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Two-component Bose-Hubbard model in an array of cavity polaritons
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We propose a scheme which can realize an extended two-component Bose-Hubbard model using polaritons
confined in an array of optical cavities. In addition to the density-dependent interactions, this model also contains
nonlinear coupling terms between the two components of the polariton. Using a mean-field calculation, we
obtain the phase diagram which shows how these terms affect the transition between the Mott insulator and the
superfluid phase. In addition, we employ both a perturbation approach and an exact diagonalization method to
gain more insights into the phase diagram.
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I. INTRODUCTION

Over the past decade, with the development of the technique
of optical lattices, one could manipulate cold atoms in periodic
potentials, which serve as an ideal platform to explore various
many-body models in condensed-matter physics [1–3]. As
one of the important fundamental models in many-body
physics, the Bose-Hubbard model (BHM) has attracted a
lot of attention since it was first introduced in 1963 [4]. In
the single-component BHM, there exists a quantum phase
transition between the Mott insulator (MI) phase and the
superfluid (SF) phase [5,6]. This transition has been explored
in recent cold atom experiments [3]. When this is extended
to two components of bosonic modes, the phase diagram
becomes more complicated correspondingly [7–9].

The standard single-component BHM only includes the
on-site repulsive interaction U and the tunneling t between
nearest neighbours. The interaction term favors the MI phase
in which each site hosts a definite number of particles, whereas
the tunneling term favors the superfluid phase where the
particles are delocalized. The competition between these two
terms drives a quantum phase transition between these two
phases. For the two-component BHM, besides the intraspecies
interaction Ui and the tunneling ti for each component
(where i = 1,2 labels the components), there is the additional
interspecies interaction between the two components [1]. In
recent years, a lot of attention has been paid to the extended
single-component (two or more) BHM, and one kind of the
extended BHM has additional tunneling between the next-
nearest neighbours or long-range interactions [10,11,18–20],
while another kind has additional nonlinear coupling between
different components [12–17]. Expectedly, these additional
terms in the extended BHM give rise to a more complicated
phase diagram [11,14–17].

In a previous work [21], we investigated a system of two-
component polaritons confined in a single optical microcavity.
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A polariton is a kind of bosonic quasiparticle in the light-matter
system, and Bose-Einstein condensation (BEC) of microcavity
polaritons has been realized in experiment recently [22,23]. In
this model, in addition to the density-density interaction (Kerr
nonlinearity), there also exist two types of nonlinear coupling
between the polariton components. In the current work, we
extend this model by consider a one-dimensional array of such
a cavity polariton system, which realizes a two-component
BHM. We will calculate the phase diagram of the system and
focus on how the interspecies interactions and the nonlinear
coupling terms will affect the transition between the MI phase
and the SF phase.

This paper is organized as follows. In Sec. II we present the
model Hamiltonian that describes an extended two-component
Bose-Hubbard model. In Sec. III, we provide the ground-
state phase diagram obtained from the mean-field decoupling
approach. To gain further insights and examine the effects of
different terms in the Hamiltonian, we present a perturbative
analysis in Sec. IV. In Sec. V, we give a beyond-mean-field
exact diagonalization calculation. In particular, we calculate
the number fluctuation per cavity and establish connections
between this result and the mean-field result presented earlier.
Finally, a summary is presented in Sec. VI.

II. MODEL

Our underlying system is schematically shown in Fig. 1(a).
We consider a one-dimensional array of connected optical
cavities, with the connection provided by the photon tunneling
between neighboring cavities. Inside each cavity, we have an
ensemble of bosonic atoms whose level structure is sketched
in Fig. 1(b). We label the atomic hyperfine states as |i〉 with
i = 1,2, . . . ,7. Three of these states (states |1〉, |2〉, and |3〉)
belong to the electronic ground manifold, and the other four
(states |4〉, |5〉, |6〉, and |7〉) belong to the electronic excited
manifold. The ground states |1〉, |2〉, and |3〉 are dipole coupled
to the excited states |4〉, |5〉, and |6〉, respectively, by the
cavity field, with corresponding coupling strengths g14, g25,
and g36. Additionally, states |2〉 and |3〉 are coupled to |4〉
by external laser fields with coupling strengths �24 and �34,
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FIG. 1. (Color online) (a) An illustration of a one-dimensional
array of optical microcavities. Each cavity hosts a system of two-
component polaritons. (b) The atomic level structure and coupling
laser fields that give rise to the two-component polariton system in
each cavity. Here gij is the coupling between the dipole transition
(|i〉 ↔ |j〉) induced by the cavity mode, and �ij and �νk are the Rabi
frequencies of the driving laser fields and driving microwave fields,
respectively. For details, please see Ref. [21].

respectively. Finally, within the excited manifold, states |5〉 and
|6〉 are coupled to |7〉 by microwave fields with corresponding
coupling strengths �ν1 and �ν2. ε, δ, �, �5, and �6 are various
detunings between the driving field and the corresponding
atomic transitions, as labeled in Fig. 1(b).

In the limit of weak excitation where the atomic population
in the excited levels is negligible, we can construct two po-
lariton modes for each cavity. The corresponding annihilation
operator for the two polariton modes in the ith cavity is given
by
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where ai is the cavity photon annihilation operator for the ith
cavity, and

S2i = 1√
Nai

Na∑
j=1

|1〉jj 〈2|,

S3i = 1√
Nai

Na∑
j=1

|1〉jj 〈3|,

comprise the collective atomic operator, with Nai being the
total atom number, in the ith cavity. For simplicity, we
have taken �24 = �34 = √

2�, gi = √
Nai g14, and ωi =√

g2
i + �2. The total Hamiltonian of the system reads
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∑

i

Hi +
∑
〈i,j〉

Ht
〈i,j〉, (1)

where

Hi = V1

2
P

†2
1i P 2

1i + V2

2
P

†2
2i P 2

2i + UP
†
1iP1iP

†
2iP2i

+ T +[P †
1i(P

†
1iP1i + P

†
2iP2i)P2i

+P
†
2i(P

†
1iP1i + P

†
2iP2i)P1i]

+ T −[P †
1i(P

†
1iP1i − P

†
2iP2i)P2i

+P
†
2i(P

†
1iP1i − P

†
2iP2i)P1i] (2)

represents the Hamiltonian of a two-component polariton in
the ith cavity, the derivation of which can be found in our
previous work [21], and

Ht
〈i,j〉 = −t{P †

1iP1j + P
†
2iP2j } (3)

describes the tunneling of polaritons between adjacent cavi-
ties [24]. Here, P †

1(2)i and P1(2)i obey the bosonic commutation

relation: [Pαi, Pβj ] = 0, [P †
αi, P

†
βj ] = 0, and [Pαi, P

†
βj ] =

δα,βδi,j . As shown in Ref. [21], the key parameters in Eq. (2),
V1, V2, U , and T ±, can be tuned over a large extent by
appropriately controlling the laser intensities and frequencies.
Here, to avoid instability, we only consider repulsive inter-
actions such that V1,2 and U are all positive. In addition,
if we simultaneously change the signs of T ±, the physics
remains unchanged as that sign change can be absorbed by
a redefinition of the polariton modes. Hence we will only
consider the case with T + > 0, T − < 0 for simplicity.

In comparison to the single-component BHM, for which
there are plenty of theoretical and experimental investigations,
our model contains three new key parameters: the interspecies
on-site interaction characterized by the interaction strength U ,
the two nonlinear coupling terms characterized by the coupling
strength T ±. Our work will focus on elucidating the effects of
these terms.

III. MEAN-FIELD PHASE DIAGRAM

Based on the mean-field decoupling theory [5], we intro-
duce the superfluid order parameters: φ1(2) = 〈P1(2),i〉. By the
approximation

P
†
1(2),iP1(2),j = φ1(2)P1(2),j + φ∗

1(2)P
†
1(2),i − φ∗

1(2)φ1(2),

the total Hamiltonian can be decoupled into the following
form:
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1 (P †

1 P1 + P
†
2 P2)P2 + P

†
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1 P1 + P
†
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+ zt(φ∗
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2φ2),

Ht = − zt(φ∗
1P1 + φ∗

2P2 + H.c.),
(4)

where μ is the chemical potential and z = 2 is the number
of nearest neighbors. For simplicity, here, the site index is ne-
glected. Since Hamiltonian H0 keeps the local particle number
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FIG. 2. (Color online) The ground state of H0 with T ± = 0
and t = 0. Here we have to modify the first term in H0 to be
−μ1P

†
1 P1 − μ2P

†
2 P2. The values in the bracket indicate those of

n1 and n2, respectively. We have used V1 = V2 = V , and the value of
U is taken as U = 0.5 in (a) and U = 1.5 in (b). In all our figures,
the quantities U , μ, and T ± are expressed in units of V .

conserved, in principle, we can numerically diagonalize H0 in
a subspace with fixed total number of particles.

As a reference, let us first set the nonlinear coupling strength
T ± = 0, and the tunneling rate t = 0. Under this situation
H0 describes a two-component Bose gas with density-density
interactions, and it preserves the number of polaritons in
each component. The eigenstates therefore correspond to Fock
states |n1,n2〉 with definite integer values of n1 and n2, and
with corresponding ground-state energy E(n1,n2), where nα

(α = 1, 2) represents the number of polaritons in component
α in each cavity. Note that due to the conservation of polariton
numbers in the individual component we need to introduce
two chemical potentials μ1 and μ2 for the two polariton
modes. The ground state is determined by the relative size
of V1, V2, and U . In Fig. 2 the ground-state phase diagram is
shown for the case with equal intraspecies interaction strength,
i.e., V1 = V2 = V . If we focus on the situation with equal
chemical potential (μ1 = μ2 = μ), it is quite straightforward
to show that if the interspecies interaction is smaller than the
intraspecies one [i.e., U < V , see Fig. 2(a)] then we have a
single ground state with n1 = n2 for even total particle number,
and two degenerate ground states with n1 − n2 = ±1 for odd
total particle number. By contrast, if U > V [see Fig. 2(b)],
whether the particle number is even or odd, we have two
degenerate ground states with n1 = 0 or n2 = 0.

The Fock state |n1,n2〉 discussed above corresponds to the
Mott regime with φ1 = φ2 = 0. As intercavity tunneling is
turned on, φα may take finite values and the system enters the
superfluid regime. At zero temperature, the transition from the
MI to the SF regime represents a quantum phase transition.
Our goal is to map out a phase diagram by calculating the
boundary between these two quantum phases. As we want to
focus on the effects of the terms characterized by U and T ±,
for most of our calculation we will choose V1 = V2 = V as
the units for energy, and consider the situation with U < V

and U > V , respectively, while |T ±| � V .
Figure 3 shows six examples of the phase diagram obtained

from the mean-field decoupling approach with U < V in
Figs. 3(a)–3(c) and U > V in Figs. 3(d)–3(f). We have also
checked that essentially the same phase diagram can be

Μ Μ

FIG. 3. (Color online) The mean-field phase diagram where the
line represents the boundary between the MI and the SF regime. The
region below the line is the MI regime, and the number indicates
the total number of polaritons per cavity, ntot. The parameter used
are (a) U = 0.5, T + = T − = 0; (b) U = 0.5, T + = 0, T − = −0.05;
(c) U = 0.5, T + = 0.05, T − = −0.05; (d) U = 1.5, T + = T − = 0;
(e) U = 1.5, T + = 0, T − = −0.05; (f) U = 1.5, T + = 0.05, T − =
−0.05. All the quantities are in units of V1 = V2 = V .

obtained using the Gutzwiller method. The details of the phase
diagram will be described in the following.

A. Small interspecies interaction (U < V )

In Fig. 3(a), the nonlinear coupling term is turned off, i.e.,
T ± = 0. We again focus on the situation with equal chemical
potential (μ1 = μ2 = μ). Here, the MI regime exhibits an
“even-odd effect” ; i.e., the MI region with odd occupation (the
number of polaritons per cavity ntot = 2n + 1) is smaller than
its nearest neighbors with ntot = 2n and 2(n + 1). A qualitative
interpretation of this effect can be provided by studying the
excitation gap of a MI [14]. For even occupation MI with
ntot = 2n, the excitation gap is given by

�̃2n = E(n,n + 1) + E(n − 1,n) − 2E(n,n) = V,

while that for Ntot = 2n + 1 is given by

�̃2n+1 = E(n,n) + E(n + 1,n + 1) − 2E(n,n + 1) = U.

Since V > U , the MI regime with even occupation will be
more robust and hence exists in a larger parameter space.
The excitation gap will compete with the tunneling energy
−t

∑
α=1,2〈P †

α,iPα,i+1〉 which can be effectively strengthened
if there exists degeneracy. As the filling number increases,
the tunneling energy grows and the MI regimes with large
occupation number become smaller and smaller. However,
when the nonlinear coupling terms are present, i.e., T ± �=
0, this even-odd effect is weakened and may disappear
completely as shown in Fig. 3(c). An interpretation of the
T ± effect is provided by perturbative analysis in Sec. IV.
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FIG. 4. (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the subplots,
we have V1 = V2 = V , U = 0.5, and T ± = 0. The chemical potential
is taken as μ = 0.25 for (a) and (c); μ = 1 for (b) and (d). The vertical
dashed lines indicate the critical tunneling rate tc beyond which the
system changes from MI to SF.

Furthermore, the nonlinear coupling terms could change the
degeneracy of the ground state, which will be discussed in
detail in the following.

As mentioned previously, if t and T ± are all zero, the ground
states are doubly degenerate when ntot = n1 + n2 is odd. If t is
switched on, due to the superexchange interaction induced by
the intercavity tunneling, the degeneracy would be lifted up and
the ground state becomes the superposition state of n1 − n2 =
±1 with equal weight [9]. This is indicated in Fig. 4, where
we have defined the average particle numbers per cavity nα =
〈P †

αPα〉 (α = 1,2) and the fluctuations �nα = 〈(P †
αPα)2〉 −

〈P †
αPα〉2, �ntot = 〈(P †

1 P1 + P
†
2 P2)2〉 − 〈P †

1 P1 + P
†
2 P2〉2. For

Figs. 4(a) and 4(c), we take a relatively small chemical
potential with μ/V = 0.25, for which the average particle
numbers are n1 = n2 = 0.5. In the absence of the tunneling,
the ground state is doubly degenerate and are represented by
the Fock states |1,0〉 and |0,1〉. For 0 < t < tc, where tc is the
critical tunneling strength beyond which the system changes
from MI to SF and is indicated in the figure by the vertical
dashed line, the fluctuations of the total number per cavity
�ntot vanish, while �n1 and �n2 are both finite, as shown in
Fig. 4(c). Therefore, we can conclude that the ground state is
an equal-weight superposition state of |1,0〉 and |0,1〉. For the
case depicted in Figs. 4(b) and 4(d), we used a larger chemical
potential μ/V = 1 and the average particle number is ntot = 2.
In this case, the MI state is represented by the Fock state |1,1〉
with vanishing fluctuations in both �ntot and �n1,2.

If T − is turned on, the ground state for t < tc would be
a superposition state Fock state |n1,n2〉 with fixed n1 + n2 =
ntot. This state is nondegenerate if ntot is even, and can be
written as

|G〉 =
∑
n1,n2

fn1,n2 |n1,n2〉, (5)

with fn1,n2 = (−1)
|n1−n2 |

2 fn2,n1 . An example is represented in
Figs. 5(a) and 5(c) with ntot = 2. For t < tc, we note that the
particle number difference remains zero and n1,2 have finite

FIG. 5. (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the subplots,
we have V1 = V2 = V , U = 0.5, T + = 0, and T − = −0.05. The
chemical potential is taken as μ = 1 for (a) and (c); μ = 1.75 for (b)
and (d). The vertical dashed lines indicate the critical tunneling rate
tc beyond which the system changes from MI to SF.

fluctuations while �ntot vanishes, so the ground state is a
superposition of states |1,1〉, |0,2〉, and |2,0〉. By contrast,
when ntot is odd [see Figs. 5(b) and 5(d)], T − separates the
whole Hilbert space into two degenerate subspaces with n1 >

n2 and n1 < n2, respectively, and the corresponding ground
states have the form

|G+〉 =
∑

n1>n2

c+
n1,n2

|n1,n2〉, (6)

and

|G−〉 =
∑

n1<n2

c−
n1,n2

|n1,n2〉, (7)

with c−
n1,n2

= (−1)
n2−n1−1

2 c+
n2,n1

. One can readily verify that the
T − term has a vanishing matrix element between |G+〉 and
|G−〉. Thus the double degeneracy of the ground state is
preserved even if T − is turned on, and the even-odd effect
remains, as shown in Fig. 3(b).

However, if we turn on T +, the degeneracy will be lifted, as
the T + term could couple the two degenerate subspaces; i.e.,
it has nonvanishing matrix elements between |G+〉 and |G−〉.
This explains the weakening of the even-odd effect as shown
in Fig. 3(c).

B. Large interspecies interaction (U > V )

In Fig. 2(b), we have known that the ground states, i.e.,
|0,ntot〉 and |ntot,0〉, are doubly degenerate for both the even
and the odd occupation when U > V , T ± = 0, and μ1 = μ2 =
μ at t = 0. In Fig. 6, we plot the occupation numbers and
their fluctuations as functions of tunneling rate t . We can see
that, in the MI region (0 < t < tc), the population difference
is n1 − n2 = ±ntot while the number fluctuations �ntot and
�n1,2 are all zero. It tells us that the ground state is either
|0,ntot〉 or |ntot,0〉, regardless of whether ntot is even or odd. In
addition, the excitation gap is independent of ntot, i.e., �̃ = V .
As a result, there is no even-odd effect as can be seen from
Fig. 3(d).
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FIG. 6. (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the subplots,
we have V1 = V2 = V , U = 1.5, and T ± = 0. The chemical potential
is taken as μ = 0.5 for (a) and (c); μ = 1.5 for (b) and (d). The vertical
dashed lines indicate the critical tunneling rate tc beyond which the
system changes from MI to SF.

However, when T − is turned on, the even-odd effect
emerges as can be seen in Fig. 3(e). This is because for
finite T − the ground state in the Mott insulator region is
nondegenerate when ntot is even, and takes a similar form
as in Eq. (5). An example is shown in Figs. 7(a) and 7(c). By
contrast, for odd ntot, T − can preserve the ground state’s double
degeneracy and the two degenerate ground states take similar
forms as in Eqs. (6) and (7), but with c−

n1,n2
= (−1)n1c+

n2,n1
. It

is easy to find that the tunneling energy in this nondegenerate
state is much lower than that in |0,ntot〉 or |ntot,0〉 while the
excitation gap decrease is very small. Thus the MI region with
even occupation is enlarged by T − and the even-odd effect
reappears.

Finally, Fig. 3(f) shows that the even-odd effect vanishes
again if T + is also turned on. The explanation for this is

FIG. 7. (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the subplots,
we have V1 = V2 = V , U = 1.5, T + = 0, and T − = −0.05. The
chemical potential is taken as μ = 1.5 for (a) and (c); μ = 2.5 for (b)
and (d). The vertical dashed lines indicate the critical tunneling rate
tc beyond which the system changes from MI to SF.

FIG. 8. (Color online) The energy contours obtained by diago-
nalizing Eq. (4) for U = 1.5, μ = 1.5, T + = 0, and T − = −0.05
(all in units of V1 = V2 = V ). The tunneling rate is given by
(a) t/V = 0.05; (b) t/V = 0.6; (c) t/V = 0.08; (d) t/V = 0.1.
Though the order parameters, φ1,2, could also be complex numbers,
their relative phase must be zero or π in the ground state of Eq. (4).
Hence we can perform the calculations assuming φ1,2 are real, without
loss of generality.

quite similar to the case when U < V : the T + term lifts the
degeneracy for odd ntot as its matrix element between |G+〉
and |G−〉 is nonzero.

We comment in passing that, from Figs. 3(a)–3(f), we may
notice that the MI region with ntot = 1 remains unchanged for
different values of T ±. This is because the T ± terms’ matrix
elements are all zero in this space.

It is not difficult to notice from Figs. 7(a) and 7(c) that there
is a discontinuous jump in both the particle numbers and their
fluctuations at the critical tunneling rate tc. The jump in �ntot,
in particular, indicates that the phase transition from MI to SF
may be of first order for even ntot when U > V and T − �= 0.
To verify this, we fix U/V = 1.5, T + = 0, T −/V = −0.05,
μ/V = 1.5, and plot the ground-state energy E(φ1,φ2) with
different t in Fig. 8. When t is very small, φ1 = φ2 = 0 (MI)
is the global minimum point [see Fig. 8(a)]. As t increases,
additional local minimum points with finite φ1,2 (metastable
SF) arise, as shown in Fig. 8(b). If we continue to increase
t , Fig. 8(c) displays that the MI state with φ1,2 = 0 becomes
a local minimum point (i.e., a metastable MI). Finally, the
local minimum point becomes a local maximum point if t

is sufficiently large as shown in Fig. 8(d). In conclusion,
metastable SF and metastable MI states exist near the boundary
of the MI lobes in Fig. 3(e) (between the dashed and solid
line) while ntot is even. This existence of such metastable
states is a tell-tale signature that the MI-SF phase transition
in this case is of first order. A similar situation can be found
in spin-1 bosons which can also host the first-order phase
transition [12,13], but they are induced by different effects.
In Fig. 8, another feature is also worth our attention. Only
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FIG. 9. (Color online) The average particle numbers and their
fluctuations obtained by the Gutzwiller method. For all the subplots,
we have V1 = V2 = V , U = 1.5, T + = 0.05, and T − = 0. The
chemical potential is taken as μ = 1.5 for (a) and (c); μ = 2.5 for (b)
and (d).

one of the two species is dominant in the SF state, i.e.,
|φ1| 	 |φ2| or |φ2| 	 |φ1|, and they are degenerate. This is
consistent with Figs. 7(c) and 7(d) which indicate that only one
component’s fluctuation is prominent while the other one’s is
close to zero. In comparison, both components have significant
occupation fluctuations in the SF state when U < V , as shown
in Figs. 4(c), 4(d), 5(c), and 5(d).

Furthermore, if T − = 0 but T + �= 0, not only the even
occupation’s but also the odd occupation’s MI-SF phase
transition will be of first order, as shown in Fig. 9, because
all the MI ground states’ degeneracy is lifted in the presence
of T + regardless of whether ntot is even or odd.

IV. PERTURBATIVE ANALYSIS

To gain more physical insights into the phase diagram,
we consider the intercomponent interaction (the U term) and
the nonlinear coupling (the T ± terms) as perturbations and
examine how they affect the phase diagram. Furthermore, in
order to distinguish the contribution from each of them, we
have shown how each of these nonlinear perturbations affects
the mean-field phase diagrams in Fig. 10.

In Fig. 10(a), we show the “unperturbed” phase diagram
by taking U = 0 and T ± = 0. Here we simply have two
uncoupled single-component Bose-Hubbard models. Since we
have chosen the intracomponent interaction strength V1 =
V2 = V , the two individual phase diagrams completely overlap
with each other. In particular, each MI region is characterized
by an equal number of the two polariton modes, and hence
only even Ntot MI regions are present. Along the horizontal
axis (t = 0), the MI region with Ntot = 2n occupies a region
(n − 1)V < μ < nV . At the boundary μ = nV , the four
Mott states |n,n〉, |n,n + 1〉, |n + 1,n〉, and |n + 1,n + 1〉 are
energetically degenerate with energy −n(n + 1)V .

In Fig. 10(b), we show the phase diagram in the presence
of a small intercomponent interaction U � V . As one can
see, the U term induces MI regions with odd ntot = 2n + 1,
which for small U occurs near the boundaries between two
even MI regions at μ = nV . At t = 0, these odd MI regions

Μ

FIG. 10. (Color online) The mean-field phase diagrams for dif-
ferent nonlinear perturbative terms. Here, V1 = V2 = V . (a) Phase
diagram with U = 0 and T ± = 0; (b) phase diagram with U = V/30
and T ± = 0; (c) phase diagram with T + = V/60 and U = T − = 0.

are represented by two degenerate Fock states |n,n + 1〉 and
|n + 1,n〉, and occupy a region with μ ∈ (μ<,μ>). The values
of μ< and μ> can be readily obtained from E(n,n,μ<) =
E(n,n + 1,μ<) and E(n,n + 1,μ>) = E(n + 1,n + 1,μ>),
from which we obtain the width of the odd MI region in
the μ axis as μ> − μ< = U , which is exactly the excitation
gap �̃2n+1 of the MI state. The above analysis provides a
more quantitative argument for the even-odd effect mentioned
earlier. Furthermore, since the tunneling energy is roughly
proportional to

√
n(n + 1), the MI regimes with occupation

number 2n + 1 become smaller as n grows. Our mean-field
numerical results, as shown in the inset of Fig. 10(b), are in
complete agreement with this analysis.

In Fig. 10(c), we show the phase diagram in the presence
of the nonlinear coupling T + term, while keeping U = 0
and T − = 0. In this case, in the absence of tunneling, the
conservation of the number of polaritons in each component
is broken, while the total polariton number ntot for each cavity
remains conserved for Hamiltonian H0. We also observe the
appearance of odd MI regions except for ntot = 1. Further-
more, the odd MI regions grow in size as ntot increases, which
is in stark contrast with the previous case. These properties
can be intuitively understood as follows. Consider an odd MI
region with ntot = 2n + 1 at t = 0, which is characterized by
two degenerate Fock states |n,n + 1〉 and |n + 1,n〉 in the
absence of T +. When a small T + is turned on, a direct coupling
between these two states is induced with the corresponding
matrix element given by 2n(n + 1)T +. To first order in T +,
the ground-state energy is shifted down by this amount. The
presence of the T + term will also lower the energies of even MI
states, but the energy shift is quadratic in T + as the unperturbed
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FIG. 11. (Color online) The phase diagram for the first-order
phase transition shown in the 3D parameter space ( T +

V2−U
, T −

V2−U
, V1−U

V2−U
).

The blue surface is the phase boundary, while the 0SF and πSF is
below and above it, respectively.

even MI states are nondegenerate. This explains the appearance
of odd MI regions with ntot = 2n + 1 for n > 0. There is no
MI region for Ntot = 1, because the transition-matrix element
between Fock states |0,1〉 and |1,0〉 vanishes. In addition, it is
not difficult to show that the width of the odd MI region on the
μ axis is O(4n(n + 1)T +), which grows when n increases, in
good agreement with the numerical results.

Actually, whether U is zero or not, we can always use the
above picture, i.e., first-order energy shift to the state with
degeneracy and second-order energy shift to the state without
degeneracy, to understand the effect of T +. And it also applies
to the situation even U > V . As mentioned previously, the
ground states with odd occupations are doubly degenerate
when U > V , T − �= 0 at t = 0, and T + has nonvanishing
matrix elements between them which can induce a first-order
energy shift. At the same time, the energy shift is second order
in the even occupation case. On the other hand, the tunneling
energy grows as T + increases. Therefore, the even-odd effect
disappears in Fig. 3(f).

Finally, let us consider the effect of the T − term. In the
case U = 0 and T + = 0, the T − term alone would not induce
odd MI regions. This is due to the fact that, unlike the T +
term, this term does not induce a direct coupling between
|n,n + 1〉 and |n + 1,n〉 states, i.e., the corresponding matrix
element vanishes. Hence a small T − does not have any
noticeable effects on the phase diagram. However, the T −
term can be regarded as a nonlinear coupling between the two
components of the polariton, whose effective sign depends
on the population difference. As a result, in the superfluid
region, when the relative population n1 − n2 changes sign, the
relative phase between the two order parameters φ1 and φ2

will change from zero to π . As this effect is already present
in the single-cavity system which we investigated in detail
in Ref. [21], we do not provide a detailed discussion here.
Instead, we just present the phase diagram for the superfluid
region in Fig. 11, in which 0SF and πSF are superfluid phases
with relative phase between φ1 and φ2 being zero and π ,
respectively. The transition between 0SF and πSF is of first
order.

The perturbation calculation presented above allows us
to better understand the phase diagram shown in Fig. 3. In
particular, we can now explain why the interspecies interaction

gives rise to the even-odd effect, and how the nonlinear
coupling term T + weakens the even-odd effect.

V. EXACT DIAGONALIZATION

So far we have investigated a homogeneous system of an
interconnected cavity in one dimension using a mean-field
approach. In this section, the exact diagonalization method is
used to study this model. To make the calculation manageable,
we consider a finite number, Nc, of cavities with Np total
particles. The whole Hilbert space is spanned by the Fock
state basis |ψi〉 = |n1

1,n
1
2, · · · ,n

Nc

1 ,n
Nc

2 〉 where nk
α denotes the

number of polaritons in component α in the kth cavity, and
they are constrained as nk

α � 0 and
∑Nc

k=1(nk
1 + nk

2) = Np. The

dimension of the Hilbert space is therefore Dm = C
Np

Np+2Nc−1.
We write the Hamiltonian into a matrix form under this Fock
state basis using the periodic boundary condition, and obtain
the ground state (|G〉) of this large sparse matrix through exact
diagonalization. In Fig. 12, we plot the total number fluctuation
per cavity which is defined as

�n = 〈G|(nk)2|G〉 − 〈G|nk|G〉2,

where nk = nk
1 + nk

2 is the total number operator for the kth
cavity. Under the periodic boundary condition, this quantity is
independent of the cavity index k. We vary Np and Nc to some
extent while restricting their ratio Np/Nc (i.e., the number
of polaritons per cavity) to be 1, 2, or 3. As can be seen,
the behavior of the number fluctuation is sensitive to Np/Nc.
The parameters of Fig. 12(a) are the same as those used in
Fig. 10(c). Here one can see that in the limit t → 0 the number
fluctuation for systems with Np/Nc = 1 remains finite, which
indicates the lack of MI region for Ntot = 1. By contrast, in
the same limit, the number fluctuations for Np/Nc = 2 and 3
vanish and more specifically �n for Np/Nc = 3 tends to zero
with a much steeper slope. We thus expect to see a large MI

FIG. 12. (Color online) The fluctuation of the total occupation
per cavity �n, obtained from the exact diagonalization method. Here
V1 = V2 = V and in (a) U = T − = 0, T + = V/60; in (b) U = V/30,
T + = T − = 0. The parameters used in (a) and (b) are the same as
those used in Figs. 10(c) and 10(b), respectively.
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region for Ntot = 2 and a small MI region for Ntot = 3. All
these are fully consistent with the mean-field phase diagram
shown in Fig. 10(c). The parameters used for Fig. 12(b) are the
same as those used for Fig. 10(b). Here �n for all three ratios
or Np/Nc vanish in the limit t → 0. The slopes of �n near
this limit indicate that two small MI regions for Ntot = 1 and
3 and a large MI region for Ntot = 2 in the mean-field limit are
expected, which is again consistent with the results obtained
earlier.

VI. SUMMARY

In summary, we have presented a scheme to realize a two-
component BHM with nonlinear intercomponent coupling in a
system of cavity polaritons. We mapped out the phase diagram
showing the boundaries between the MI phase and the SF
phase. Using several different approaches—the mean-field
decoupling method, the Gutzwiller method, the perturbation
calculation, and the exact diagonalization—we show how
the interspecies interaction and the nonlinear coupling terms
affect the phase diagram, and particularly how they induce the

first-order MI-SF phase transition and give rise to or weaken
the even-odd effect. Additionally, the competition between the
nonlinear coupling strengths T + and T − can drive a first-order
quantum phase transition within the SF regime that changes
the relative condensate phase of the two polariton components.
Through our study, we have obtained a clear understanding
about this two-component BHM. In the future, we could also
realize a two-component BHM that breaks the time-reversal
symmetry [16,17] by manipulating the external fields’ relative
phase. This model may host more exotic p-wave superfluid
phases [15].
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