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Equation of state and contact of a strongly interacting Bose gas in the normal state
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We theoretically investigate the equation of state and Tan’s contact of a nondegenerate three-dimensional Bose
gas near a broad Feshbach resonance, within the framework of large-N expansion. Our results agree with the
path-integral Monte Carlo simulations in the weak-coupling limit and recover the second-order virial expansion
predictions at strong interactions and high temperatures. At resonance, we find that the chemical potential and
energy are significantly enhanced by the strong repulsion, while the entropy does not change significantly. With
increasing temperature, the two-body contact initially increases and then decreases like T −1 at large temperature,
and therefore exhibits a peak structure at about 4Tc0, where Tc0 is the Bose-Einstein condensation temperature
of an ideal, noninteracting Bose gas. These results may be experimentally examined with a nondegenerate
unitary Bose gas, where the three-body recombination rate is substantially reduced. In particular, the
nonmonotonic temperature dependence of the two-body contact could be inferred from the momentum distribution
measurement.
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I. INTRODUCTION

Understanding strongly interacting Bose gases in three
dimensions is a notoriously difficult quest [1–9]. Theoretical
studies of these systems have been hindered by the absence
of controllable theoretical approaches that can be used to
describe their properties within certain errors, although a
formal field-theoretical description of weakly interacting Bose
gases was developed more than half a century ago by Lee,
Huang, and Yang [10,11] and later by Beliaev [12] based on
the ground-breaking Bogoliubov theory [13]. This theory is
only applicable in the limit of a small interaction parameter,
the so-called gas parameter na3

s � 1—where n is the density
and as > 0 is the s-wave scattering length—as a result
of the perturbative expansion. When the gas parameter is
extrapolated to infinity, each term appearing in the perturbative
field-theoretical description diverges. To the best of our
knowledge, a resummation of these divergent terms remains
unknown, even in an approximate manner.

Experimental studies, on the other hand, have been ham-
pered by atom losses from inelastic collisions. Unlike a
strongly interacting Fermi gas, where the atom loss rate due
to three-body recombinations into deeply bound diatomic
molecules is greatly suppressed by the Pauli exclusion prin-
ciple [14], at low temperatures an interacting Bose gas has a
three-body loss rate proportional to a4

s (i.e., the loss coefficient
L3 ∼ �a4

s /m [15,16]), which grows dramatically when as is
increased. Even in the absence of inelastic collisions, for a
strongly interacting Bose gas, the possibility of recombination
into deeply bound Efimov trimers [17] indicates that the system
can be at best metastable.

Due to these realistic problems, experimental studies of a
strongly interacting atomic Bose gas near a broad Feshbach
resonance have only been carried out very recently [18–22].
The stability or lifetime of a unitary Bose gas with infinitely
large scattering length was investigated with 7Li [20] and 39K
atoms [21] in the nondegenerate regime. It was found that
there is a low-recombination regime at high temperatures and
low densities, in which the loss coefficient saturates at L3 ∼

�λ4
dB/m ∝ 1/T 2, as predicted [23]. Here, at high temperatures

the thermal de Broglie wavelength λdB = [2π�
2/(mkBT )]1/2

replaces the role of the s-wave scattering length as . The
momentum distribution of a quantum-degenerate unitary Bose
gas was also measured with 85Rb atoms [22]. These rapid
experimental advances have triggered a number of interesting
theoretical investigations on the unitary Bose gas [24–38],
focusing particularly on the universal Bertsch parameter ξ ,
the condensate fraction n0 at zero temperature, and quenching
dynamics. The predictions, however, are very different from
each other, due to the absence of an efficient theoretical
framework to handle the intrinsic strong correlations of a
metastable unitary Bose gas.

In this work, we aim to develop a nonperturbative,
controllable theory of a strongly interacting Bose gas in
its normal state, with an emphasis on the high-temperature
low-recombination regime in which our theoretical predic-
tions might be efficiently tested in future experiments. Our
description is built on an earlier innovative theoretical work
by Li and Ho [29], who treated a repulsive Bose gas as a
metastable upper branch (defined later) of an interacting Bose
gas across a broad Feshbach resonance. By appropriately
redefining the upper branch prescription [39] and using a
nonperturbative large-N expansion approach to remove the
unphysical nonlinear effect in pair fluctuations [40–42], we
overcome the large mechanically unstable area encountered
earlier at low temperatures [29] and therefore make Li and
Ho’s idea practically useful at arbitrary temperatures in the
normal state and arbitrary interaction strengths. Our improved
theory is able to reproduce the path-integral Monte Carlo
results at weak couplings [43] and the virial expansion at
high temperatures [44–48]. In the strongly interacting unitary
limit, we calculate the equation of state and Tan’s two-body
contact [49] as a function of temperature. An interesting
nonmonotonic temperature dependence of the contact is
predicted and is to be compared with future experimental
measurements of the momentum distribution.

The rest of the paper is organized as follows. In the next sec-
tion, we briefly introduce Li and Ho’s idea of the upper branch
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Bose gas and present the generalized Nozières-Schmitt-Rink
(NSR) method. The upper branch is then appropriately defined
through an in-medium phase shift. The large-N expansion
approach is adopted in order to overcome the unphysical strong
pair fluctuations at large interaction strengths. In Sec. III, we
first present the results for weakly interacting Bose gases
and compare them with the available path-integral Monte
Carlo simulations. We then discuss the equation of state and
Tan’s two-body contact in the unitary limit. At sufficiently
high temperatures, the results are compared with the virial
expansion predictions. Finally, Sec. IV is devoted to the
conclusions and outlooks.

II. GENERALIZED NOZIÈRES-SCHMITT-RINK
APPROACH

A three-dimensional (3D) interacting Bose gas can be
described by the imaginary-time action [50]

S =
∫

dτdx
[
ψ̄

(
∂τ − �

2

2m
∇2 − μ

)
ψ + U0

2
ψ̄2ψ2

]
, (1)

where ψ̄(x) and ψ(x) are c-number fields representing the
creation and annihilation operators of bosonic atoms of equal
mass m at a space-time x = (x,τ ). The imaginary time τ

runs from 0 to the inverse temperature β = 1/(kBT ) and μ

is the chemical potential. The interatomic contact interaction
is parametrized by the bare strength U0 < 0, which has to be
regularized by the two-particle s-wave scattering length as via
the relation

1

U0
= m

4π�2as

− 1

V

∑
k

1

2εk
, (2)

where V is the volume of the system and εk ≡ �
2k2/(2m) is the

free-particle dispersion (i.e., kinetic energy). In experiment,
the scattering length as can be conveniently tuned by a
magnetic field across a Feshbach resonance, to arbitrary
values [14].

It should be noted that in our model action, Eq. (1), the
contact interaction is always attractive (U0 < 0), although
the scattering length can change sign across the Feshbach
resonance. This implies the pairing instability of two bosons
and therefore the ground state of the system would be a mixture
of pairs and of the remaining unpaired bosonic atoms [51],
similar to what happens for an interacting Fermi gas at the
crossover from Bardeen-Cooper-Schrieffer (BCS) superfluids
to Bose-Einstein condensates [52–56]. In the normal state,
such a mixture can be described by using the seminal NSR
approach [54–56].

Following the earlier work by Koetsier and co-workers [51],
we introduce a pairing field

φ(x,τ ) = U0ψ(x,τ )ψ(x,τ ) (3)

and decouple the interatomic interaction via the standard
Hubbard-Stratonovich transformation, with which the atomic
fields appear quadratically and therefore can be formally
integrated out. This leads to an effective action for the pairing
field and, at the level of Gaussian pair fluctuations, results in

the following grand thermodynamic potential:

� = �0 + δ�, (4)

�0 = kBT
∑

k

ln(1 − e−βξk ), (5)

δ� = kBT
∑
q,iνl

ln[−�−1(q,iνl)], (6)

where ξk = εk − μ. The last equation is the contribution from
pairs of bosons, which is characterized by the two-particle
vertex function (or the effective Green function of pairs)
�(q,iνl) with bosonic Matsubara frequencies νl = 2πlT (l =
0,±1,±2, . . .) [51],

�−1 = m

4π�2as

−
∑

k

[
γB(q,k)

iνl − ξq/2+k − ξq/2−k
+ 1

2εk

]
. (7)

Here nB(x) = 1/(eβx − 1) is the Bose-Einstein distribu-
tion function and the factor γB(q,k) ≡ 1 + nB(ξq/2+k) +
nB(ξq/2−k) takes into account (in-medium) Bose enhancement
of pair fluctuations. By further converting the summation over
Matsubara frequencies in Eq. (6) into an integral over real
frequency and introducing an in-medium two-particle phase
shift [54–56]

δ(q,ω) ≡ −Im ln[−�−1(q,ω + i0+)], (8)

the contribution to thermodynamic potential from the bosonic
pairs can be rewritten as

δ� = − 1

π

∑
q

∫ +∞

−∞
dω

1

eβω − 1
δ(q,ω). (9)

To make the above integral meaningful, it is easy to see
that the phase shift at zero frequency ω = 0 should vanish
identically for any momentum q because of the Bose-Einstein
distribution function. With decreasing temperature, where the
inverse vertex function becomes increasingly less negative,
this leads to the so-called Thouless criterion,

min
{q}

[�−1(q,ω = 0; T = Tc)] = 0, (10)

which is used to determine the onset of pairing superfluidity
and the critical temperature Tc.

We note that, within the NSR approach, the only parameter
in the imaginary-time action—the chemical potential μ—is to
be determined by using the number equation,

n = − 1

V

∂(�0 + δ�)

∂μ
≡ n0 + δn, (11)

where n is the number density of the system, consisting of both
the densities of atoms n0 and of pairs δn.

For an attractive Bose gas near broad Feshbach resonances,
Eq. (4) or Eq. (11) physically describes an ideal, noninteracting
mixture of bosonic atoms with density n0 and pairs with den-
sity δn > 0. With increasing strength of attractive interactions,
the contribution from pairs, Eq. (9), becomes more and more
significant. As a result, the chemical potential decreases to the
half of the binding energy, μ → −�

2/(2ma2
s ), as required by

the Thouless criterion δ(q,ω) = 0 [51].
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units of

FIG. 1. (Color online) (a) The in-medium phase shifts for an
attractive Bose gas δatt(q = 0,ω) at the gas parameter na3

s = 1.
The real and imaginary parts of the negative inverse of the two-
particle vertex function, −�−1(q = 0,ω), are also shown. (b) The
corresponding in-medium phase shifts δrep(q,ω) in the metastable
upper branch at different momenta q = 0 (black solid line), kF

(red dashed line), and 2kF (blue dot-dashed line). The phase shifts
δrep(q = 0,ω) at different gas parameters na3

s = 0.01 and na3
s = −1

are shown by gray crosses and green stars, respectively. For all the
plots, the temperature is fixed at T = 2Tc0, where Tc0 	 0.436TF

is the condensation temperature of an ideal Bose gas. The chemical
potential μ is fixed to that of an ideal Bose gas at the same temperature,
i.e., μ = μ(0)(2Tc0) 	 −0.358εF .

A. In-medium phase shift for the ground state

In Fig. 1(a), we show the typical behavior of the inverse
vertex function �−1 and of the in-medium phase shift δatt for
an attractive Bose gas with the gas parameter na3

s = 1 at T =
2Tc0, where Tc0 	 0.436TF is the condensation temperature
of an ideal Bose gas, measured in units of Fermi temperature
TF ≡ �

2(3π2n)2/3/(2mkB) ≡ εF /kB . The phase shift jumps
from zero to π at the threshold frequency ωb(q), which signals
the existence of bound states. Upon increasing the frequency
beyond the scattering threshold,

ωs(q) = �
2q2

4m
− 2μ, (12)

where the imaginary part of the vertex function becomes
nonzero, the phase shift decreases towards π/2 as ω → +∞.
Therefore, there are two contributions to the phase shift,
originating from the bound states [at ωb(q) � ω < ωs(q)] and
from the scattering states [i.e., ω � ωs(q)], respectively. It
is clear from Fig. 1(a) that the phase shift, as an illustrated
example, does not satisfy the constraint δ(q,ω = 0) = 0. This
is because we have used an artificially large chemical potential,
larger than the actual chemical potential, which has to be

solved self-consistently by using the number equation (11)
for an attractive Bose gas.

B. In-medium phase shift for the upper branch

It is interesting that although we are dealing with an
attractive Bose gas, we may also obtain useful information
about a repulsively interacting Bose gas, by treating it as a
metastable upper branch of the attractive system. This idea
may be understood from the fact that there is an ambiguity in
calculating the in-medium phase shift Eq. (8), as it involves
a multivalued ln(x) function. By appropriately choosing
different branch cuts, one thus may access excited many-body
states, in addition to the ground state of the system.

To the best of our knowledge, the proper choice of in-
medium phase shift was first emphasized by Engelbrecht
and Randeria in the study of a weakly interacting repulsive
Fermi gas in two dimensions in 1992 [57]. However, at that
time, the connection between attractive and repulsive systems
was not realized and the concept of the upper branch was
not established. The meaning of the upper branch was only
clarified in 2011 by Shenoy and Ho, who claimed that by
excluding the contribution from the paired molecular states
in calculating the thermodynamics of the system, one could
access the upper branch of an attractive Fermi gas [58]. This
excluded molecular pole approximation (EMPA) immediately
implies that for the upper branch, the lower boundary of the
frequency integral in Eq. (9) should be modified to ωs(q),
leading to

δ� = − 1

π

∑
q

∫ +∞

ωs (q)
dω

1

eβω − 1
δrep(q,ω). (13)

This expression was later applied by Li and Ho to a strongly
interacting Bose gas [29]. However, despite the clarification
of the concept of the upper branch, in those two studies (i.e.,
Refs. [29,58]), the ambiguity in the calculation of the phase
shift δrep(q,ω) was not carefully treated. The phase shift of the
upper branch was directly calculated by using

δHO
rep [q,ω � ωs(q)] = − arctan

[
Im �−1(q,ω)

Re �−1(q,ω)

]
(14)

without the explanation for the branch cut. Here, the function
arctan(x) is the usual inverse tangent function that takes values
in the first and fourth quadrants (−π/2,+π/2) [59] and we
have used the superscript “HO” to indicate the prescription
given by Ho and co-workers.

It turns out that a more appropriate phase shift for the upper
branch can be physically defined by the prescription

δrep(q,ω) = [δatt(q,ω) − π ]�[ω − ωs(q)], (15)

which can be shown from the viewpoint of the virial
expansion [39]. The π shift in the above equation can be
easily understood from the standard scattering theory: when
a two-body bound state emerges, the two-particle phase shift
associated with the density of states should increase by π .
The prescription Eq. (15) is therefore simply the many-body
generalization of the two-particle phase shift in the absence of
bound states. It should be viewed as a physical realization of
the EMPA approximation proposed by Ho and co-workers.
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For a weakly interacting Bose gas (i.e., as → 0+), The
two prescriptions for the upper branch phase shift, shown in
Eqs. (14) and (15), agree with each other, as a result of the large
value of Re �−1(q,ω). Towards the strongly interacting limit
as → +∞, however, the two prescriptions differ significantly.
In particular, on the BCS side with a negative scattering length,
the phase shift δHO

rep (q,ω) coincides with the phase shift of the
ground state branch, δatt(q,ω). As a result, by changing the
scattering length and crossing the Feshbach resonance from
below, there is a sudden branch switch from the upper branch
to the ground state branch [29]. This branch-switching effect
and the related violation of exact Tan’s relations [29] are absent
when the more physical prescription Eq. (15) is used.

In Fig. 1(b), we show the in-medium phase shift for
the upper branch, obtained by performing Eq. (15) for the
attractive phase shift shown in Fig. 1(a). The Thouless criterion
δ(q,ω = 0) = 0 is now strictly satisfied. Moreover, for a
positive frequency the phase shift becomes negative. This leads
to a positive fluctuation thermodynamic potential δ� > 0 and a
negative pair density δn < 0. As analyzed by Engelbrecht and
Randeria [57], the fact δ� > 0 implies that the ground-state
energy increases due to the interactions, as it should be for a
repulsive system. A negative pairing density is also consistent
with a repulsive interaction, which, for a specific atom, will
expel other atoms away from its position, and therefore make
the effective number density around its position smaller.

In Fig. 1(b), we also report the upper branch phase shift
at the gas parameter na3

s = 0.01 (gray crosses) and na3
s = −1

(green stars). It is worth noting that the negative value of
the gas parameter (i.e., on the BCS side above the Feshbach
resonance) actually means stronger repulsions between atoms,
as indicated by the large absolute value of the phase shift. In
contrast, for a positive gas parameter, the interaction effect
becomes weaker with decreasing the gas parameter.

C. Large-N expansion

The generalized NSR approach was used earlier by Li
and Ho to investigate a strongly interacting Bose gas near
unitarity [29]. A large mechanically unstable area was found
when the temperature of the system is below T < 5Tc0 ∼ 2TF ,
which renders the approach useful only at extremely high
temperatures. Here, we show that the mechanical instability
is artificial and caused by the inappropriate treatment for the
strong pair and density fluctuations in the NSR approach. It can
be cured by the so-called large-N expansion technique [40–
42].

In the large-N expansion, we assign an additional flavor
degree of freedom to bosonic atoms (i,j = 1, . . . ,N) and
thereby extend the model action to

S̃ =
∫

dτdx

⎡
⎣ N∑

i=1

ψ̄i

(
∂τ − �

2

2m
∇2 − μ

)
ψi

+ U0

2N

N∑
i,j=1

ψ̄2
i (x,τ )ψ2

j (x,τ )

⎤
⎦ . (16)

By introducing a pairing field

φ̃(x,τ ) = U0

N

N∑
i=1

ψi(x,τ )ψi(x,τ ) (17)

and again decoupling the interatomic interaction via the
standard Hubbard-Stratonovich transformation, we integrate
out the atomic fields and obtain the grand thermodynamic
potential per flavor

�̃

N
= �0 + 1

N
δ� + o

(
1

N

)
, (18)

up to the first nontrivial order of O(1/N ) [40–42]. Here, for
the metastable upper branch, �0 and δ� are given by Eqs. (5)
and (13), respectively.

It is clear that in the large-N expansion we have introduced
an artificial small parameter 1/N , which can be used to
control the accuracy of the theory of strongly interacting
Bose gases. The NSR approach, which is based on the
summation of infinite ladder diagrams [54,56], should be
understood as an approximate theory obtained by directly
setting N = 1. However, such a procedure cannot be justified
a priori in the strongly interacting regime, as the controllable
parameter 1/N is already at the order of unity. Indeed, the
appearance of the large mechanically unstable regime at low
temperatures, mentioned at the beginning of this section, is
precisely an indication of the breakdown of the procedure
of directly setting N = 1. A more reasonable treatment is to
first solve the thermodynamics of an N -flavor system with
N 
 1 and then linearly extrapolate all the desired physical
quantities—as a function of 1/N—to the limit of N = 1.
This large-N expansion idea has been successfully applied
to a strongly interacting two-component Fermi gas in the
unitary limit [40,41]. The equation of state and the Tan contact
near the quantum critical point μ = 0 was then accurately
predicted [42]. In this work, we anticipate that the same
large-N expansion technique could also lead to very useful
information for a unitary Bose gas in the quantum critical
region.

The higher order terms in the 1/N expansion Eq. (18) are of
great interest. Their calculations will give a clear justification
of the large-N expansion up to the leading 1/N term. However,
they are contributed by the multiparticle scattering process
that can hardly be determined at the moment (we refer to
the Introduction section of Ref. [48] for more details). For
example, the three-particle scattering process (or the three-
body bound state formation) will contribute to the o(1/N ) term
in Eq. (18) and may lead to nonanalytical and nonpertrubative
effects that could lead to qualitative changes. To the best of
our knowledge, its calculation still remains a grand theoretical
challenge.

In Fig. 2, we show the 1/N dependence of the total energy
of an interacting Bose gas at different gas parameters and tem-
peratures, obtained by solving the coupled equations (5), (13),
and (18), and subject to the number equation ñ/N ≡ n =
n0 + δn/N for the number density per flavor ñ/N . At weak in-
teractions (black squares) or high temperatures (blue crosses),
roughly the energy changes linearly as a function of 1/N .
The linear extrapolation approximation used in the large-N
expansion therefore does not make a significant difference.
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FIG. 2. (Color online) Energy as a function of the artificial
controlling parameter 1/N at T = 2Tc0 (black squares for na3

s = 10−6

and red circles for na3
s = 1) and T = 10Tc0 (blue crosses with

na3
s = 1). The energy is measured in units of the energy E0 of a

noninteracting Bose gas at the same temperature. The lines are linear
fits to the small 1/N data. Note that, at low temperatures and strong
interactions (i.e., red circles), we are not able to find solutions for
N = 1 because of strong correlations.

However, for a strongly interacting Bose gas at relatively low
temperatures (red circles), the dependence is highly nonlinear.
In particular, we are not able to find physical solutions when
the number of flavors N � 2. Therefore, it becomes crucial
to keep only the linear term in the 1/N expansion, which
provides the first nontrivial and nonperturbative knowledge
about a strongly correlated many-body state.

III. RESULTS AND DISCUSSIONS

In this section, we present our large-N results, calculated by
the linear extrapolation towards the limit 1/N = 1. In practice,
we solve the generalized NSR approach with N = 50–100 for
the chemical potential μ(N ) and the energy E(N ), and then
expand them around the corresponding noninteracting values
μ0 and E0,

μ(N ) = μ0 + δμ/N + o(1/N ), (19)

E(N ) = E0 + δE/N + o(1/N), (20)

to extract the corrections δμ and δE. This leads to the large-N
expansion results μ = μ0 + δμ and E = E0 + δE.

A. Crossover to strong repulsions

In Figs. 3(a) and 3(b), we present, respectively, the energy
and pressure of an interacting Bose gas at two temperatures
T = 2Tc0 (black solid lines) and T = 4Tc0 (red dashed lines),
as a function of the gas parameter na3

s , or kF as if we convert the
number density n to a Fermi wave vector kF = (3π2n)1/3. The
large-N expansion results are compared with available path-
integral Monte Carlo calculations for a hard-sphere (squares)
and soft-sphere potential (circles) [43]. For weak interactions
(i.e., na3

s = 10−6 and 10−4 or kF as < 0.2), our predictions
agree well with the ab initio simulations. For strong interac-
tions with strength kF as ∼ 0.8, there is a significant difference.
This is due to the effect of the non-negligible effective range

FIG. 3. (Color online) The energy (a) and pressure (b) as a
function of the gas parameter na3

s at T = 2Tc0 (black solid lines)
and T = 4Tc0 (red dashed lines), normalized respectively by their
corresponding results of an ideal, noninteracting Bose gas at the same
temperature. The results from path-integral Monte Carlo calculations
are also shown [43], with squares for hard-sphere potential and circles
for soft-sphere potential.

of interactions r0 used in the Monte Carlo simulations (i.e.,
|kF r0| ∼ 1), which leads to a sizable correction to the energy
and pressure. In our calculations with a contact interaction, the
range of interactions is strictly zero.

In Fig. 4, we show the evolution of the corresponding Tan’s
contact with increasing gas parameter. Tan’s contact measures
the density of pairs at short distance and determines the
exact large-momentum or high-frequency behavior of various
physical observables [49]. It therefore serves as an important

FIG. 4. (Color online) Two-body contact I2 as a function of the
gas parameter na3

s at T = 2Tc0 (black solid line) and T = 4Tc0 (red
dashed line). The result from the zero-temperature Bogoliubov theory
is shown by the blue dot-dashed line.
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quantity to characterize a strongly interacting many-body
system. In particular, experimentally it can be measured from
the momentum distribution [22,60], which takes a k−4 tail
in the short-wavelength limit, i.e., n(k) → I/k4. At finite
temperatures, the contact can be conveniently calculated by
using the adiabatic relation [49,61]:

I2 = −4πm

�2

[
∂�

∂a−1
s

]
T ,μ

. (21)

We have used the subscript “2” to emphasize the fact that in our
calculations we do not consider the three-body Efimov physics
and the associated inelastic collisions. These effects are instead
captured by a three-body contact I3, which can be defined
through an adiabatic relation for a three-body parameter. We
refer to Ref. [32] for more detailed discussions.

The two-body contact is an increasing function of the
interaction strength. At small gas parameters, our results are
in good agreement with the weak-coupling predictions of
a zero-temperature Bogoliubov theory (thin blue dot-dashed
line) [62],

Ibog = (4πnas)
2

[
1 + 64

3
√

π

√
na3

s

]
. (22)

The slight increase in our large-N expansion results is due to
the finite temperature effect. At large gas parameters na3

s , the
contact tends to saturate to a universal value that depends only
on the temperature, as it should be.

B. Unitary Bose gases

We are now in a position to discuss the universal ther-
modynamics of a unitary Bose gas. In Fig. 5, we present
the chemical potential, energy, and entropy, as a function
of temperature. For comparison, we also plot in dot-dashed
lines the temperature dependence of an ideal, noninteracting
Bose gas. For the chemical potential and energy, our results
lie systematically above the noninteracting results, clearly
indicating the consequence of strong repulsions. They tend
to converge to the zero-temperature quantum Monte Carlo
predictions (brown stars) with decreasing the temperature [35].
In contrast, the entropy seems to be less affected by strong
repulsions. The insensitivity of entropy on the interatomic
interactions was also previously found for a unitary Fermi
gas [63–65].

At high temperatures with a small fugacity z = eβμ � 1,
we may use the virial expansion theory to study the universal
thermodynamics [48]. For a unitary Bose gas, the virial
expansion of the grand thermodynamic potential takes the form

� = �0 − kBT

λ3
dB

(z2�b2 + z3�b3 + · · · ), (23)

where λdB ≡ [2π�
2/(mkBT )]1/2 is the thermal de Broglie

wavelength, and �b2 = −√
2 is the second-order virial co-

efficient for strong repulsions [47,66], which can be easily
calculated by using Beth-Uhlenbeck formalism [67]. Up to
the second order, we can solve Eq. (23) together with the
number equation, Eq. (11). For the fugacity, we find that

z 	
√

16

9π

(
TF

T

)3/2

(24)

FIG. 5. (Color online) Temperature dependence of the chemical
potential (a), energy (b), and entropy (c) of a unitary Bose gas. For
comparison, we show the second-order virial expansion predictions
by red empty circles and the ideal gas results by dot-dashed lines.
The latest quantum Monte Carlo (QMC) results at zero temperature
are also plotted by using stars in brown [35]. Note that the units
of temperature in (a), and (b) and( c) are TF and Tc0 	 0.436TF ,
respectively. The same temperature range is shown in all three
subplots.

at T 
 TF . The virial predictions for the equation of state are
shown in Fig. 5 by red circles and agree well with the large-N
expansion results at high temperatures. We note that the virial
expansion approach itself does not rely on the artificial number
of flavors and therefore the virial expansion prediction is not
affected by the choice of N and the extrapolating procedure.

In the unitary limit, we may calculate the universal contact
by using the adiabatic relation, Eq. (21), shown in Fig. 6. With
increasing temperature, the contact initially increases and then
decreases, giving rise to a peak structure at the temperature
T ∼ 4Tc0. The decrease of the contact at high temperatures
can be well understood by using the virial expansion theory for
the contact. As a direct consequence of the adiabatic relation,
we have the expansion

I2 = 8πm

�2

kBT

λ2
dB

(z2c2 + z3c3 + · · · ), (25)
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FIG. 6. (Color online) Temperature dependence of the two-body
contact I2 in the unitary limit. The prediction from a second-order
virial expansion, Eq. (26), is shown by red empty circles. At zero
temperature, the brown star and green solid circle refer to the
latest QMC result [35] and the number extracted from the recent
measurement at JILA for a trapped unitary Bose gas [22,32]. The
blue cross indicates the zero-temperature contact of a unitary Fermi
gas, measured very precisely by using Bragg spectroscopy [68].

where cn = λ−1
dB (∂�bn/∂a−1

s ) is the so-called contact coeffi-
cient [61]. For a unitary Bose gas, by using Beth-Uhlenbeck
formalism it is easy to show that c2 = 2/π . Using Eq. (24),
we then find

I2

nkF

	 64

3

(
TF

T

)
. (26)

Thus, at high temperatures the contact decreases as T −1.
There is no apparent physical explanation for the increase
of the contact at low temperatures. However, we notice that
with decreasing temperature toward zero temperature, our
large-N expansion result seems to be consistent with the
zero-temperature value predicted by the latest quantum Monte
Carlo simulation [35].

For comparison, we show the experimental data of the
contact [22], analyzed by Smith and co-workers (green solid
circle) [32] . The significant discrepancy between experiment

and our large-N theory should be largely due to the unknown
temperature in the experiment, as the Bose cloud could
be significantly heated by atom losses [22]. We also show
the zero-temperature contact of a unitary Fermi gas (blue
cross), which has been both calculated and measured very
accurately [68]. It is interesting that both the unitary Bose
and Fermi gases have similar contact at zero temperature,
indicating that a 3D Bose gas may also have the tendency
of being fermionized at strong repulsions, analogous to a Bose
gas in one dimension.

IV. CONCLUSIONS

In summary, based on the upper branch idea and large-N
expansion technique, we have developed a unified theory
for a normal, strongly interacting Bose gas. The theory
reproduces the path-integral Monte Carlo simulation in the
weak-coupling limit [35]. While at high temperatures, it nicely
recovers the known results from a quantum virial expansion
calculation [47,48]. Thus, we anticipate that the universal
thermodynamics predicted by our theory could be qualitatively
reliable. A useful check may be provided by experimentally
measuring the finite-temperature contact of a unitary Bose
gas through momentum distribution or momentum-resolved
radio-frequency spectroscopy [22].

Our results complement the earlier studies of a condensed
strongly interacting Bose gas. It is worth nothing that our
theoretical framework can naturally be extended to include the
condensation (i.e., T < Tc0) by using a generalized Nozières-
Schmitt-Rink approach below the superfluid transition tem-
perature [56]. This extension will be addressed in a future
investigation.
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