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Three-dimensional dimeron as a stable topological object
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Searching for novel topological objects is always an intriguing task for scientists in various fields. We study
a three-dimensional (3D) topological structure called a 3D dimeron in trapped two-component Bose-Einstein
condensates. The 3D dimeron differs from the conventional 3D skyrmion for the condensates hosting two
interlocked vortex rings. We demonstrate that the vortex rings are connected by a singular string and the
complexity constitutes a vortex molecule. The stability of the 3D dimeron is examined in two different models
using the imaginary time evolution method. We find that the stable 3D dimeron can be naturally generated from
a vortex-free Gaussian wave packet incorporating a synthetic non-Abelian gauge potential into the condensates.
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I. INTRODUCTION

Topological objects are often interesting topics in a variety
of fields ranging from the condensed matter physics [1,2] and
liquid crystals to particle physics and the modern universe
[3,4]. Among them, Bose-Einstein condensation (BEC) of
dilute atomic gases provides an ideal pilot to investigate
the rich topological excitations [5]. Most of the important
parameters such as dimensions, trapping potentials, and
interactions between the atoms can be precisely tuned for
the condensates in the experiments. There have been many
experimental techniques that allow one to create kinds of
exotic topological objects [5,6]. Another advantage of the
alkali-metal atomic BECs is that they can be well described
by the order parameters within the mean-field theory [7].
By using the normalized spinor ξ (r) with ξ †ξ = 1, the
order parameter (OP) is represented as ψ(r) = √

n(r)ξ (r),
where n(r) is the density of the condensate. A rich variety
of the OP manifolds admit various kinds of topological
objects.

Three-dimensional (3D) skyrmions and knots which are
topological solitons classified by the third homotopy group
have been a fascinating subject for decades [7–9]. The 3D
skyrmions, which are identified by counting the number
covering the 3D sphere surface SU(2) � S3, have been studied
widely [10–17]. Knots are identified by mapping from a
three-dimensional sphere S3 to S2 and are classified by the
homotopy classes with π3(S2) � Z [18–23]. Knots differ from
other topological excitations such as vortices, monopoles, and
skyrmions in that knots are classified by a linking number
while others are classified by winding numbers.

Although the conventional 3D skyrmions in two-
component BECs have been widely studied since their pro-
posal, all of the wave functions have the same form along
with the same asymptotic boundary condition [11,12]. In
this paper, we investigate a configuration of 3D topological
structure which we call the 3D dimeron, a terminology
analogous with the 2D meron pair (sometimes named the
2D bimeron) in which two vortex cores are connected by a
domain wall [24,25]. Mathematically, it is topologically not
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possible to construct a single meron or half-skyrmion in the
three-dimensional physical space. Under the requirement of
compactness that all spin vectors should point to one direction
at spatial infinity, we design in the wave function of each
component a quantized ring-shape vortex that is interlocked
[Fig. 1(a)]. The knotted topological object is characterized by a
winding number with unit topological invariant. Furthermore,
we find that the cores of interlocked vortex ring are connected
by a singular string of the relative phase, similar to the string
of the gauge potential in the Dirac’s monopole. It constitutes
a 3D vortex molecule.

The purpose of this paper is to systematically study the 3D
dimeron in the trapped two-component BECs. The particles
can convert into each other between the two components and
the total particle number is conserved. The normalization of
the wave function can be taken as

∫
dr(|ψ1|2 + |ψ2|2) = 1.

We numerically examine the stability of the 3D dimeron in
two different models by evolving the coupled Gross-Pitaevskii
equations (GPEs) using the imaginary time evolution method.
For the first model with a coherent Rabi coupling between
the two components, we find that the 3D dimeron can
survive for more than 400 ms in the usual alkali-metal atomic
condensates, which is long enough for the lifetime of BECs.
In order to seek a truly stable topological object, in the second
model we incorporate a 3D non-Abelian gauge potential
into the condensates in which the 3D dimeron is naturally
created.

The paper is organized as follows. In Sec. II we establish
the notation of the 3D dimeron and analyze the topological
structure and spin textures of the 3D dimeron in detail. In
Sec. III we numerically study the stability of the 3D dimeron in
a model where two-component Bose-Einstein condensates are
coherently coupled. In Sec. IV we create a stable 3D dimeron
from a vortex-free Gaussian wave packet via incorporating a
synthetic non-Abelian gauge potential into the condensates. A
brief summary is included in Sec. V.

II. 3D DIMERON TEXTURE

In the two-component BECs, the conventional 3D skyrmion
is composed of a ring component and a line component with
boundary values ξ † = (1,0) for r → ∞ [12,13]. It is usually
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FIG. 1. (Color online) (a) Isosurface of density of ψ1 (red [gray])
and ψ2 (blue [dark gray]) from the ansatz wave function (1) with a
Thomas-Fermi density profile. Each component hosts a ring-shaped
interlocked vortex. The 2D density profiles of ψ1 are (b) the x-y plane
and (c) the x-z plane.

expressed as [11](
ψ1(r)
ψ2(r)

)
=

√
n(r)Û †(r)

(
1
0

)
, (1)

where Û (r) = exp [iλ(r)σ̂ · r̂] with σ̂ being the Pauli matrices
and r̂ being the unit vector. Û (r) defines a map from the
physical region R3 to the OP space S3. The map falls into the
homotopy class, which is characterized by an integer-valued
winding number,

W3D = εαβγ

24π2

∫
drTr[Û (∂αÛ †)Û (∂βÛ †)Û (∂γ Û †)]. (2)

Before discussion of the 3D dimeron, we briefly review the
2D meron pair in a two-component BEC [24,25]. For atoms
with two hyperfine states such as 87Rb, the two condensates can
be coherently coupled through a Rabi field. The 2D meron pair,
which differs from the 2D skyrmion, is stabilized by the Rabi
coupling [25]. The cores of the two vortices are connected by
a domain wall of the relative phase to form a vortex molecule.
Essentially, the coherent Rabi coupling term plays the role of a
transverse magnetic field that aligns the spin along the x axis,
leading to ξ † → (1,1) at distance far from the core region.

In order to construct the 3D dimeron, we consider the
following form of OP:(

ψ1(r)
ψ2(r)

)
=

√
n(r)V̂ †(r)

(
1/

√
2

1/
√

2

)
, (3)

where V̂ (r) = exp [iλ(r)σ̂ · ν̂(θ,φ)] with (r,θ,φ) being the
spherical coordinates. It is illustrative to study the topo-
logical structure with the spherically symmetric ansatz by
assuming λ(0) = nπ and λ(∞) = 0. We take ν̂(θ,φ) =
(cos θ, sin θ sin mφ, − sin θ cos mφ) which determines a
unique mapping: S2 → S2. It should be noted that the unit
vector ν̂ is not identical to the unit oriental vector r̂ in the
3D physical space. We demonstrate that the wave function (1)
represents a spin configuration of the 3D dimeron topology.
It is straightforward to prove that the winding number is
W3D = mn. In the present work, we focus on the simple case
of m = n = 1.

Figure 1 show the density distributions of the ansatz wave
function (1) with a global Thomas-Fermi density profile.
In contrast to the picture of a ring component and a line
component in the conventional 3D skyrmion, each component
hosts a ring-shaped vortex that interlocks [the inner part
of Fig. 1(a)]. Figures 1(b) and 1(c) are the 2D density

FIG. 2. (Color online) Spin texture of the 3D dimeron at different
radii: (a) r = 3 and (b) r = 10. The color of the arrows indicate
variation of the global U (1) phase. At large enough distance from the
center, all the arrows uniformly point in the x direction.

distributions of component ψ1 in the x-y plane and the x-z
plane, respectively. The density peaks of one component
locates at the vortex core of the other component. This results
in a structure in which the total density has no zeros in the
space.

The pseudospin representation of the order parameter with
internal degrees of freedom is useful to obtain a physical
interpretation by mapping the system to a magnetic system.
In our case, an insight into the 3D dimeron can be gained
as the two-component BECs with the total normalization are
described as spin-1/2 BEC [24,25]. Figure 2 displays the spin
texture of the 3D dimeron, where the pseudospin is defined by
S(r) = ξ †(r)σ̂ ξ (r) [1,26,27]. The color of the arrows indicate
the variation of the global U (1) phase. The U (1) phase is taken
as the fourth component of the unit 4-vector since the 3-vector
S is not enough to describe the S3 manifold. The pseudospin
vector S(r) are twisted in the central region and gradually
point to the (1,0,0) direction at larger distance from the center.
The global phase �(r) becomes uniform, which leads to a
vanishing relative phase between the two condensates. As
shown in Fig. 2(b) Sx → 1 while � → 0 as r → ∞, which
fulfills the compactness of the OP manifold, ξ † = (1,1).

To get a better view of the 3D spin texture, we illustrate the
2D spin texture in the z = 0 plane [Fig. 3(a)] and the y = 0
plane [Fig. 3(b)]. Here the color of the arrows specify the
values of Sz. In the y = 0 plane, all arrows point to (1,0,0) at
large radius whereas there is a pair of vortex cores in either
the left or the right half-plane which are highlighted by Sz = 1
(red [gray]) and Sz = −1 (blue [dark gray]). As addressed
in Refs. [24,25], the pair of vortex cores are connected by a
domain wall. Consequently, this cross section reveals a 2D

FIG. 3. (Color online) Texture of S(r) in (a) the z = 0 plane and
(b) the y = 0 plane. The color of the arrows specifies the magnitude
of Sz.
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FIG. 4. (Color online) Isosurface of the relative phase between
the two components: (a) ϑ = 0, (b) ϑ = π/2, (c) ϑ = 4π/3, and (d)
ϑ = −3π/2 and ϑ = 3π/2 (green [gray]), respectively. The red and
blue loops (gray and dark gray) are the cores of the vortex ring in
each component. The purple (dark gray) line is a common segment
of all isosurfaces, which implies it is not well defined and constitutes
a singular string.

meron pair with a topological charge W2D = 1
4π

∫
S · (∂ρS ×

∂zS)dρdz = 1. Generally, there is a 2D meron pair in all of
the vertical half-planes. Based on this analogy, we name the
3D texture in Fig. 2 with the terminology of 3D dimeron. We
mention that in the conventional 3D skyrmion there is a 2D
skyrmion in each vertical half-plane [13].

We examine the distribution of the relative phase between
the two components ϑ(r) = θ1(r) − θ2(r). Figures 4(a)–4(c)
display the isosurfaces of the relative phase for (a) ϑ = 0, (b)
ϑ = π/2, (c) ϑ = 4π/3, and (d) ϑ = −3π/2 and ϑ = 3π/2
(green [gray]), respectively. It is remarkable that there is a
common segment (the purple [dark gray] line) of all the
isosurfaces of the relative phase. This segment connects the
cores of the two vortex rings. It is ill defined since on
the segment the value of the relative phase is indefinite. The
singular string is just like that in the Dirac’s monopole where
a singular string presents in the gauge potential. This feature
essentially distinguishes the 3D dimeron from the conventional
3D skyrmion. It demonstrates that the twisted complexity is
not simply two interlocked vortex rings but constitutes a 3D
vortex molecule.

It is also interesting to point out that the 3D dimeron shows
a knotted spin texture which is topological nontrivial texture
with a Hopf charge π3(S2) � Z, where S2 is a two-dimensional
sphere whose point specifies the direction of the pseudospin
S [2]. As shown in Fig. 5, the torus is the preimage of
Sx = 0 in the real space. We attach on the surface with
color to indicate the value of ϕ(r) = arctan(Sy/Sz) (the vector
orientation on this surface), which exactly exhibits the chirality
of the knot. The two loops on the torus are the preimages
of S = (0,1,0) (yellow [light gray]) and S = (0,0,1) (red
[gray]), respectively, while the loop in the inner of the torus

FIG. 5. (Color online) The knotted topology of the 3D dimeron:
The torus is the preimage isosurface of Sx = 0. The variations of
color on the torus specify the angle between Sz and Sy which reflect
chirality of the knot. The yellow (light gray), red (gray), and green
(dark gray) loops are the preimages of S = (0,1,0) and S = (0,0,1),
and S = (−1,0,0), respectively. They are pairwise interlocked.

is the preimage of S = (−1,0,0) (green [dark gray]). Any
two loops interlock once and only once, as illustrated in
the right part of the figure. It implies a topological mapping
that falls into the nontrivial homotopy class π3(S2) ∼= Z and
is characterized by a topological invariant called the Hopf
charge: QH = 1

4π2

∫
εijkFijAk , where Fij = ∂iAj − ∂jAi =

S · (∂iS × ∂j S). Two loops corresponding to the preimages
of any two distinct points on the target S2 linked one
times indicate that QH = 1. This can be directly verified by
computing the quantity with the ansatz wave function (1).

In the literature on skyrmions and knots, stability and
existence of a solution are usually taken to mean the energetic
stability [28]. Just like the conventional 3D skyrmion, the 3D
dimeron may be energetically unstable against shrinking to
zero size [11]. In the next sections, we examine the energetic
stability of the 3D dimeron in two different models.

III. STABILITY ANALYSIS

As the 2D meron pair can be stabilized by the Rabi coupling,
we guess it still works for the 3D dimeron. Suppose the
condensates are trapped in a 3D well and are coherently
coupled by a Rabi field. The Rabi field plays the role of an
external magnetic field along the x direction, which stabilizes
the boundary constraint on the system. The dynamics is
governed by the coupled GPEs,

i�
∂ψi

∂t
=

⎛
⎝− �

2

2m
∇2 + V (r) +

∑
j=1,2

Uij |ψj |2
⎞
⎠ ψi − �ωRψj ,

(4)
where ψi (i = 1,2) denotes the wave functions of the two
components and ωR is the Rabi frequency. The external
potential takes an axisymmetric harmonic oscillator V (r) =
1
2mω2(x2 + y2) + 1

2mω2
zz

2. The constants Uij = 4π�
2aij /m

represent the intraspecies (i = j ) and interspecies (i �= j )
interactions. It is convenient to simplify the equations in the
unit scale as [15]

i
∂ψi

∂t
= −1

2
∇2ψi + Ṽ (r) +

∑
j=1,2

γij |ψj |2ψi − ωRψj . (5)
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To examine the energetic stability of the 3D dimeron, we
numerically evolve the coupled GPEs (5) in the imaginary
time with the constraint of the constant total number. The
evolution leads to a final state which minimizes the energy
functional. We adopt the split-step method according to the
decomposition e−	tĤ = e− 	t

2 T̂ e−	t V̂inte− 	t

2 T̂ [29–31]. Here T̂

is the kinetic part and V̂int is the remaining part of the
Hamiltonian. For the present case, e−	t V̂int can be further
factorized into e− 	t

2 V̂ ′
e−	t V̂Rabie− 	t

2 V̂ ′
, where V̂ ′ = V̂int − V̂Rabi.

We use γ11 = γ22 = γ12 = 10 000, ωR = 0.7, and the initial
3D dimeron state (1) with a Thomas-Fermi density profile for
a spatial grids of 151 × 151 × 151. We trace the topological
invariant during the imaginary-time evolution to check the
stability of the 3D dimeron. The two vortex rings move and
their radii shrink until they touch at τ = it � 420 ms for
a realistic trap ω = ωz = 2π × 7 Hz when the two vortex
rings are unlocked and the 3D dimeron is destroyed. The
shrinking instability was previously reported in Ref. [32].
We also find that the Rabi coupling can help to slacken the
decay of the 3D dimeron. Although unstable, it does not
imply that the 3D dimeron cannot be experimentally observed
since the typical scale of survival time is long enough for the
realistic condensates. As a comparison, a 2D skyrmion in an
antiferromagnetic spinor BEC was observed in experiments,
although it is energetically unstable [33].

IV. STABLE DIMERON CREATED IN A NON-ABELIAN
GAUGE FIELD

In order to seek a really stable 3D dimeron, we attempt an
alternative way. We take account of a synthetic non-Abelian
gauge potential, which recently has been a popular topic
in ultracold atoms. The essence of the 3D dimeron is the
interlocked vortex rings in each component. Inspired by the
form of the SU(2) transformation V̂ (r) in Eq. (1), we configure
the following non-Abelian gauge potential,

A = κ1σxez + κ2σyey − κ3σzex. (6)

The energy functional of the condensates incorporating the
above non-Abelian gauge potential reads

E = 1

2

∫
[Dψ(r)]† · [Dψ(r)]dr

+
∫ [

1

2
r2n(r) + γ n2(r)

]
dr, (7)

where the covariant derivative is defined by D = (−i � +A).
The energy functional (7) has the symmetry for the combined
rotation of the real space and the spin space. In analogy to the
argument of the helical OP modulation [17,34], a 3D dimeron
state may be created in the present model with appropriate
coupling strength.

Our numerical simulations confirm that a 3D dimeron is
indeed created. Figure 6 displays the resultant density profile of
the two-component BECs after the imaginary-time evolution

FIG. 6. (Color online) The spatial profile of a stable 3D dimeron
generated by the imaginary-time evolution of the GPEs with the
non-Abeian gauge potential (6). (a) Isosurface of the density for ψ1

(red [gray]) and ψ2 (blue [dark gray]), where two interlocked vortex
rings are evident. The 2D density profiles of ψ1 in (b) the x-y plane
and (c) the x-z plane are similar to those in Fig. 1.

of the GPEs generated from the energy functional (7). It
evidently reveals the typical topological structure of two
interlocked vortex rings just as in Fig. 1 and demonstrates the
creation of a stable 3D dimeron. In the simulations, the initial
state is taken as a vortex-free Gaussian wave packet with a
uniform spinor ξ † = (1,1). We have chosen the parameters
γ = 100 and κ1 = κ2 = κ3 = 2.2 and fixed the total particle
number of the two components.

Ruostekoski proposed a method of generating a 3D
skyrmion in a trapped BEC using electromagnetic fields,
mainly including creation of a singly quantized vortex and
a vortex ring [11]. Several experimental schemes of creating
vortex rings in the atomic BECs, such as interference of two-
component BECs and rotating quadrupole magnetic fields,
have been successfully tested [35–40]. In order to create a
3D dimeron, we need to generate two vortex rings in the two-
component BECs. An alternative way to create the 3D dimeron
is to design a synthetic non-Abelian gauge potential of the
form (6) by dressed states via proper Ramam transitions in the
ultracold atoms. The relevant setups are under investigation.

V. SUMMARY

In summary, we have presented a configuration of 3D
topological structure named a 3D dimeron. It contains a string
and constitutes a vortex molecule. We demonstrated a way of
creating a stable 3D dimeron by incorporating a non-Abelian
gauge potential into the two-component condensates. The
method can be extended to construct similar topological
objects in the spinor BECs with large spin degree of freedom
which can produce more interlocked vortex rings. Finally,
we note that similar configurations were investigated in
superconductivity [32,41].
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