ

]}

= − 1

g

∫ N∏
j=1

dxj

1

2
N !

N−1∑
i=1

|∂iϕA|2 δ(xi+1 − xi)θ
1
[i+1,i] ⊗ {[1 − Ei,i+1]χ ′}†{[1−Ei,i+1]χ}

= − 1

g

N−1∑
i=1

N !
∫ N∏

j=1

dxj |∂iϕA|2δ(xi+1 − xi)θ
1
[i+1,i] ⊗ χ ′†[1 − Ei,i+1]χ. (C10)

An effective spin-chain model Heff is therefore obtained as

Heff = − 1

g

N−1∑
i=1

Ci[1 − Ei,i+1], (C11)

where

Ci = N !
∫ ∏

j

dxj |∂iϕA|2 δ(xi+1 − xi)θ
1
[i+1,i]. (C12)

The above derivation is valid for fermions. In the case of bosons, a general many-body wave function can be written as

�(x1, . . . , xN ,σ1, . . . ,σN ) =
∑
P

P [ϕAθ1 ⊗ χ ]. (C13)

Following the same procedure as above, we end up with an effective Hamiltonian as

Heff = − 1

g

N−1∑
i=1

Ci[1 + Ei,i+1]. (C14)

APPENDIX D: ONE-BODY DENSITY MATRIX

Given a many-body wave function �, the one-body density matrix is defined as

ρσ ′σ (x ′,x) =
∑

σ2···σN

∫
dx2 · · · dxN�∗(x ′,x2, . . . ,xN ,σ ′,σ2, . . . ,σN )�(x,x2, . . . ,xN ,σ,σ2, . . . ,σN ) . (D1)

For fermionic systems whose wave function takes the form of Eq. (2) in the main text,

� =
∑
P

(−1)P P [ϕAθ1 ⊗ χ ] = ϕA

∑
P

[θP ⊗ χ ], (D2)

where θP = Pθ is the sector function (generalized step function) for the sector labeled by the permutation operator P , the
one-body density matrix can be written as

ρσ ′σ (x ′,x) =
∑

σ2···σN

∫
dx2 · · · dxNϕ′∗

A ϕA

∑
P ′P

θ ′P ′
θP ⊗ (P ′χ ′∗)(Pχ ) , (D3)

where ϕ′∗
A = ϕ∗

A(x ′,x2, . . . ,xN ), ϕA = ϕA(x,x2, . . . ,xN ), θ ′P ′ = P ′θ (x ′,x2, . . . ,xN ), θP = Pθ (x,x2, . . . ,xN ), χ ′∗ = χ∗(σ ′,σ2

, . . . ,σN ), and χ = χ (σ,σ2, . . . ,σN ). A permutation P can be written as P2−N (1, . . . ,m), where (1, . . . ,m) is the loop permutation
operator defined in Appendix A, and P2−N is a permutation operator acting on indices 2,3, . . . ,N . This means we first move
particle 1 to position m by a loop permutation, and then permute the remaining N − 1 particles. Similarly, P ′ can be written as
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P ′ = P ′
2−N (1 · · · n). The summation over P ′ and P can then be written in another form:

ρσ ′σ (x ′,x) =
∑

σ2···σN

∫
dx2 · · · dxNϕ′∗

A ϕA

∑
m,n

∑
P ′

2−N ,P2−N

θ ′P ′
2−N (1,...,m)θP2−N (1,...,n) ⊗ [P ′

2−N (1, . . . ,m)χ ′∗][P2−N (1, . . . ,n)χ ]

=
∑

σ2···σN

∫
dx2 · · · dxNϕ′∗

A ϕA

∑
mn

∑
P2−N

θ ′P2−N (1,...,m)θP2−N (1,...,n) ⊗ [P2−N (1, . . . ,m)χ ′∗][P2−N (1, . . . ,n)χ ]

=
∑
mn

(N − 1)!
∫

dx2 · · · dxNϕ′∗
A ϕAθ ′(1,...,m)θ (1,...,n) ⊗

∑
σ2···σN

[(1, . . . ,m)χ ′∗][(1, . . . ,n)χ ]. (D4)

The second equality follows from the fact that if P ′
2−N �= P2−N ,

θ
′P ′

2−N (x2, . . . ,xm,x ′, . . . ,xN )θP2−N (x2, . . . ,xn,x, . . . ,xN ) = 0,
and the third equality uses the fact that

∑
σ2···σN

∫
dx2 · · · dxN

is invariant under P2−N . So the one-body density matrix can
be separated into a spatial part and a spin part

ρσ ′σ (x ′,x) =
∑
m,n

ρm,n(x ′,x)Sm,n(σ ′,σ ), (D5)

where the spatial part

ρm,n(x ′,x) = (N − 1)!
∫

dx2 · · · dxN ϕ′∗
A ϕA θ ′(1,...,m)θ (1,..., n)

(D6)

is simply the one-body density matrix of a system of spinless
fermions for the spatial sector x2 < x3 · · · xm < x ′ · · · xn <

x · · · xN (m < n, for example). And the spin part is

Sm,n(σ ′,σ ) =
∑

σ2···σN

[(1, . . . ,m)χ∗][(1, . . . , n)χ ]

= 〈χ |c†m(σ ′)(m, . . . ,n)cn(σ )|χ〉, (D7)

where (m, . . . ,n) is the loop permutation operator, and c
†
m(σ )

can be regarded as fermion (or hard-core boson) creation
operators, which is just a formal symbol to select out the
spin states. For bosons, simply change the sectored spinless
fermionic one-body density matrix to the bosonic one using
ρB

m,n = (−1)m−nρF
m,n.

APPENDIX E: GREEN’S FUNCTION RESULTS
FOR (N↑,N↓) = (1,1)

The Hamiltonian of two particles in a one-dimensional
harmonic trap with a spin-dependent magnetic gradient is

H = −1

2

∂2

∂x2
1

− 1

2

∂2

∂x2
1

+ 1

2
x2

2 + 1

2
x2

2 + gδ(x1 − x2)

−Gx1σ
z
1 − Gx2σ

z
2 . (E1)

In the absence of a magnetic gradient (i.e., G = 0), there exists
an exact solution to the problem [32]. Here we generalize this
solution in the presence of the magnetic gradient. To this end,
we make a transformation of operators by making spatial and

spin coordinates operators into Jacobi coordinates:

X1 = x1 − x2√
2

, X2 = x1 + x2√
2

,

S1 = σ z
1 − σ z

2√
2

, S2 = σ z
1 + σ z

2√
2

. (E2)

The transformation rules of other operators such as ∂/∂x can
be obtained from them. The Hamiltonian can be separated into
the center-of-mass motion part and the relative motion part:

H = −1

2

∂2

∂X2
2

+ 1

2
X2

2 − GS2X2 − 1

2

∂2

∂X2
1

+ 1

2
X2

1

−GS1X1 + g√
2

δ(X1). (E3)

For center-of-mass motion, it is a simple harmonic oscillator
with the center shifted by GS2. For relative motion, it is a
simple harmonic oscillator with the center shifted by GS1 plus
a δ-function potential at the origin. We can first let particle 1 be
spin up and particle 2 be spin down, and then antisymmetrize
the wave function in the end. In this case, S2 = 0 and S1 = √

2
are fixed. The eigen wave functions for the center-of-mass
motion are still simple harmonic oscillator eigenfunctions.
What matters is the relative motion part. After a coordinate
shift X1 − GS1 → X1, The relative motion Hamiltonian can
be written as

Hrel = −1

2

∂2

∂X2
1

+ 1

2
X2

1 + g√
2

δ(X1 + GS1), (E4)

which includes a simple harmonic oscillator part and a δ-
function source term. For this relative Hamiltonian, we use the
one-body Green’s function

G(E; X1,X
′
1) =

∞∑
i=0

1

E − Ei

φi(X1)φ∗
i (X′

1), (E5)

where Ei = i + 1/2 and φi are the single-particle harmonic
oscillator eigenenergies and eigen wave functions, respec-
tively. The corresponding Lippmann-Schwinger equation for
the relative wave function is given by

ϕ(X1) =
∫

dX1G(E; X1,X
′
1)

g√
2

δ(X1 + GS1)ϕ(X′
1)

= g√
2

G(E; X1,−GS1)ϕ(−GS1). (E6)

The expression for the relative wave function where ϕ(−GS1)
is a constant can be determined by normalization of ϕ(X1),
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and the relative energy must satisfy

G(E; −GS1,−GS1) =
√

2

g
. (E7)

Note that, when G = 0, the Green’s function method fails
at E = Ei , and for E �= Ei the left-hand side of Eq. (E7)
has an analytical form [32]. Actually the solution of the fully
symmetric spin wave function (necessarily associated with the
fully antisymmetric spatial wave function) which has E = Ei

should be complementary to the Green’s function solution.
However, for G �= 0, there is no such pathological behavior
for the Green’s function method. Also to be noted is that for
one E, there could be only one 1/g for which Eq. (E7) is
satisfied. This means that, for relative motion, there could be
only one bound state. However, this is no longer true for three
particles, because the Lippmann-Schwinger equation for three
particles is an integral equation and there can exist infinitely
many bound states for the relative motion of three particles.

Finally, we substitute back X1 → X1 − GS1. After anti-
symmetrization, the total wave function for two fermions is
given by

1√
2
�c.m.(X2)[ϕ(X1 − G

√
2)|↑↓〉 − ϕ(−X1 − G

√
2)|↓↑〉].

(E8)

The center-of-mass separation between the two spins,

 = 〈x1σ

z
1 + x2σ

z
2 〉/2, can be calculated as


 = 1√
2

∫
dX1X1 |ϕ(X1)|2 + G, (E9)

where ϕ(X1) is decided by Eq. (E6), which depends on G and
E, where E is dependent on G and 1/g by Eq. (E7). The first
term in Eq. (E9) is from interplay between the interaction and
the magnetic gradient, while the second term in Eq. (E9) is due
to the harmonic trap shift induced by the magnetic gradient.
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[54] M. A. Garcı́a-March, B. Juliá-Dı́az, G. E. Astrakharchik, Th.
Busch, J. Boronat, and A. Polls, New J. Phys. 16, 103004 (2014).

[55] This form is a little different from the conventional second-order
degenerate perturbation effective Hamiltonian where P1 should
be 1 − Q0. But note that Q0 is obtained by first diagonalizing V

in P0, so (P0 − Q0)VQ0 = Q1VQ0 = 0.

043634-13

http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1038/nphys1916
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1240516
http://dx.doi.org/10.1126/science.1240516
http://dx.doi.org/10.1126/science.1240516
http://dx.doi.org/10.1126/science.1240516
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevA.80.053617
http://dx.doi.org/10.1103/PhysRevA.80.053617
http://dx.doi.org/10.1103/PhysRevA.80.053617
http://dx.doi.org/10.1103/PhysRevA.80.053617
http://dx.doi.org/10.1103/PhysRevA.90.063605
http://dx.doi.org/10.1103/PhysRevA.90.063605
http://dx.doi.org/10.1103/PhysRevA.90.063605
http://dx.doi.org/10.1103/PhysRevA.90.063605
http://dx.doi.org/10.1103/PhysRevA.90.013617
http://dx.doi.org/10.1103/PhysRevA.90.013617
http://dx.doi.org/10.1103/PhysRevA.90.013617
http://dx.doi.org/10.1103/PhysRevA.90.013617
http://dx.doi.org/10.1103/PhysRevA.88.063604
http://dx.doi.org/10.1103/PhysRevA.88.063604
http://dx.doi.org/10.1103/PhysRevA.88.063604
http://dx.doi.org/10.1103/PhysRevA.88.063604
http://dx.doi.org/10.1088/1367-2630/16/10/103004
http://dx.doi.org/10.1088/1367-2630/16/10/103004
http://dx.doi.org/10.1088/1367-2630/16/10/103004
http://dx.doi.org/10.1088/1367-2630/16/10/103004



