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Traveling waves in two-component Bose-Einstein condensates whose dynamics is described by the Manakov
limit of the Gross-Pitaevskii equations are considered in a general situation with relative motion of the components
when their chemical potentials are not equal to each other. It is shown that in this case the solution is reduced
to the form known in the “Kowalevski top” theory of motion. Typical situations are illustrated by the particular
cases when the general solution can be represented in terms of elliptic functions and their limits. Depending
on the parameters of the wave, both density waves (with in-phase motions of the components) and polarization
waves (with counterphase motions) are considered.
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I. INTRODUCTION

Realization of Bose-Einstein condensates (BECs) of atoms
which can occupy several quantum states at extremely low
temperatures has drawn interest to nonlinear dynamics of such
multicomponent systems (see, e.g., the review article [1]).
In particular, if the components are miscible, then in such
a condensate two types of linear waves can propagate—usual
sound waves (that is, density waves) with in-phase oscilla-
tions of the components and so-called polarization waves
with counterphase oscillations. Correspondingly, generally
speaking, there exist two Mach cones and two channels of
Cherenkov radiation which leads to considerable changes in
the character of excitations in the system compared with one-
component situation. The same holds true for the nonlinear
excitations—solitons and breathers. For example, oblique
solitons can be generated by the flow of two-component BECs
past a nonpolarized obstacle which repels both components [2]
and oblique breathers are generated in the case of polarized
obstacles which repel one component and attract the other
one [3].

The dynamics of two-component BECs becomes even
richer if one component moves with respect to another. As
was found experimentally in [4–6], the relative motion of
components leads to generation of nonlinear periodic waves of
polarization. In these experiments the components correspond
to the quantum states |1,−1〉 and |2,−2〉 of the hyperfine
structure of 87Rb atoms with very close values of their inter-
atomic scattering lengths. Hence their quasi-one-dimensional
dynamics in elongated cigar-shaped traps can be described
with high accuracy by the Gross-Pitaevskii equations of the
Manakov type [7]. In the standard nondimensional units these
equations can be written in the form

iψk,t + 1
2ψk,xx − (|ψ1|2 + |ψ2|2)ψk = 0, k = 1,2, (1)

where ψk denotes the wave function of the kth component, x

is the coordinate along the trap, and t is the time variable. Such
multicomponent (vector) nonlinear Schrödinger equations
appeared first in nonlinear optics [8] and they have been studied
intensely in this physical context, where it is natural to suppose
that the wave numbers (which are analogs of velocities of
the BEC components) of both components are equal to each

other (see, e.g., [9]), but the interaction constants are different.
Thus, so far the situation with equal nonlinearity constants
and nonvanishing relative velocity of the components was
studied very little. An important particular case of such type
of solutions is the so-called dark-bright soliton with vanishing
of one of the background densities far enough from the soliton
location. This means that the component with nonvanishing
background density forms a “trap” for another component
localized inside such a trap (see, e.g., [10,11]). Although this
solution of the Manakov system describes an important type
of nonlinear excitation in two-component BECs, it cannot
explain dense lattices of dark-bright solitons observed in recent
experiments [4–6]. An attempt of such an explanation was
done in Refs. [12–15] where particular cases of nonlinear
waves with relative motions of the components were studied.
Indeed, solutions in the form of counterphase oscillations
(polarization waves) were found in these papers; however,
they were limited to BECs with equal chemical potentials and
this condition is quite restrictive for adequate description of
experimental observations.

In this paper we shall consider the general situation
with nonequal chemical potentials for the case of one-phase
traveling waves. It will be shown that in this case the
Manakov system can be reduced to the equations studied
first by Kowalevski in her theory of rotation of the so-called
Kowalevski top [16,17]. (Similar reduction was performed
for the Manakov system with attractive (focusing) nonlinear
interaction and without relative motion of the components in
Refs. [18–20].)

The physical conditions that the densities of the components
must be positive and nonsingular impose heavy restrictions
on the admissible solutions of the Kowalevski equations.
The typical situations will be illustrated by several particular
cases. In particular, it will be shown that the solutions studied
previously in [12–15] can be obtained as a special limiting
case of the general solution of the Kowalevski equations.
Another particular case of the dark-bright solitons is also
obtained as a result of simple degeneration of the Kowalevski
equations. The so-called Appelrot class of solutions of the
Kowalevski equations, studied previously in the context of
rotations of the Kowalevski top, leads now in the context
of two-component condensate flows to the nonlinear density
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waves with very specific dispersion law conditioned by the
relative motion of the components. In the soliton limit this
periodic solution reduces to the dark-dark solitons which
generalize the known Manakov soliton solution to the situation
with relative motion of the components. The general nonlinear
wave in the two-component BEC is illustrated by the so-called
Legendre-Jacobi case when the hyperelliptic integrals are
reduced to the elliptic ones. The physical implications of the
found solutions are discussed in the conclusion of the paper.

II. EQUATIONS OF MOTION AND KOWALEVSKI
VARIABLES

It is convenient to transform the Manakov system (1)
to the hydrodynamic-like form by means of the Madelung
transformation

ψk = √
ρk exp

(
i

∫ x

ukdx − iμkt

)
, k = 1,2, (2)

where μ1,2 are constant chemical potentials. In a standard way
we arrive at the system

ρk,t + (ρkuk)x = 0,

uk,t +
(

1

2
u2

k + ρ1 + ρ2 + ρ2
k,x

8ρ2
k

− ρk,xx

4ρk

)
x

= 0
(3)

with real variables. Here ρ1,2 denote the densities of the
components, and u1,2 denote their flow velocities.

A traveling wave is described by one-phase solution of
Eqs. (3) with all variables depending on ξ = x − V t only,

ρk = ρk(ξ ), uk = uk(ξ ), ξ = x − V t, (4)

where V is a constant velocity of the wave. Substitution of
this ansatz into Eqs. (3) and subsequent integration yields
expressions for uk in terms of ρk ,

uk(ξ ) = V + αk

ρk(ξ )
, k = 1,2, (5)

and the equation for ρk(ξ ),

ρ2
k,ξ

8ρ2
k

− ρk,ξξ

4ρk

+ α2
k

2ρ2
k

+ ρ1 + ρ2 = βk, (6)

where αk , βk are the integration constants. As follows from
these relations, the constants αk , βk, k = 1, 2, are real. In the
case of a uniform flow with constant ρk = ρk0 and uk = uk0

we have βk = ρ10 + ρ20 + α2
k/(2ρ2

k0). Hence, the parameters
βk are related with the chemical potentials μk = u2

k/2 + ρ10 +
ρ20 by the formulae

μk = 1

2
V 2 + V αk

ρk0
+ βk, k = 1,2. (7)

The solutions studied in Refs. [12–15] were limited to the case
β1 = β2 which meant that in the uniform case the chemical
potentials are equal to each other: μ1 = μ2. Here we will
consider the general case including situations with β1 �= β2.

The Manakov system (1) is completely integrable [7] and
its solutions can be found by the inverse scattering transform
method. Therefore the dynamical system (6) obtained from
(1) by reduction to the class of the traveling-wave solutions
must be also completely integrable and can be solved by

reduction of the solution to quadratures. Such a possibility
was indicated in Refs. [21,22] and the method based on the
so-called Lax representation of the corresponding integrable
dynamical system was used in Refs. [19,20] for studying
the traveling-wave solutions of the Manakov system in the case
of the attractive (focusing) interaction. In Ref. [18] the same
problem was discussed with the use of the alternative Stäckel
method of separation of variables in the Hamilton-Jacobi
equation related with the corresponding nonlinear system. In
Appendix A of this paper we develop a similar approach for
the case of repulsive interaction between the BEC components
with account of relative motion of the components. The
resulting Kowalevski-type equations are studied below for
derivation of the physically interesting exact solution of the
Manakov system.

As shown in Appendix A, if β1 �= β2, introduction of new
variables q1, q2 according to

ρ1 = (q1 + β)(q2 + β)

2β
, ρ2 = − (q1 − β)(q2 − β)

2β
, (8)

where we have denoted β ≡ β1 − β2 (the limit β → 0 will be
considered below) reduces the system (6) to the Kowalevski
form

dq1√
R(q1)

+ dq2√
R(q2)

= 0,

q1dq1√
R(q1)

+ q2dq2√
R(q2)

= ±2 dξ,

(9)

where

R(q) = q5 − (β1 + β2)q4 − 2(β2 − h)q3

−[
(α1 + α2)2 − 2(β1 + β2)β2 + k

]
q2

+β
[
β3 − 2hβ + 2

(
α2

1 − α2
2

)]
q

−β2[(β1 + β2)β2 − k + (α1 − α2)2] (10)

is a 5th-degree polynomial within q and h and k are the values
of two integrals of motion of the system (6). The system (9)
can be also written in the form

dq1

dξ
= 2

√
R(q1)

q1 − q2
,

dq2

dξ
= −2

√
R(q2)

q1 − q2
, (11)

which can be more convenient in some situations.
The systems (9) or (11) can be solved formally in terms

of Riemann θ functions (more precisely, in terms of Göpel
and Rosenhein hyperelliptic functions; modern exposition of
this method can be found, e.g., in [23]) but such a form of
the general solution is mathematically involved and hardly can
produce essential understanding of physical behavior of waves
in a two-component BEC. Therefore we shall confine ourselves
here to the most important particular solutions which provide
useful information about such typical nonlinear excitations in
BECs as (quasi)periodic waves and solitons.

III. NONLINEAR WAVES IN A TWO-COMPONENT BEC

The physical variables ρ1 and ρ2 (i.e., densities of BEC
components) must be positive and this condition imposes
important restrictions on the variables q1 and q2 which obey
the systems (9) or (11). Supposing for definiteness that β > 0,
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q2

q1

FIG. 1. (Color online) Regions of variations of the parameters q1

and q2 [see Eq. (12)] corresponding to the conditions of positivity of
the densities ρ1 and ρ2 defined by Eqs. (8).

it is easy to find that q1 and q2 can vary in the intervals (see
Fig. 1)

−β � q1 � β, q2 � β,

or q1 � β, − β � q2 � β.
(12)

Formal integration of the system (9) yields∫ q

q10

dq√
R(q)

+
∫ q2

q20

dq√
R(q)

= 0,∫ q

q10

qdq√
R(q)

+
∫ q2

q20

qdq√
R(q)

= ±2ξ,

(13)

where q10 and q20 are integration constants equal to the values
of q1 and q2 at ξ = 0, respectively. Every solution of the
system (9) is parametrized by five zeros νi , i = 1, . . . ,5, of
the polynomial (10),

R(q) =
5∏

i=1

(q − νi), (14)

and, depending on their values, we obtain different classes
of solutions. Since the solution is symmetric with respect to
transposition of q1 and q2, for definiteness we assume that they
change in the intervals (the zeros νi are numerated in the order
of their values)

ν1 � q1 � ν2, ν3 � q2 � ν4, (15)

where the polynomial R(q) is positive.

A. Limit β → 0

If β ≡ β1 − β2 → 0, then we must have ν1 → 0 and ν2 →
0 to satisfy the conditions (12). At the same time, to get in this
singular limit from Eqs. (8) finite values of ρ1 and ρ2, we have
to define new variables and parameters as

q1 = βq̃1, ν1 = βν̃1, ν2 = βν̃2 (16)

so that Eqs. (8) reduce to

ρ1 = 1
2q2(1 + q̃1), ρ2 = 1

2q2(1 − q̃1). (17)

The Kowalevski equations (11) are then transformed to

dq̃1

dξ
= 2

√
ν3ν4ν5

q2

√
(̃q1 − ν̃1)(̃ν2 − q̃2),

dq2

dξ
= −2

√
(q2 − ν3)(ν4 − q2)(ν5 − q2).

(18)

We notice that the expression ρ ≡ ρ1 + ρ2 = q1 + q2 reduces
to ρ = q2 in this limit. Introducing also q̃1 = cos θ , ν̃1 =
cos θ1, ν̃2 = cos θ2, ν3 = r1, ν4 = r2, ν5 = r3, we arrive at the
equations

d cos θ

dξ
= −2

√
r1r2r2

ρ

√
(cos θ − cos θ1)(cos θ2 − cos θ ),

dρ

dξ
= −2

√
(ρ − r1)(r2 − ρ)(r3 − ρ), (19)

identical to the equation obtained for this special case in
Refs. [12–15].

It is worth noticing that obtained in Appendix A the
integrals of motion (A6) and (A7) of the dynamical system
(6) can be cast after introduction of these new variables ρ and
θ to the form

H = ρ2
ξ

8ρ
− ρ2

2
+ β̃ρ

+ ρ2 sin2 θ · θ2
ξ + 8

[
α2

1 + α2
2 − (

α2
1 − α2

2

)
cos θ

]
8ρ sin2 θ

= h,

(20)

K = ρ2 sin2 θ · θ2
ξ + 8

[
α2

1 + α2
2 − (

α2
1 − α2

2

)
cos θ

]
4 sin2 θ

− (α1 + α2)2 = k. (21)

The angle θ can be excluded from Eq. (20) with the use of
Eq. (21) which gives the equation for a single variable ρ,

ρ2
ξ = 4ρ3 − 8β̃ρ2 + 8hρ − 4[k + (α1 + α2)2], (22)

which is another form of the second equation (19). Its solution
can be expressed in terms of elliptic functions. When ρ is
known, then θ = θ (ξ ) can be obtained by integration of Eq.
(21) or

θ2
ξ = 8

ρ2

[
k + (α1 + α2)2

2
− α2

1 + α2
2 − (

α2
1 − α2

2

)
cos θ

sin2 θ

]
,

(23)

which also coincides up to the notation with the first equation
(19). When their solutions are found then the component
densities are given by (17) transformed to

ρ1(ξ ) = ρ(ξ ) cos2 θ (ξ )

2
, ρ2(ξ ) = ρ(ξ ) sin2 θ (ξ )

2
. (24)

Dependence of θ on ξ leads to oscillations of the component
densities even for the case of constant total density ρ. Variation
of ρ with ξ means “modulation” of the component oscillations.
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FIG. 2. (Color online) Dependence of the total density ρ(ξ ) (a)
and the component densities ρ1(ξ ) (b) and ρ2(ξ ) (c) on ξ in a
“quasisoliton.” Parameters are equal to V = 0.5, r1 = 0.857, r2 =
r3 = 1.0, θ = 2.5, θ2 = 0.5.

Most spectacularly such behavior is expressed in the soliton
limit r2 = r3 when the total density profile has the form of
the soliton. In the well-known dark-dark soliton solutions the
component density profiles repeat the total density profile up to
constant factors independent of ξ . This situation corresponds
to a particular case θ = θ1 = θ2 when the solution of Eq. (23)
is trivial. Explicit formulas for the general case θ1 �= θ2 were
found in Refs. [13,14] and we shall not reproduce them here.
Instead, to illustrate such a behavior of the two-component
BEC systems, we show typical plots for this “quasisoliton”
solution in Fig. 2.

More details about these solutions can be found in Refs.
[12–15].

B. Appelrot class of solutions

The systems (9) and (11) were applied for the first time
to a real mechanical problem by Kowalevski in her theory
of rotation of the so-called Kowalevski top [16]. After that
some particular especially remarkable motions of this top
were discussed by other authors, in particular, by Appelrot
and Delone (see, e.g., [17]). Here we shall apply their method
to the special case of nonlinear motion of a two-component
BEC which we shall also call the Appelrot case.

Let us suppose that the polynomial R(q) has a double root
q = ν̄, the other roots we denote as ν1 � ν2 � ν3; that is, we
have

R(q) = (q − ν̄)2(q − ν1)(q − ν2)(q − ν3) ≡ (q − ν̄)2R1(q),

(25)

where R1(q) is the 3rd-degree polynomial with the roots
ν1, ν2, ν3. In this case it is convenient to use the system (11)
written now in the form

2(q1 − ν̄)
√
R1(q1) = (q1 − q2)

dq1

dξ
,

2(q2 − ν̄)
√
R1(q2) = −(q1 − q2)

dq2

dξ
.

(26)

It is easy to see that this system is satisfied if

q1 = ν̄,
dq2

dξ
= 2

√
R1(q2)

or q2 = ν̄,
dq1

dξ
= 2

√
R1(q1).

(27)

Both solutions lead to the same physical solution due to
symmetry of Eqs. (8) with respect to transposition of q1 and
q2. For definiteness we shall take the second solution in (27).
Then the variable q1 oscillates in the interval ν1 � q1 � ν2,
where R1(q1) � 0 and, hence, for β > 0, we have according
to (12) two choices for the parameters ν̄, ν1, ν2,

β � ν1 < ν2, − β � ν̄ � β,

−β � ν1 < ν2 � β, ν̄ � β.
(28)

As we shall see, the second choice cannot give the soliton
solution, so we shall consider the first one.

In the standard way we obtain the solution expressed in
terms of the Jacobi elliptic sn function,

q1(ξ ) = ν1 + (ν2 − ν1)sn2(
√

ν3 − ν1 (ξ − ξ0),m), (29)

where

m = ν2 − ν1

ν3 − ν1
, (30)

and, to simplify the notation, from now on we shall put the
integration constant ξ0 = 0. Then the component densities are
given by

ρ1 = ν̄ + β

2β
[β + ν1 + (ν2 − ν1)sn2(

√
ν3 − ν1 ξ,m)],

ρ2 = ν̄ − β

2β
[β − ν1 − (ν2 − ν1)sn2(

√
ν3 − ν1 ξ,m)],

(31)

and their substitution into (5) yields the flow velocities. These
formulas represent the periodic nonlinear wave which can be
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called the density wave, since the densities oscillate in phase
and in the small-amplitude limit this wave reduces to the sound
wave, which describes oscillations of the total density ρ =
ρ1 + ρ2.

Let us consider the soliton limit when ν3 → ν2 (m → 1):

ρ1 = β + ν̄

2β

(
β + ν2 − ν2 − ν1

cosh2(
√

ν2 − ν1ξ )

)
,

ρ2 = β − ν̄

2β

(
ν2 − β − ν2 − ν1

cosh2(
√

ν2 − ν1ξ )

)
,

(32)

where β < ν1 < ν2 and −β < ν̄ < β. These parameters can
be expressed in terms of the constant densities at |ξ | → ∞,

ρ10 = 1

2β
(ν̄ + β)(β + ν2), ρ20 = 1

2β
(β − ν̄)(ν2 − β).

(33)

Solving this system with respect to ν2 and ν̄ gives

ν2 = 1
2 (ρ10 + ρ20 +

√
(ρ10 − ρ20 − 2β)2 + 4ρ10ρ20),

ν̄ = 1
2 (ρ10 + ρ20 −

√
(ρ10 − ρ20 − 2β)2 + 4ρ10ρ20). (34)

The parameter β can be also expressed in terms of ρ10, ρ20 at
|ξ | → ∞. From (5) and (6) we get

α1 = ρ10(u10 − V ), α2 = ρ20(u20 − V ) (35)

and

β1 = 1
2 (u10 − V )2 + ρ10 + ρ20,

β2 = 1
2 (u20 − V )2 + ρ10 + ρ20,

(36)

hence

β = 1
2 [(u10 − V )2 − (u20 − V )2]. (37)

To determine the last unknown parameter ν1, we remark that
the Viète formula for the polynomial (10) in our case gives
β1 + β2 = ν1 + 2(ν2 + ν̄) and, consequently,

ν1 = 1
2 [(u10 − V )2 + (u20 − V )2]. (38)

The solution (32) exists if ν2 > ν1 and this condition gives
restrictions for the soliton velocity,

ρ10

(V − u10)2
+ ρ20

(V − u20)2
> 1. (39)

Note that for the second choice in (28) the condition ν2 > ν1

cannot be fulfilled. In the limiting case of a one-component
quiescent condensate (ρ20 = 0, u10 = 0) the condition (39)
reduces to the well-known fact that the soliton velocity is
smaller than the sound velocity, V < cs = √

ρ10.
As is clear from Eqs. (32), this solution describes a dark-

dark soliton with density dips in both components. However,
due to the relative flow of components, in this solution the
component density profiles are not proportional to each other,
in contrast to the well-known soliton solution propagating
along the quiescent condensate. This situation is illustrated
in Fig. 3 where it is shown that the density curves can intersect
each other for a certain choice of the parameters of the flow at
infinity. Thus, the relative velocity introduces the asymmetry
into behavior of the components.

FIG. 3. (Color online) Plots of the densities of the components
ρ1 and ρ2 as functions of ξ [see Eqs. (32)]. In all plots u10 = 0,
u20 = 0.5, and V = 1.0. In panel (a) ρ10 = 0.52, ρ20 = 0.48, and in
panel (b) ρ10 = 0.48, ρ20 = 0.52.

Dependence of the inverse width κ = √
ν2 − ν1 of the

soliton on its velocity V is given by

κ = 1√
2
{ρ10 + ρ20 − (u10 − V )2 − (u20 − V )2

+
√

[ρ10−ρ20−(u10 − V )2+(u20 − V )2]2+4ρ10ρ20}1/2.

(40)

This expression can be also obtained by linearization of Eq. (6)
with respect to small deviations ρ ′

k around asymptotic densities
(ρk = ρk0 + ρ ′

k) and seeking the solution of the linearized
equations in the form ρ ′

k ∝ exp(−κ|ξ |). This calculation shows
that the Appelrot class of solutions yields in the corresponding
limit all soliton solutions with exponentially decaying tails
around nonzero background densities ρk0 �= 0.

Dependence (40) is illustrated in Fig. 4 for different values
of the relative velocity of the BEC components. The remark-
able feature is that this dependence can be nonmonotonic and
for large enough values of the relative velocity the region of
possible values of the velocity V splits into two separated
regions in sharp contrast with the one-component situation.
The appearance of two regions of velocity can be illustrated
graphically in the following way. We introduce for convenience
the variables X = V − u10, Y = V − u20; then the boundary
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FIG. 4. (Color online) Dependence of the inverse width κ of a
dark-dark soliton on its velocity V for different values of the relative
velocity between condensates. In all plots ρ10 = ρ20 = 0.5, u10 = 0,
and V is measured with respect to quiescent condensate: (a) u20 = 0,
this is the case of well-known dark-dark solitons propagating through
two still condensates; (b) plot corresponding to u20 = 1.5 illustrates
a nonmonotonic dependence; (c) at u20 = 2.0 the region of possible
velocities splits with formation of two disconnected regions; (d) plot
for u20 = 2.2 illustrates appearance of two disconnected regions of
possible soliton velocities V .

X

Y

(b) (c) (d)

FIG. 5. (Color online) Plot of the curve (41) (solid line) and of
the straight lines X − Y = U0 (dashed lines): (b) corresponds to a
single region of possible values of V [see Fig. 2(b)]; (c) corresponds
to the relative velocity at which the region splits into two regions [see
Fig. 2(c)]; (d) corresponds to two separated regions [see Fig. 2(d)].

of the region (39) is given by the equation

X2Y 2 − ρ10Y
2 − ρ20X

2 = 0. (41)

Its plot is shown in Fig. 5 by a solid line and the admissible
values of V are located inside this line (that is, in the area
including the origin of the coordinate system). If we fix the
value of the relative velocity U0 = u20 − u10 ≡ X − Y , then
the possible values of V correspond to points of the straight
line located between its intersections with the curve (41).
Consequently, the splitting of the region of possible values
of V correspond to such U0 that the straight line X − Y = U0

touches the curve (41) at the point where dY/dX = 1 or

XY 2 + X2Y − ρ10Y − ρ20X = 0 (42)

(see Fig. 5). The system (41) and (42) can be easily solved to
give

X = V − u10 = ±ρ
1/3
10

√
ρ

1/3
10 + ρ

1/3
20 ,

Y = V − u20 = ∓ρ
1/3
20

√
ρ

1/3
10 + ρ

1/3
20 ,

(43)

and hence the critical value of the relative velocity is given by

U0 = (
ρ

1/3
10 + ρ

1/3
20

)3/2
. (44)

C. Dark-bright soliton solution

If one of the background densities vanishes (say, ρ20 = 0),
then the so-called dark-bright soliton solutions of the Manakov
system are obtained (see, e.g., [10,11]). Here we show that
this type of solutions is a specialization of general solutions of
the Kowalevski equations when the polynomial R(q) has two
double zeros. In this case the condition (15) is fulfilled if one
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of the double zeroes coincides with β. Thus, we assume that

−β � ν1 � q1 � β, β � q2 � ν̄ = ν4 = ν5. (45)

Then the system (11) reduces to

2(β − q1)(ν̄ − q1)
√

q1 − ν1 = (q1 − q2)
dq1

dξ
,

2(q2 − β)(ν̄ − q2)
√

q2 − ν1 = −(q1 − q2)
dq2

dξ
.

(46)

As in the preceding subsection, we see that the second
equation is satisfied identically by q2 = ν̄ and the first equation
dq1/dξ = −2(β − q1)

√
q1 − ν1 can be easily integrated to

give q1 = β − (β − ν1) cosh−2(
√

β − ν1 ξ ). As a result we
obtain the densities

ρ1 = (ν̄ + β)

(
1 − (β − ν1)/(2β)

cosh2(
√

β − ν1 ξ )

)
,

ρ2 = (ν̄ − β)
(β − ν1)/(2β)

cosh2(
√

β − ν1 ξ )
,

(47)

which obviously correspond to the dark-bright soliton: the
density ρ1 has a dip at ξ = 0 and approaches to the background
density ρ0 = ν̄ + β as |ξ | → ∞ whereas ρ2 has a hump at
ξ = 0 and vanishes as |ξ | → ∞.

Let us relate the parameters of formulas (47) with standard
physical parameters of the soliton solution. To this end we
define the inverse half-width κ of the soliton by the equation
κ = √

β − ν1 and introduce the ratio of the component
densities at the center of the soliton γ = [ρ0 − ρ1(0)]/ρ2(0) =
(ν̄ + β)/(ν̄ − β). Besides that we assume that there is no
flow of the first component at infinity: u10 = 0. Then from
Eqs. (5) and (6) we find α1 = −Vρ0, α2 = 0, β1 = ρ0 + V 2/4,
β2 = ρ0 − κ2/2 and hence

β = V 2

4
+ κ2

2
= ρ0

γ − 1

2γ
, ν1 = β − κ2, ν̄ = ρ0

γ + 1

2γ
.

(48)

The dependence of the soliton’s inverse width on its velocity
is given by the formula

κ(V ) =
√

γ − 1

γ
ρ0 − V 2

2
. (49)

These formulas are equivalent to those found in Ref. [10] and
a typical plot of the bright-dark soliton solution is illustrated
in Fig. 6.

D. Legendre-Jacobi class of solutions

The general one-phase traveling waves described by the
Manakov system can be illustrated by an easy numerical
solution of the Kowalevski equations (11). On the other hand,
the analytical solution of these equations can be expressed in
terms of Riemann θ functions by the methods used already
by Kowalevski (see [16,17]) and developed further in the
algebraic-geometric approach to integrable equations (see,
e.g., [23]). This method was applied to the one-phase solutions
of the focusing Manakov system in Refs. [19,20]. However,
the resulting expressions are quite inconvenient for practical
use. Therefore we shall confine ourselves here to a particular
case, when the solution can be reduced to the much better

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1.0 1

1

2

2

FIG. 6. (Color online) Plots of the densities of the components
ρ1 and ρ2 as functions of ξ [see Eqs. (47)]. The parameters are equal
to ρ0 = 1.0, γ = 2.5, V = 0.4.

known special functions (elliptic integrals) which permit one
to understand the characteristic features of the solution in a
much simpler way. Here we shall consider such a situation
first noticed by Legendre [24] and generalized by Jacobi [25].

Let the zeros of the polynomial R(q) be given by

ν1 = c − 1/b, ν2 = c − 1/a, ν3 = c,

ν4 = c + 1, ν5 = c + 1/ab,
(50)

where 0 < b � a � 1 and the parameter c satisfies the
conditions

max{β, 1/b − β} < c < β + 1/a, (51)

so that q1 and q2 oscillate within the intervals

−β < ν1 � q1 � ν2 < β, β < ν3 � q2 � ν4. (52)

Let us assume for definiteness that at ξ = 0 we have q1(0) =
c − 1/a and q2 = c (other choices of the initial conditions
can be considered in a similar way). Then, introducing the
variables

z1,2 = q1,2 − c, (53)

we represent the solution (13) in the form∫ z1

−1/a

dz√
R̃(z)

+
∫ z2

0

dz√
R̃(z)

= 0,∫ z1

−1/a

zdz√
R̃(z)

+
∫ z2

0

zdz√
R̃(z)

= ±2ξ,

(54)

where

R̃(z) = z(1 − z)(1 − abz)(1 + az)(1 + bz)/(ab)2. (55)

As Jacobi showed [25], the integrals here can be expressed in
terms of incomplete elliptic integrals of the first kind. Since
Jacobi did not provide the details of his method, this calculation
is discussed briefly in Appendix B. As a result, we obtain a
particular solution of Eqs. (11) in the form

F (ϕ1a,k1) + F (ϕ1b,k2) − F (ϕ2,k1) − F (ϕ2,k2) = 0,

F (ϕ1a,k1) − F (ϕ1b,k2) − F (ϕ2,k1) + F (ϕ2,k2)

= ±2

√
(1 + a)(1 + b)

ab
ξ, (56)
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where

ϕ1a =

⎧⎪⎨⎪⎩
π − arcsin

√
(1+az1)(1+bz1)
z1(

√
a−√

b)2 , − 1
b

� z1 � − 1√
ab

,

arcsin
√

(1+az1)(1+bz1)
z1(

√
a−√

b)2 , − 1√
ab

� z1 � − 1
a

;

(57)

ϕ1b = arcsin

√
(1 + az1)(1 + bz1)

z1(
√

a + √
b)2

, − 1

b
� z1 � −1

a
;

(58)

ϕ2 = arcsin

√
(1 + a)(1 + b)z2

(1 + az2)(1 + bz2)
, 0 � z2 � 1. (59)

These equations determine implicitly the dependence of z1 and
z2, and, hence, of q1 and q2, on ξ in the interval of ξ until the
first turning point is met (z1 = −1/b or z2 = 1). After that the
sign before the corresponding square root in the Kowalevski
equations (11) must be changed and the replacement in the

FIG. 7. (Color online) Plots for the solution (56) of the
Kowalevski equations for the values of the parameters a = 0.8,
b = 0.4, c = 2 which correspond to ν1 = −0.5, ν2 = 0.75, ν3 = 2.0,
ν3 = 3.0, ν5 = 5.125. The initial conditions are given by q1(0) = λ2,
q2(0) = λ3. (a) Plots of q1 and q2 for the interval of ξ corresponding
to full cycle of q2 variable; dashed lines indicate the values of νi ,
i = 1,2,3,4; (b) plots of the components densities ρ1 and ρ2 and of
the total density ρ = ρ1 + ρ2.

solution (54)∫ z1

−1/a

dz√
R̃(z)

→
∫ −1/b

−1/a

dz√
R̃(z)

−
∫ z1

−1/b

dz√
R̃(z)

or ∫ z2

0

dz√
R̃(z)

→
∫ 1

0

dz√
R̃(z)

−
∫ z2

1

dz√
R̃(z)

must be done with similar changes in the expressions (56).
Making such changes at every successive turning point, we
find the solution in any necessary interval of ξ . Substitution of
the resulting q1 = z1 + c and q2 = z2 + c into Eqs. (8) yields
the dependence of densities ρ1 and ρ2 on ξ . Typical resulting
plots are shown in Fig. 7.

As one can see, in the general solution the periodicity
of the wave in space and time is lost and the wave pattern
demonstrates quite complicated behavior as a function of ξ .
This is a quasiperiodic solution of the dynamical system (6).

IV. CONCLUSION

In this paper we have found the one-phase traveling wave
solution of the Manakov system which describes evolution of
two-component BEC. It is shown that in this case the Manakov
system reduces to the equations which Kowalevski derived in
her study of rotation of a heavy top in the completely integrable
case discovered by her. We show that the previously found
solutions of the Manakov system appear in this scheme as
particular cases. Besides that, solutions are found which were
either missed in previous analysis or cannot be obtained by
more elementary methods when parameters of the solutions are
chosen in such a way that the evolution equations are greatly
simplified. In particular, we have found a dark-dark soliton
solution for a two-component BEC with the nonzero relative
motion of the components. This solution has very unusual
dependence of the inverse width on the soliton’s velocity. In
principle, this can lead to forms of dispersive shock waves
evolved from initial steplike distributions of the components
densities or velocities.

For applications of the developed theory to the description
of the polarization wave patterns observed in the experiments
[4–6], the Whitham modulation theory [26,27] for these waves
has to be developed. Some particular situations have already
been studied in Refs. [28] (genus-zero case) and [15] (genus-
one case for the limit β = 0). The results of the present paper
demonstrate that the general one-phase solution is described
by the 5th-degree polynomial R(q) whose zeros as well as
the wave velocity must be related in the framework of the
finite-gap integration method with the modulation parameters
appearing in the Whitham theory of modulations of nonlinear
waves. Thus, the results obtained here provide the necessary
step to development of the modulation theory which can be
applied to description of dispersive polarization shock waves
observed experimentally.
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APPENDIX A

It is convenient to cast the system (3) to a mathematically
simpler form by means of the complex substitution vk = uk −
iρk,x/(2ρk):

ρk,t +
(

ρkvk + i

2
ρk,x

)
x

= 0,

vk,t +
(

1

2
v2

k + ρ1 + ρ2 − i

2
vk,x

)
x

= 0.

(A1)

Let us introduce also the imaginary “time” variable τ = −2iξ .
Then after obvious integrations we get

dρk

dτ
= αk − ρkwk,

dwk

dτ
= 1

2
w2

k + ρ1 + ρ2 − βk, (A2)

and wk = vk − V .
Our approach is based on the fact that the system (A2) is

Hamiltonian with the Hamiltonian

H = − 1
2

(
ρ1w

2
1 + ρ2w

2
2

) − 1
2 (ρ1 + ρ2)2

+ α1w1 + α2w2 + β1ρ1 + β2ρ2 (A3)

and Poisson brackets

{ρi,ρj } = {wi,wj } = 0, {wi,ρj } = δij . (A4)

The corresponding equations of motion

dρk

dτ
= ∂H

∂wk

,
dwk

dτ
= −∂H

∂ρk

(A5)

possess the integral of energy

H (ρk,wk) = h = const. (A6)

For complete integrability of this system with two degrees of
freedom we need, according to the Liouville-Arnold theorem
(see, e.g., [29]), one more integral. One can check that there is
such an integral quadratic in momenta wk:

K = −ρ1ρ2(w1 − w2)2 + 2(w1 − w2)(α1ρ2 − α2ρ1)

−(β1 − β2)
[
ρ1w

2
1 − ρ2w

2
2 + ρ2

1 − ρ2
2

−2(α1w1 − α2w2) − 2(β1ρ1 − β2ρ2)
]
. (A7)

Thus, integration of the system (A5) can be reduced to
quadratures.

If β1 �= β2, then we can make a canonical transformation

ρ1 = (q1 + β)(q2 + β)

2β
, ρ2 = − (q1 − β)(q2 − β)

2β
,

w1 = (q1 − β)p1 − (q2 − β)p2

q1 − q2
,

w2 = (q1 + β)p1 − (q2 + β)p2

q1 − q2
, (A8)

where β ≡ β1 − β2. As we shall see, the dynamics is separable
in these new variables qi, pi , i = 1, 2. The Poisson brackets
preserve their canonical form

{qi,qj } = {pi,pj } = 0, {pi,qj } = δij , (A9)

and the Hamiltonian becomes

H =
(
q2

1 − β2
)
p2

1 − 2[(α1 + α2)q1 − (α1 − α2)β]p1

2(q2 − q1)

+
(
q2

2 − β2
)
p2

2 − 2[(α1 + α2)q2 − (α1 − α2)β]p2

2(q1 − q2)

− 1

2

[
q2

1 + q2
2 + q1q2 − (β1 + β2)(q1 + q2) − β2

]
.

(A10)

The equations of motion are given by

dq1

dτ
= ∂H

∂p1
=

(
q2

1 − β2
)
p1 + (α1 − α2)β − (α1 + α2)q1

q1 − q2
,

dp1

dτ
= −∂H

∂q1
= (p1 − p2)[(α1 − α2)β − (α1 + α2)q2]

(q1 − q2)2

−
(
q2

1 + β2
)
p2

1 − (
q2

2 − β2
)
p2

2 + 2q1q2p
2
1

2(q1 − q2)2

+ 1

2
(β1 + β2 − 2q1 − q2), (A11)

and similar equations can be written for q2 and p2. They have
two integrals of motion—the energy H (q1,p1,q2,p2) = h =
const and

K(q1,p1,q2,p2)

= {
2(α1 + α2)(p1 − p2)q1q2 − (

p2
1q1 − p2

2q2
)
q1q2

+β2
(
p2

1q2−p2
2q1

)−2β(α1−α2)(p1q2 − p2q1)
}
/(q1 − q2)

+ (β1 + β2 − q1 − q2)q1q2 = k = const. (A12)

As was mentioned above, integration of a Hamiltonian
system with two degrees of freedom and two integrals of
motion can be reduced to quadratures. Actual integration can
be performed in our case as follows. Eliminating variables
q2, p2 from the integrals H (q,p) = h and K(q,p) = k, we
obtain

� = (
q2

1 − β2
)(

β1 + β2 − q1 − p2
1

)
+ 2p1[(α1 + α2)q1 − β(α1 − α2)] − 2hq1 + k = 0,

(A13)

which demonstrates the mentioned above separation of vari-
ables. Taking into account Eqs. (A11), we get

∂�

∂p1
= 2

(
q2

1 − β2)(β1 + β2 − q1 − p2
1

)
−2[β(α1 − α2) − (α1 + α2)q1]

= −2(q1 − q2)
dq1

dτ
. (A14)

We solve Eq. (A13) with respect to p1 and substitute the
result into (A14). After this and similar manipulations with
the variables q2, p2 we obtain the system

±
√

−R(q1) = −(q1 − q2)
dq1

dτ
,

±
√

−R(q2) = (q1 − q2)
dq2

dτ
,

(A15)
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where

R(q) = q5 − (β1 + β2)q4 − 2(β2 − h)q3

− [
(α1 + α2)2 − 2(β1 + β2)β2 + k

]
q2

+β
[
β3 − 2hβ + 2

(
α2

1 − α2
2

)]
q

−β2[(β1 + β2)β2 − k + (α1 − α2)2] (A16)

is a 5th-degree polynomial with respect to q. Then after simple
manipulations we arrive at the system

dq1√
R(q1)

+ dq2√
R(q2)

= 0,

q1dq1√
R(q1)

+ q2dq2√
R(q2)

= ±2 dξ,

(A17)

where we have returned to the real variable ξ = iτ/2. Some-
times it is convenient to rewrite this system in the Kowalevski
form

dq1

dξ
= 2

√
R(q1)

q1 − q2
,

dq2

dξ
= −2

√
R(q2)

q1 − q2
. (A18)

This approach can be generalized on the multicomponent
Manakov system with an arbitrary number of components.

APPENDIX B

We have to calculate the integrals

I1 =
∫ z

0

dz√
R̃(z)

, I ′
1 =

∫ z

0

zdz√
R̃(z)

,

I2 =
∫ z

−1/a

dz√
R̃(z)

, I ′
2 =

∫ z

−1/a

zdz√
R̃(z)

.

(B1)

The integrals I1 and I ′
1 are calculated with the use of the

substitution

1 + abz2 = uz (B2)

or

√
z = (

√
u + 2

√
ab ±

√
u − 2

√
ab)/(2

√
ab), (B3)

where u is a new integration variable. It is easy to see that the
function (B3) with the lower sign maps the interval 1 + ab �
u < ∞ on 0 � z � 1 and with the upper sign maps the same
interval on 1/(ab) � z < ∞. Then substitution (B3) with the
lower sign into I1 gives after simple manipulations

I1 = ab

2

∫ ∞

u(z)

du√
(u + a + b)(u + 2

√
ab)(u − 1 − ab)

+ ab

2

∫ ∞

u(z)

du√
(u + a + b)(u − 2

√
ab)(u − 1 − ab)

,

(B4)

where

u(z) = (1 + abz2)/z. (B5)

Elliptic integrals in (B4) are transformed to the standard form
by the substitution

u = (1 + a)(1 + b)

sin2 ϕ
− a − b. (B6)

As a result we obtain

I1 = ab√
(1 + a)(1 + b)

{F (ϕ,k1) + F (ϕ,k2)} , (B7)

where F (ϕ,k) denotes the elliptic integral of the first kind,

k1 =
√

a − √
b√

(1 + a)(1 + b)
, k2 =

√
a + √

b√
(1 + a)(1 + b)

, (B8)

and ϕ is related with the upper limit of integration z by the
formula

sin2 ϕ = (1 + a)(1 + b)z

(1 + az)(1 + bz)
. (B9)

The integral I ′
1 is calculated by the same method and the result

reads

I ′
1 =

√
ab

(1 + a)(1 + b)
{−F (ϕ,k1) + F (ϕ,k2)} . (B10)

The integrals I2 and I ′
2 in (B1) can be calculated with the

use of the substitution

u(z) = −(1 + abz2)/z (B11)

or

√−z = (

√
u + 2

√
ab ±

√
u − 2

√
ab)/(2

√
ab), (B12)

which map the interval 2
√

ab � u � a + b on the inter-
vals −1/b � z � −1/

√
ab and −1/

√
ab � z � −1/a, cor-

respondingly for upper and lower signs. This transforms I2

to

I2 = ab

2

∫ u(z)

a+b

du√
(u − a − b)(u + 2

√
ab)(u + 1 + ab)

+ ab

2

∫ u(z)

a+b

du√
(u − a − b)(u − 2

√
ab)(u + 1 + ab)

.

(B13)

These integrals are reduced to standard form of elliptic
integrals by substitutions

u = a + b − (a + b ± 2
√

ab) sin2 ϕ. (B14)

As a result we obtain

I2 = − ab√
(1 + a)(1 + b)

{F (ϕa,k1) + F (ϕb,k2)} , (B15)

where

ϕa =

⎧⎪⎨⎪⎩
π − arcsin

√
(1+az)(1+bz)
z(

√
a−√

b)2 , − 1
b

� z � − 1√
ab

,

arcsin
√

(1+az)(1+bz)
z(

√
a−√

b)2 , − 1√
ab

� z � − 1
a

;

(B16)
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and

ϕb = arcsin

√
(1 + az)(1 + bz)

z(
√

a + √
b)2

, − 1

b
� z � −1

a
. (B17)

Similar calculation yields

I ′
2 =

√
ab

(1 + a)(1 + b)
{F (ϕa,k1) − F (ϕb,k2)} . (B18)
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