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Fluctuation-driven topological transition of binary condensates in optical lattices
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We show the emergence of a third Goldstone mode in binary condensates at phase separation in quasi-one-
dimensional (quasi-1D) optical lattices. We develop the coupled discrete nonlinear Schrödinger equations using
Hartree-Fock-Bogoliubov theory with the Popov approximation in the Bose-Hubbard model to investigate the
mode evolution at zero temperature, in particular, as the system is driven from the miscible to the immiscible
phase. We demonstrate that the position exchange of the species in the 87Rb-85Rb system is accompanied by
a discontinuity in the excitation spectrum. Our results show that, in quasi-1D optical lattices, the presence
of the fluctuations dramatically changes the geometry of the ground-state density profile of two-component
Bose-Einstein condensates.
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I. INTRODUCTION

Ultracold dilute atomic Bose gases in low dimensions have
been the subject of growing interest over the last few decades.
These are an ideal platform to probe many-body phenomena
where quantum fluctuations play a crucial role [1,2]. In
particular, optical lattices serve as an excellent and versatile
tool for studying the physics of strongly correlated systems
and other phenomena in condensed matter physics [3,4].
A variety of experimental techniques have been used to
load and manipulate Bose-Einstein condensates (BECs) in
optical lattices [5–8]. These have helped to explore quantum
phase transitions [9], in particular the superfluid (SF)–Mott
insulator (MI) transition [10–13]. The characteristics of the SF
phase, such as coherence [14,15], collective modes [16], and
transport [17,18] have also been studied. The center-of-mass
dipole oscillation of a BEC in a cigar-shaped lattice potential
has been experimentally studied in detail [19]. In such systems,
a decrease in the Kohn mode frequency has been reported in
Ref. [20] which has been justified in Ref. [21] as an increase of
the effective mass due to the lattice potential. On the theoretical
front, the low-lying collective excitations of a trapped Bose gas
in a periodic lattice potential have been studied in Refs. [22–25]
using the Bose-Hubbard (BH) model [26].

The two-component BECs (TBECs), on the other hand,
exhibit a unique property that they can be phase separated [27].
There have been numerous experimental and theoretical
investigations of binary mixtures of BECs over the last few
years. Experimentally, it is possible to vary the interactions
through the Feshbach resonance [28,29], and drive the binary
mixture from the miscible to the immiscible phase or vice
versa. Among the various lines of investigation, the theoretical
studies of the stationary states [30], dynamical instabili-
ties [31,32], and the collective excitations [33,34] of TBECs
are noteworthy. Furthermore, in optical lattices TBECs have
also been observed in recent experiments [35,36]. Theoretical
studies of TBECs in optical lattices [37–40] and, in particular,
phase separation [41–43] and dynamical instabilities [44]
have also been carried out. Despite all these theoretical and
experimental advances, the study of collective excitations of

TBECs in optical lattices is yet to be explored. This is the
research gap addressed in the present work.

In this paper, we report the development of coupled discrete
nonlinear Schrödinger equations (DNLSEs) of TBECs in
optical lattices under the Hartree-Fock-Bogoliubov (HFB)–
Popov approximation [45]. We use this theory to study the
ground-state density profiles and the quasiparticle spectrum
of 87Rb-85Rb and 133Cs-87Rb TBECs at zero temperature. We
focus, in particular, on the evolution of the quasiparticle as the
TBEC is driven from the miscible to the immiscible phase. This
is possible by tuning either the intra- or interspecies interaction
strengths. The two systems considered correspond to these
possibilities. The fluctuation- and interaction-induced effects
on the collective excitation spectra and topological change in
the density profiles are the major findings of our present study.
It deserves to be mentioned here that for systems without a
lattice potential, at equilibrium, recent works have shown the
existence of additional Goldstone modes in TBECs at phase
separation [46] and complex eigenenergies due to quantum
fluctuations [47].

The paper is organized as follows. Section II describes
the tight-binding approximation for a trapped BEC in a
one-dimensional (1D) lattice potential. In Sec. III we present
the HFB-Popov theory to determine the quasiparticle energies
and mode functions of single-component BECs and TBECs at
finite temperature. The results of our studies are presented in
Sec. IV. Finally, we highlight the key results of our work in
Sec. V.

II. QUASI-1D OPTICAL LATTICE

We consider a Bose-Einstein condensate, held within
a highly anisotropic cigar-shaped harmonic potential with
trapping frequencies ωx = ωy = ω⊥ � ωz. In this case we
can integrate out the condensate wave function along
the x and y directions and reduce it to a quasi-1D
condensate. In the mean-field approximation, the grand-
canonical Hamiltonian, in the second-quantized form, of
the bosonic atoms in an external potential plus lattice is
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given by

Ĥ =
∫

dz�̂†(z)

(
− �

2

2m

∂2

∂z2
+ Vlatt(z)

)
�̂(z)

+
∫

dz(Vext − μ)�̂†(z)�̂(z)

+ 1

2

∫
dzdz′�̂†(z)�̂†(z′)U (z − z′)�̂(z)�̂(z′), (1)

where �̂(z) and �̂†(z) are the bosonic field operators which
obey the Bose commutation relations, m is the atomic mass
of the species, Vlatt is the periodic lattice potential, Vext is the
external trapping potential, and μ is the chemical potential.
Here, the interaction potential is given by U (z − z′) = Uδ(z −
z′), where U = 2

√
λκ�

2Nas/m, with N as the total number
of atoms, and λ = ωx/ωz and κ = ωy/ωz are the anisotropy
parameters along the x and y directions, respectively. Here as

is the s-wave scattering length, which is repulsive (as > 0) in
the present work. The net external potential is

V = Vext + Vlatt = 1
2mω2

zz
2 + V0 sin2(kz), (2)

where V0 = sER is the optical lattice depth with s and ER

as the lattice depth scaling parameter and the recoil energy
of the laser light photon, respectively. The wave number of
the counterpropagating laser beams, which are used to create
a periodic lattice potential, is k = π/a with a = λL/2 the
lattice spacing and λL the wavelength of the laser light. The
energy barrier between adjacent lattice sites is expressed in
units of the recoil energy ER = �

2k2/2m. In the tight-binding
approximation, valid when μ � V0, the 1D field operator can
be written as [48]

�̂(z) =
∑

j

âjφj (z), (3)

where âj is the annihilation operator corresponding to the j th
site, and the spatial part φj (z) = φ(z − ja) is the orthonormal
Gaussian orbital of the lowest vibrational band centered at the
j th lattice site, with ∫ dzφ∗

j±1(z)φj (z) = 0 and ∫ dz|φj (z)|2 =
1. By using the above ansatz in Ĥ and considering only
the nearest-neighbor tunneling we obtain the Bose-Hubbard
Hamiltonian.

III. HFB-POPOV APPROXIMATION

A. Single-component BEC in optical lattices

The BH Hamiltonian describes the dynamics of 1D optical
lattices when only the lowest band or the lowest vibrational
level of the site is occupied. In this case the tight-binding
approximation [49] is valid, and the BH Hamiltonian of the
system is

Ĥ = −J
∑
〈jj ′〉

â
†
j âj ′ +

∑
j

[
(εj − μ)â†

j âj + 1

2
Uâ

†
j â

†
j âj âj

]
,

(4)
where the index j runs over the lattice sites, 〈jj ′〉 represents
the nearest-neighbor sum, and âj (â†

j ) is the bosonic
annihilation (creation) operator of a bosonic atom at the j th
lattice site. Here J = −∫ dzφ∗

j+1(z)[−(�2/2m)(∂2/∂z2) +
V0 sin2(2πz/λL)]φj (z) is the tunneling matrix element

between adjacent sites, εj = ∫ dzVext(z)|φj (z)|2 is the energy
offset of the j th lattice site, and U =
(2

√
λκ�

2Nas/m) ∫ dz|φj (z)|4 is the on-site interaction
strength of atoms occupying the j th lattice site. The
offset energy can also be expressed as εj = j 2�; here,
� = mω2

za
2/2 is the energy cost of moving a boson from the

central site to its nearest-neighbor site. To take into account
the quantum fluctuations and thermal effects in the description
of the system, we decompose the Bose field operator of each
lattice site j in terms of a complex mean-field part cj and a
fluctuation operator ϕ̂j , as âj = (cj + ϕ̂j )e−iμt/�. Using this
field operator in the BH Hamiltonian, we get

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4, (5)

with

H0 = −J
∑
〈jj ′〉

c∗
j cj ′ +

∑
j

[
(εj − μ)|cj |2 + 1

2
U |cj |4

]
, (6a)

Ĥ1 = −J
∑
〈jj ′〉

ϕ̂j c
∗
j ′ +

∑
j

(εj − μ + U |cj |2)c∗
j ϕ̂j + H.c.,

(6b)

Ĥ2 = −J
∑
〈jj ′〉

ϕ̂
†
j ϕ̂j ′ +

∑
j

(εj − μ)ϕ̂†
j ϕ̂j

+ U

2

∑
j

(
ϕ̂
†2
j c2

j + ϕ̂2
j c

∗2
j + 4|cj |2ϕ̂†

j ϕ̂j

)
, (6c)

Ĥ3 = U
∑

j

ϕ̂
†
j ϕ̂

†
j ϕ̂j cj + H.c., (6d)

Ĥ4 = U

2

∑
j

ϕ̂
†
j ϕ̂

†
j ϕ̂j ϕ̂j , (6e)

where the subscript of the various terms indicates the order
of fluctuation operators and H.c. stands for the Hermitian
conjugate. To study the system without quantum fluctuation
at T = 0 K, we consider terms up to second order in ϕ̂j and
neglect the higher-order terms (third and fourth order). The
lowest-order term of the Hamiltonian describes the condensate
part of the system. The minimization of H0 with respect to
the variation in the complex amplitude c∗

j gives the time-
independent DNLSE, which can be written as

μcj = −J (cj−1 + cj+1) + (
εj + Unc

j

)
cj , (7)

with the condensate density nc
j = |cj |2. The quadratic Hamil-

tonian Ĥ2 is the leading-order term which describes the
noncondensate part, since the variation in Ĥ1 vanishes because
cj is a stationary solution of the DNLSE. The minimization
of Ĥ2 yields the governing equation for the noncondensate
given by

μϕ̂j = −J (ϕ̂j−1 + ϕ̂j+1) + (
εj + 2Unc

j

)
ϕ̂j + Uc2

j ϕ̂
†
j . (8)

The quadratic Hamiltonian can be diagonalized using the
Bogoliubov transformation

ϕ̂j =
∑

l

[
ul

j α̂le
−iωl t − v∗l

j α̂
†
l e

iωl t
]
, (9a)
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ϕ̂
†
j =

∑
l

[
u∗l

j α̂
†
l e

iωl t − vl
j α̂le

−iωl t
]
, (9b)

where ul
j and vl

j are the quasiparticle amplitudes, ωl = El/�

is the lth quasiparticle mode frequency with El as the mode
energy, and α̂l (α̂†

l ) are the quasiparticle annihilation (creation)
operators, which satisfy the Bose commutation relations. The
quasiparticle amplitudes satisfy the following normalization
conditions: ∑

j

(
u∗l

j ul′
j − v∗l

j vl′
j

) = δll′ , (10a)

∑
j

(
ul

j v
l′
j − v∗l

j u∗l′
j

) = 0. (10b)

By using the definition of ϕ̂j from Eq. (9) in Ĥ2 [Eq. 6(c)]
and the above conditions, we get the following Bogoliubov–de
Gennes (BdG) equations

Elu
l
j = −J

(
ul

j−1 + ul
j+1

) + [
2Unc

j + (εj − μ)
]
ul

j − Uc2
j v

l
j ,

(11a)

Elv
l
j = J

(
vl

j−1 + vl
j+1

) − [
2Unc

j + (εj − μ)
]
vl

j + Uc∗2
j ul

j .

(11b)

This set of coupled equations describes the quasiparticles
of the condensate in the optical lattice without considering the
quantum fluctuations.

To investigate the effect of fluctuation and finite temperature
we include the higher-order terms (Ĥ3 and Ĥ4) of the
fluctuation operator in the Hamiltonian. We treat these terms
in the self-consistent mean-field approximation [45] such
that ϕ̂

†
j ϕ̂j ϕ̂j ≈ 2ñj ϕ̂j + m̃j ϕ̂

†
j and ϕ̂

†
j ϕ̂

†
j ϕ̂j ϕ̂j ≈ 4ñj ϕ̂

†
j ϕ̂j +

m̃j ϕ̂
†
j ϕ̂

†
j + m̃∗

j ϕ̂j ϕ̂j − (2ñ2
j + |m̃j |2), where ñj = 〈ϕ̂†

j ϕ̂j 〉 and
m̃j = 〈ϕ̂j ϕ̂j 〉 are the excited population (noncondensate)
density and anomalous density at the j th site, respectively. In
the HFB-Popov approximation, where the anomalous density
is neglected, the corrections from higher-order terms yield the
modified DNLSE

μ′cj = −J (cj−1 + cj+1) + [
εj + U

(
nc

j + 2ñj

)]
cj , (12)

where μ′ is the modified chemical potential. The total density
is n = ∑

j (nc
j + ñj ). The diagonalization of the modified

Hamiltonian leads to the following HFB-Popov equations:

Elu
l
j = −J

(
ul

j−1 + ul
j+1

) + [
2U

(
nc

j + ñj

) + (εj − μ′)
]
ul

j

−Uc2
j v

l
j , (13a)

Elv
l
j = J

(
vl

j−1 + vl
j+1

) − [
2U

(
nc

j + ñj

) + (εj − μ′)
]
vl

j

+Uc∗2
j ul

j , (13b)

with the noncondensate density at the j th lattice site given
by

ñj =
∑

l

[(∣∣ul
j

∣∣2 + ∣∣vl
j

∣∣2)
N0(El) + ∣∣vl

j

∣∣2]
, (14)

where N0(El) = 〈α̂†
l α̂l〉 = (eβEl − 1)−1 is the Bose-Einstein

distribution function of the quasiparticle state with real and
positive mode energy El . The coupled equations (12) and (13)
are solved iteratively until the solutions converge to the desired
accuracy. It is important to note that, at T = 0 K, N0(El) in
the above equation vanishes. The noncondensate density, then,
has a contribution from only the quantum fluctuations, which
is given by

ñj =
∑

l

∣∣vl
j

∣∣2
. (15)

Therefore, we solve the equations self-consistently in the
presence of the quantum fluctuations.

B. Two-component BEC in optical lattices

For a two-species condensate, the 1D second-quantized
grand-canonical Hamiltonian is given by

Ĥ =
2∑

i=1

∫
dz�̂

†
i (z)

[
− �

2

2mi

∂2

∂z2
+ V i(z) − μi + Uii

2
�̂

†
i (z)

× �̂i(z)

]
�̂i(z) + U12

∫
dz�̂

†
1(z)�̂†

2(z)�̂1(z)�̂2(z), (16)

where i = 1,2 denotes the species index, the �̂i’s are the
annihilation field operators for the two different species,
μi is the chemical potential of the ith species, Uii are the
intraspecies interaction parameters, and U12 is the interspecies
interaction parameter with the mi’s as the atomic masses of the
species. Here, we consider repulsive interactions Uii,U12 > 0.
The external potential V i is the sum of the harmonic and
periodic optical lattice potentials. It is given by

V i = V i
ext + V i

latt

= 1

2
miω

2
zi
z2
i + V0 sin2(2πzi/λL). (17)

In the present work, we consider the same external potential
for both the species. The depth of the lattice potential is also the
same for both species and is V0 = sER with ER = �

2k2/2m1.
If the lattice is deep enough, the tight-binding approximation
is valid, and the bosons can be assumed to occupy the lowest
vibrational band only. Under this approximation, the Bose field
operator for the two species can be expanded as

�̂i(z) =
∑

j

âijφij (z), (18)

where the âij ’s are the annihilation operators and the φij (z)’s
are the orthonormal Gaussian bases of the two species. It is
worth mentioning here that the width of the basis function
depends on the mass of the species and the natural frequency
of the lattice potential. In the present case, the frequency plays a
dominant role over the mass of the constituent species. Hence
the widths of the Gaussian basis functions are taken to be
identical for both species, even when m1 and m2 are widely
different. The BH Hamiltonian for two species can be obtained
by using the above ansatz in the Hamiltonian Eq. (16). We then
obtain the many-body Hamiltonian governing the system of a
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binary BEC in a quasi-1D optical lattice as

Ĥ =
2∑

i=1

⎡
⎣−

∑
〈jj ′〉

Jiâ
†
ij âij ′ +

∑
j

(
ε

(i)
j − μi

)
â
†
ij âij

⎤
⎦

+ 1

2

2∑
i=1

Uii

∑
j

â
†
ij â

†
ij âij âij + U12

∑
j

â
†
1j â1j â

†
2j â2j .

(19)

Here Ji are the tunneling matrix elements, and ε
(i)
j is the offset

energy of species i at the j th lattice site. In the mean-field
approximation, using the Bogoliubov approximation as in
a single-species condensate, we decompose the operators
of both species as â1j = (cj + ϕ̂1j )e−iμ1t/� and â2j = (dj +
ϕ̂2j )e−iμ2t/�. We use these definitions in the BH Hamiltonian
[Eq. (19)] and then decompose the Hamiltonian into different
terms according to the order of the noncondensate operator
they contain. The minimization of the lowest-order term gives
the stationary-state equations or time-independent coupled
DNLSEs, and these are given by

μ1cj = − J1(cj−1 + cj+1) + [
ε

(1)
j + U11n

c
1j + U12n

c
2j

]
cj ,

(20a)

μ2dj = − J2(dj−1 + dj+1) + [
ε

(2)
j + U22n

c
2j + U12n

c
1j

]
dj ,

(20b)

where nc
1j = |cj |2 and nc

2j = |dj |2 are the condensate densities
of the first and second species, respectively. The nonconden-
sate part of the TBEC is obtained by the minimization of the
quadratic Hamiltonian

μ1ϕ̂1j = −J1(ϕ̂1,j−1 + ϕ̂1,j+1) + [
ε

(1)
j + 2U11n

c
1j

]
ϕ̂1j

+U11c
2
j ϕ̂

†
1j + U12

(
nc

2j ϕ̂1j + d∗
j cj ϕ̂2j + dj cj ϕ̂

†
2j

)
,

(21a)

μ2ϕ̂2j = −J2(ϕ̂2,j−1 + ϕ̂2,j+1) + [
ε

(2)
j + 2U22n

c
2j

]
ϕ̂2j

+U22d
2
j ϕ̂

†
2j + U12

(
nc

1j ϕ̂2j + c∗
j dj ϕ̂1j + cjdj ϕ̂

†
1j

)
.

(21b)

The Bogoliubov transformation equations of the TBEC,
which couple the positive- and negative-energy mode excita-
tions, are

ϕ̂ij =
∑

l

[
ul

ij α̂le
−iωl t − v∗l

ij α̂
†
l e

iωl t
]
, (22a)

ϕ̂
†
ij =

∑
l

[
u∗l

ij α̂
†
l e

iωl t − vl
ij α̂le

−iωl t
]
, (22b)

where ul
ij and vl

ij are the quasiparticle amplitudes for
the first (i = 1) and second (i = 2) species. The above
transformation diagonalizes the quadratic Hamiltonian and
gives the Bogoliubov–de Gennes equations at T = 0 K for
the two-component system. The inclusion of the higher-
order terms of the perturbation or fluctuation in the
quadratic Hamiltonian gives the HFB-Popov equations for the

two-component BEC,

Elu
l
1,j = −J1

(
ul

1,j−1 + ul
1,j+1

) + U1u
l
1,j − U11c

2
j v

l
1,j

+U12cj

(
d∗

j ul
2,j − djv

l
2,j

)
, (23a)

Elv
l
1,j = J1

(
vl

1,j−1 + vl
1,j+1

) + U1v
l
1,j + U11c

∗2
j ul

1,j

−U12c
∗
j

(
djv

l
2,j − d∗

j ul
2,j

)
, (23b)

Elu
l
2,j = −J2

(
ul

2,j−1 + ul
2,j+1

) + U2u
l
2,j − U22d

2
j vl

2,j

+U12dj

(
c∗
j u

l
1,j − cjv

l
1,j

)
, (23c)

Elv
l
2,j = J2

(
vl

2,j−1 + vl
2,j+1

) + U2v
l
2,j + U22d

∗2
j ul

2,j

−U12d
∗
j

(
cjv

l
1,j − c∗

j u
l
1,j

)
, (23d)

where U1 = 2U11(nc
1j + ñ1j ) + U12(nc

2j + ñ2j ) + (ε(1)
j − μ1)

and U2 = 2U22(nc
2j + ñ2j ) + U12(nc

1j + ñ1j ) + (ε(2)
j − μ2)

with U i = −Ui . The density of the noncondensate atoms at
the j th lattice site is

ñij =
∑

l

[(∣∣ul
ij

∣∣2 + ∣∣vl
ij

∣∣2)
N0(El) + ∣∣vl

ij

∣∣2]
, (24)

with N0(El) as the Bose factor of the system with energy El

at temperature T . At T = 0 K the noncondensate part reduces
to the quantum fluctuations

ñij =
∑

l

∣∣vl
ij

∣∣2
. (25)

If we neglect quantum fluctuations (the noncondensate part),
the HFB-Popov equations (23) are the BdG equations for a
binary BEC.

IV. RESULTS AND DISCUSSION

A. Numerical details

We solve the scaled coupled DNLSEs using the fourth-
order Runge-Kutta method to find the equilibrium state of
harmonically trapped binary condensates in optical lattices.
We start the calculations for T = 0 K by ignoring the quantum
fluctuations at each lattice site. The initial complex amplitudes
of both species cj and dj are chosen as 1/

√
Nlatt, with Nlatt as

the total number of lattice sites. The advantage of this choice
is that the amplitudes are normalized. We then use imaginary-
time propagation of the DNLSEs (20) to find the stationary
ground-state wave function of the TBEC. In the tight-binding
limit, the condensate wave function can be defined as the
superposition of the basis functions as shown in Eq. (18).
The basis function is chosen as the ground state, which is a
Gaussian function, of the lowest-energy band [48]. The width
of the function is a crucial parameter as it affects the overlap of
the Gaussian orbitals at each lattice site. The correct estimation
of the width is required in order to obtain orthonormal basis
functions [50]. Furthermore, to study the excitation spectrum,
we cast Eqs. (23) as a matrix eigenvalue equation. The matrix is
4Nlatt × 4Nlatt, non-Hermitian, nonsymmetric, and may have
complex eigenvalues. To diagonalize the matrix and to find
the quasiparticle energies El and amplitudes ul

ij and vl
ij , we

use the routine ZGEEV from the LAPACK library [51]. In the
later part of the work, when we include the effect of the
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quantum fluctuations, we need to solve Eqs. (20) and (23)
self-consistently. For this we iterate the solution until we
reach the desired convergence in the number of condensate
and noncondensate atoms. In this process, sometimes we
encounter severe oscillations in the number of atoms. To damp
these oscillations and accelerate convergence we employ a
successive over- (under-) relaxation technique for updating
the condensate (noncondensate) atom densities [52]. The new
solutions after the iteration cycle (IC) are given by

cnew
j,IC = rovcj,IC + (1 − rov)cj,IC−1, (26a)

ñnew
j,IC = runñj,IC + (1 − run)ñj,IC−1, (26b)

where rov > 1 (run < 1) is the over- (under-) relaxation
parameter. After the condensate and noncondensate densities
converge, we compute low-lying mode energies and ampli-
tudes ul

ij and vl
ij . During computation, we ensure that the

eigenvalues of the HFB-Popov matrix are real as there are no
topological defects present in the system.

B. Mode evolution of the trapped TBEC at T = 0 K

Under the HFB-Popov approximation, the excitation spec-
trum of the TBEC in an optical lattice is gapless for the SF
phase, while it has a finite gap for the MI phase [10]. In the SF
phase, spontaneous symmetry breaking at condensation results
in two Goldstone modes, one each for the two species. The
number of Goldstone modes, however, depends on whether
the system is in the miscible or immiscible phase, and the
geometry of the density distributions. To explore different
possibilities, as mentioned earlier, we consider two different
TBEC systems. These are binary mixtures which can be driven
from the miscible to the immiscible phase through the variation
of the intra- or interspecies interaction using the Feshbach
resonance. In particular, we consider 87Rb-85Rb [28,53] and
133Cs-87Rb [54,55] binary condensates as examples of the two
cases, and study the mode evolution as the system approaches
the immiscible from the miscible regime.

1. Third Goldstone mode in the 87Rb-85Rb TBEC

To examine the mode evolution with the tuning of the
intraspecies interaction, we consider a quasi-1D TBEC con-
sisting of 87Rb and 85Rb [28,53]. In this system, we consider
87Rb and 85Rb as the first and second species, respectively.
The axial trapping frequency for both the species is ωz =
2π × 80 Hz with 12.33 as the anisotropy parameter along
the x and y directions. The laser wavelength used to create the
optical lattice potential is λL = 775 nm. The numbers of atoms
are N1 = N2 = 100, confined in 100 lattice sites superimposed
on a harmonic potential. We choose the depth of the lattice
potential V0 = 5ER and set the tunneling matrix elements
for the two species as J1 = 0.66ER and J2 = 0.71ER , the
intraspecies interaction U11 as 0.05ER , and the interspecies
interaction U12 as 0.1ER . This set of DNLSE parameters is
calculated by considering the width of the Gaussian beam as
0.3a. Since the scattering length of 85Rb is tunable with the
Feshbach resonance [28], we study the excitation spectrum
with variation in U22. The evolution of the Kohn mode
functions with the variation of U22 is shown in Fig. 1. For

-0.3

0
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0.25ER

(b)

0.20ER

(c)

0.15ER

-0.5

0
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u
1 ij
,
v

1 ij

(d)

0.10ER

-20 0 20

j

(e)

0.075ER

-20 0 20

(f)

0.062ER

u1j
v1j
u2j
v2j

FIG. 1. (Color online) The evolution of the quasiparticle ampli-
tudes corresponding to the 85Rb Kohn mode as the intraspecies
interaction of 85Rb (U22) is decreased from 0.25ER to 0.062ER .
(a),(b) When U22 � 0.18ER , the system is in the miscible phase
and the Kohn mode (l = 1) has contributions from both the species.
(c)–(e) When the system is on the verge of phase separation, then the
Kohn mode of 85Rb goes soft. (f) At phase separation U22 � 0.065ER

the Kohn mode transforms into a Goldstone mode.

0.18 � U22 � 0.25ER , the system is in the miscible domain,
and the Kohn mode is a linear combination of the 87Rb
and 85Rb Kohn modes. As we approach phase separation by
reducing the value of U22, we observe a decrease in the Kohn
mode amplitude of 87Rb component and the mode function
of 85Rb becomes soft at 0.062ER . The softening of the mode
is evident from the evolution of the mode energies as shown
in Fig. 2(a). The figure shows that the mode continues as
the third Goldstone mode for U22 � 0.062ER . The emergence
of the third Goldstone mode is associated with a change in
the geometry of the system; the density changes from the
overlapping to a sandwich profile as shown in Figs. 3(a)–3(c).
Thus, as discussed in our earlier work [46], the binary
condensate is separated into three distinct subcomponents.

2. Third Goldstone mode in the 133Cs-87Rb TBEC

For mode evolution with tuning of the interspecies interac-
tion, we consider the binary system of Cs-Rb [54,55]. Here,
we consider 133Cs and 87Rb as the first and second species,
respectively. To study the mode evolution as the system under-
goes the transition from the miscible to the immiscible phase,
the interspecies interaction U12 is varied, which is possible
using the magnetic Feshbach resonance [56]. The parameters
of the system considered are N1 = N2 = 100 with similar
trapping frequencies as in the case of the 87Rb-85Rb mixture.
The lattice parameters are chosen as J1 = 0.92ER, J2 =
1.95ER, U11 = 0.40ER , and U22 = 0.21ER . At U12 = 0, the
two condensates are uncoupled and have two Goldstone
modes, one corresponding to each of the two species. At low
values of U12, in the miscible regime, the condensate density
profiles of the two species overlap as shown in Fig. 3(d). As
we increase U12, the Kohn mode of 87Rb gradually goes soft
and at a critical value Uc

12 = 0.3ER it is transformed into the
third Goldstone mode. For Uc

12 < U12, the geometry of the
condensate density profile changes and acquires a sandwich
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FIG. 2. (Color online) The evolution of the low-lying modes
as a function of the intraspecies interaction of the 85Rb (U22) in
the 87Rb-85Rb TBEC held in quasi-1D optical lattices. Excitation
spectrum (a) at zero temperature and (b) in the presence of quantum
fluctuations. Here U22 is in units of the recoil energy ER .

structure in which the Cs condensate (higher mass) is at
the center and flanked by the Rb condensate (lower mass) at the
edges as shown in Fig. 3(f). This is also evident from the evolu-

0

4

8
(a)0.25ER (b)0.06ER (c)0.03ER

0

2

4

-30 0 30

n
c ij

(d)0.20ER

-30 0 30

j

(e)0.28ER

-30 0 30

(f)0.35ER

87Rb
85Rb

133Cs
87Rb

FIG. 3. (Color online) The geometry of the condensate density
profiles and its transition from the miscible to the immiscible regime.
(a)–(c) The transition from the miscible to the sandwich profile for
the 87Rb-85Rb TBEC with change in the intraspecies interaction U22

at T = 0 K. The position exchange (c) in the sandwich profile
occurs at U11 = U22 = 0.05ER . (d)–(f) show similar condensate
density profiles for the Cs-Rb TBEC with change in the interspecies
interaction U12 at T = 0 K. In this system the transition to the
sandwich geometry occurs at Uc

12 = 0.3ER .

0
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0 0.1 0.2 0.3
E
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/
E

R
U12 (ER)

(b)

FIG. 4. (Color online) The evolution of the energies of the low-
lying modes as a function of the interspecies interaction (U12) in Cs-
Rb TBEC held in a quasi-1D lattice potential. The excitation spectrum
(a) at T = 0 K, and (b) after including the quantum fluctuations. Here
U12 is in units of the recoil energy ER .

tion of the low-lying modes, shown in Fig. 4(a), and is reflected
in the structural evolution of the quasiparticle amplitudes in
Fig. 5. Hence the system attains an extra Goldstone mode after
transition from a miscible- to a sandwich-type profile.
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0.2 (a)

0.20ER

(b)
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0.40ER
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(f)

0.45ER

FIG. 5. (Color online) The evolution of the quasiparticle ampli-
tudes corresponding to the Kohn mode as the interspecies interaction
is increased from 0.2ER to 0.35ER for a Cs-Rb TBEC in a quasi-1D
lattice potential at T = 0 K. (a)–(c) In the miscible regime, the Kohn
mode has contributions from both species. (d)–(f) For U12 > 0.3ER

the Kohn mode of 87Rb goes soft, whereas that of 133Cs decreases in
amplitude.
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FIG. 6. (Color online) The evolution of the quasiparticle ampli-
tudes corresponding to the Kohn mode for 87Rb-85Rb TBEC in the
presence of the fluctuations as the intraspecies interaction of 85Rb
(U22) is decreased from 0.2ER to 0.05ER . (a)–(e) The Kohn mode
of 85Rb goes soft, whereas that of 87Rb decreases in amplitude and
finally vanishes in (e). (f) The sloshing mode, which emerges after
phase separation as the sandwich density profile transforms into a
side-by-side profile.

3. Position exchange of species

A remarkable feature in the evolution of the condensate
density profiles of an 87Rb-85Rb TBEC with variation of U22 is
the observation of position exchange in the immiscible domain.
This is absent when the trapping potential consists of only a
harmonic potential (continuous system), and is the result of
the discrete symmetry associated with the optical lattice. As
discussed earlier, in this system we fix U11 and U12 and vary
U22 (the intraspecies interaction of 85Rb). At higher values
of U22 the TBEC is in the miscible phase, and as we decrease
U22, at the critical value Uc

22 = 0.17ER the TBEC enters the
immiscible domain. The geometry of the density profiles is
of sandwich type and the component with smaller Uii is at
the center. An example of a condensate density profile in this
domain, U22 = 0.06ER , is shown in Fig. 3(b). In the figure,
the species with smaller intraspecies interaction (87Rb) is at the
center and 85Rb is at the edges. As U22 is further decreased, the
system continues to be in the same phase. During evolution,
an instability arises when both intraspecies interactions are the
same (U11 = U22 = 0.05). At this value of U22 the components
exchange their places in the trap. This is also reflected in
the excitation spectrum; a discontinuity at U22 = 0.05ER

in the plot of the mode evolution shown in Fig. 2(a) is a
signature of the instability. On further decrease of U22, we
enter the U22 < U11 domain and 85Rb occupies the center of
the trap. An example of the density profiles in this domain,
U22 = 0.03, is shown in Fig. 3(c). The position exchange,
however, does not occur in the Cs-Rb system as in that case
we vary U12.

C. Effect of quantum fluctuations

We compute the condensate profiles and modes for the
87Rb-85Rb TBEC, including the effect of quantum fluctuations.

0
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8
(a)0.20ER (b)0.08ER (c)0.02ER

0

2.5

5
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n
ij

(d)0.20ER

-30 0 30

j

(e)0.28ER

-30 0 30

(f)0.35ER

87Rb
85Rb

133Cs
87Rb

FIG. 7. (Color online) The fluctuation-induced transition in the
geometry of the total density profile (condensate + quantum fluc-
tuations) of a TBEC at T = 0 K in a quasi-1D lattice potential.
(a)–(c) The transition in the 87Rb-85Rb system from the miscible
to the sandwich and finally to the side-by-side profile with change
in the intraspecies interaction. (d), (e) The transition in the Cs-Rb
TBEC from the miscible to the side-by-side profile with change in
the interspecies interaction U12. The geometry of the ground state of
both systems in the immiscible regime is different from that at zero
temperature in the absence of the fluctuations, Fig. 3.

We then encounter severe oscillations in the number of atoms
during the iterations used to solve the DNLSEs and there
is no convergence. To mitigate this, we use a successive
under-relaxation technique with run = 0.6. For computations,
we consider the same set of parameters as in the case of
T = 0 K without fluctuations. The fluctuations break the
spatial symmetry of the system as we vary the intraspecies
interaction of 85Rb (U22). In the immiscible domain, the
condensate density profile changes from the sandwich to the
side-by-side profile at 0.078ER . The system acquires a new
stable ground state as the chemical potential of the system
decreases from 0.92ER to 0.80ER . The evolution of the
mode energies with U22 including the fluctuation is shown
in Fig. 2(b). It is evident that at this value U22 = 0.078ER ,
the 85Rb Kohn mode goes soft and emerges as a sloshing
mode. The transformations in the mode functions as U22 is
decreased about this point are shown in Fig. 6. This topological
phase transition is evident from the density profiles of the
TBEC in the presence of quantum fluctuations as shown in
Figs. 7(a)–7(c).

In the Cs-Rb system, due to quantum fluctuations, the Kohn
mode of 87Rb goes soft at a lower value of U12 compared to
the value without fluctuations. This is evident in the mode
evolution with quantum fluctuations as shown in Fig. 4(b).
The discontinuity in the spectrum is the signature of the
transition from the miscible to the immiscible regime. The soft
Kohn mode gains energy and gets hard at 0.31ER . This mode
hardening is due to the topological change in the ground-state
density profile from the miscible to the side-by-side profile,
shown in Figs. 7(d)–7(f). The lowest mode with nonzero
excitation energy corresponding to the side-by-side profile is
shown in Figs. 8(e) and 8(f).
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FIG. 8. (Color online) The evolution of the quasiparticle ampli-
tude corresponding to the Kohn mode for the Cs-Rb TBEC in the
presence of fluctuations. (a)–(d) The Kohn mode evolves as the
interspecies interaction is increased. (e),(f) It is transformed into a
sloshing mode as the TBEC acquires the side-by-side density profile
after phase separation.

V. CONCLUSIONS

We have studied the ground-state density profiles and the
excitation spectrum of TBECs in quasi-1D optical lattices. We
observe that the system gains an additional Goldstone mode at

phase separation at zero temperature. Furthermore, in a TBEC
where a miscible to immiscible transition is driven through
variation of the intraspecies interaction (87Rb-85Rb), a finite
discontinuity in the excitation energy spectra is observed in
the neighbourhood of equal intraspecies interaction strengths.
In the presence of quantum fluctuations, on varying the
intraspecies interaction of 85Rb, in the immiscible regime,
the ground-state density profiles transform from sandwich to
side-by-side geometry. This is characterized by the hardening
of the Kohn mode which emerges as a sloshing mode. The
fluctuation-induced topological change from a completely
miscible to a side-by-side ground-state density profile is also
evident in a 133Cs-87Rb mixture. Our current studies show that
the geometry of the density profiles with and without quantum
fluctuations is different. Since quantum fluctuations are present
in experiments, it is crucial to include quantum fluctuations to
obtain the correct density profiles of TBECs in optical lattices
in the phase-separated domain.
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Rev. A 80, 023613 (2009).
[28] S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett. 101,

040402 (2008).
[29] S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and

T. Hirano, Phys. Rev. A 82, 033609 (2010).

043615-8

http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.57.R1501
http://dx.doi.org/10.1103/PhysRevA.57.R1501
http://dx.doi.org/10.1103/PhysRevA.57.R1501
http://dx.doi.org/10.1103/PhysRevA.57.R1501
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1126/science.1058149
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.87.160405
http://dx.doi.org/10.1103/PhysRevLett.90.140405
http://dx.doi.org/10.1103/PhysRevLett.90.140405
http://dx.doi.org/10.1103/PhysRevLett.90.140405
http://dx.doi.org/10.1103/PhysRevLett.90.140405
http://dx.doi.org/10.1103/PhysRevLett.94.120403
http://dx.doi.org/10.1103/PhysRevLett.94.120403
http://dx.doi.org/10.1103/PhysRevLett.94.120403
http://dx.doi.org/10.1103/PhysRevLett.94.120403
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.93.140406
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1103/PhysRevLett.86.4447
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1126/science.1062612
http://dx.doi.org/10.1140/epjd/e2003-00284-4
http://dx.doi.org/10.1140/epjd/e2003-00284-4
http://dx.doi.org/10.1140/epjd/e2003-00284-4
http://dx.doi.org/10.1140/epjd/e2003-00284-4
http://dx.doi.org/10.1103/PhysRevA.70.033610
http://dx.doi.org/10.1103/PhysRevA.70.033610
http://dx.doi.org/10.1103/PhysRevA.70.033610
http://dx.doi.org/10.1103/PhysRevA.70.033610
http://dx.doi.org/10.1103/PhysRevA.68.013610
http://dx.doi.org/10.1103/PhysRevA.68.013610
http://dx.doi.org/10.1103/PhysRevA.68.013610
http://dx.doi.org/10.1103/PhysRevA.68.013610
http://dx.doi.org/10.1103/PhysRevA.72.033616
http://dx.doi.org/10.1103/PhysRevA.72.033616
http://dx.doi.org/10.1103/PhysRevA.72.033616
http://dx.doi.org/10.1103/PhysRevA.72.033616
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevB.40.546
http://dx.doi.org/10.1103/PhysRevA.80.023613
http://dx.doi.org/10.1103/PhysRevA.80.023613
http://dx.doi.org/10.1103/PhysRevA.80.023613
http://dx.doi.org/10.1103/PhysRevA.80.023613
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609


FLUCTUATION-DRIVEN TOPOLOGICAL TRANSITION OF . . . PHYSICAL REVIEW A 91, 043615 (2015)

[30] S. Gautam and D. Angom, J. Phys. B 44, 025302 (2011).
[31] S. Gautam and D. Angom, Phys. Rev. A 81, 053616

(2010).
[32] T. Kadokura, T. Aioi, K. Sasaki, T. Kishimoto, and H. Saito,

Phys. Rev. A 85, 013602 (2012).
[33] C. Ticknor, Phys. Rev. A 88, 013623 (2013).
[34] D. Gordon and C. M. Savage, Phys. Rev. A 58, 1440 (1998).
[35] J. Catani, L. De Sarlo, G. Barontini, F. Minardi, and M. Inguscio,

Phys. Rev. A 77, 011603 (2008).
[36] B. Gadway, D. Pertot, R. Reimann, and D. Schneble, Phys. Rev.

Lett. 105, 045303 (2010).
[37] G.-H. Chen and Y.-S. Wu, Phys. Rev. A 67, 013606 (2003).
[38] A. B. Kuklov and B. V. Svistunov, Phys. Rev. Lett. 90, 100401

(2003).
[39] A. Kuklov, N. Prokof’ev, and B. Svistunov, Phys. Rev. Lett. 92,

050402 (2004).
[40] M.-C. Cha, Int. J. Mod. Phys. B 27, 1362002 (2013).
[41] F. Zhan and I. P. McCulloch, Phys. Rev. A 89, 057601

(2014).
[42] T. Mishra, R. V. Pai, and B. P. Das, Phys. Rev. A 76, 013604

(2007).
[43] Y.-C. Kuo and S.-F. Shieh, J. Math. Anal. Appl. 347, 521 (2008).
[44] J. Ruostekoski and Z. Dutton, Phys. Rev. A 76, 063607 (2007).
[45] A. Griffin, Phys. Rev. B 53, 9341 (1996).

[46] A. Roy, S. Gautam, and D. Angom, Phys. Rev. A 89, 013617
(2014).

[47] A. Roy and D. Angom, Phys. Rev. A 90, 023612 (2014).
[48] M. L. Chiofalo, M. Polini, and M. P. Tosi, Eur. Phys. J. D 11,

371 (2000).
[49] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller,

Phys. Rev. Lett. 81, 3108 (1998).
[50] G. Baym and C. J. Pethick, Phys. Rev. Lett. 76, 6 (1996).
[51] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd
ed. (Society for Industrial and Applied Mathematics, Philadel-
phia,1999).

[52] T. P. Simula, S. M. M. Virtanen, and M. M. Salomaa, Comput.
Phys. Commun. 142, 396 (2001).
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