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Pairing of a few Fermi atoms in one dimension
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We study a few Fermi atoms interacting through attractive contact forces in a one-dimensional trap by means
of numerical exact diagonalization. From the combined analysis of energies and wave functions of correlated
ground and excited states we find evidence of BCS-like pairing even for very few atoms. For moderate interaction
strength, we reproduce the even-odd oscillation of the separation energy observed in Zürn, Wenz, Murmann,
Bergschneider, Lompe, and Jochim, Phys. Rev. Lett. 111, 175302 (2013). For strong interatomic attraction the
arrangement of dimers in the trap differs from the homogeneous case as a consequence of Pauli blockade in real
space.
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I. INTRODUCTION

Pairing between fermions is a basic phenomenon emerging
in quantum degenerate systems as diverse as electrons in
metals [1], protons and neutrons in nuclei [2,3] and neutron
stars [4,5], 3He atoms [6], electrons and holes in semi-
conductors [7], and cold atoms confined in magneto-optical
traps [6,8–12]. In nuclei, pairing enhances the stability of
isotopes with an even number of constituents, reaching the
maximum at the closure of an energy shell [2,3,13–15]. In
metals, electrons of opposite spins form Cooper pairs that
condense in the superconducting phase, as explained by the
weak-coupling theory by Bardeen, Cooper, and Schrieffer
(BCS) [16].

Experiments with cold Fermi atoms provide unprecedented
control on both the shape of the trap confinement potential and
the interatomic interaction strength—the latter by sweeping a
magnetic offset field through a Feshbach resonance [17]. This
enables novel possibilities, like to explore the transition from
BCS-like superfluidity to Bose-Einstein condensation (BEC)
of strongly bound atom dimers [8–10,18,19], to control the
atom number N with unit precision—down to the empty-trap
limit [20–23], as well as to change the dimensionality of the
system [11,24–29].

In these tunable traps, the pairing gap �—the order parame-
ter of the superfluid phase—may deviate from the expectations
for homogeneous systems and exhibit a significant dependence
on the atom number N as well as on the dimensionality
d [30–32]. This is seen from BCS gap equation, which allows
for a finite value of � provided the density of states g(ε) is
large at the Fermi surface εF (ε is the energy reckoned from the
bottom of the trap). This density is enhanced by the occurrence
of energy shell degeneracies at higher dimensions, depending
on d as g(ε) ∼ εd−1 on a coarse-grain energy scale [33].
Therefore, pairing is harder to accomplish at lower dimensions
as it requires stronger interspecies attraction. Besides, the
spiked features of g(ε) on the fine-energy scale might make �

strongly fluctuate when filling successive shells.
A recent experiment by the Heidelberg group seems at

odds with these expectations [22]. The magneto-optical trap
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was effectively one-dimensional (1D) as the aspect ratio was
1:10, the Fermi energy εF was comparable to the longitudinal
oscillator spacing, and the temperature was around half the
Fermi temperature [20]. The trapping potential was deformed
to measure the time spent by 6Li atoms to tunnel out of the trap.
This decay time was then linked to the separation energy of
the system with N fermions [34,35], which exhibited a regular
even-odd oscillation vs N for moderate attraction strength and
very small atom number, N � 6, as shown in Fig. 1 (dots with
error bars and dashed lines). This alternate staggering was
attributed to pairing, in analogy with similar data for neutron
separation experiments in nuclei [3]. Intriguingly, BCS theory
predicts that the pairing gap � vanishes exponentially with the
interaction [see violet (gray) curve in Fig. 3].

These findings call for a theoretical analysis beyond
mean-field BCS level, to take into account both finite-size
fluctuations [36–41] and correlations at all orders. The problem
of 1D Fermi gas with short-range interactions was solved
exactly only for the homogeneous system, through either Bethe
ansatz [42–45] (known as Gaudin-Yang model for attractive
interactions) or mapping to the Luttinger Hamiltonian [46–
48]. Therefore, available results [45,49–53] are useless for
the harmonic trap analyzed here. On the other hand, the
small number of 6Li atoms studied in Ref. [22] allows
for comparison with numerical exact diagonalization (ED),
which provides energies and wave functions of both ground
and excited states [54–62], whereas quantum Monte Carlo
simulations are restricted to the ground state [12,63–67].

In this paper we investigate theoretically the pairing be-
tween a few Fermi atoms populating a 1D harmonic trap. From
the analysis of both ground- and excited-state ED energies we
find that the pairing gap � is well defined even at small N ,
recovering the measured even-odd effect (black circles and
solid lines in Fig. 1). The ED wave function is significantly
affected by interaction already at moderate coupling strength,
close to the regime achieved in the experiment [22]. For
strongly bound dimers, the pair wave function exhibits a
peculiar N -dependent spatial modulation that is absent in
the bulk. This unexpected behavior—a manifestation of Pauli
blockade in real space—may be observed using time-of-flight
techniques.

The structure of this paper is as follows. We introduce
the system Hamiltonian and the ED method in Sec. II. Then
we compare the ED separation energy with the measured
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FIG. 1. (Color online) Separation energy Esep(N ) vs atom num-
ber N . Black circles, squares, and diamonds with solid lines
correspond to g = −0.45, −1, and −2, respectively. Red (gray)
circles with error bars and dashed lines are the measured data reported
in Ref. [22]. The energy unit is �ω. Lines are guides to the eye.

data, also in connection with the fundamental energy gap
(Sec. III). We evaluate the pairing gap � in two complementary
ways, considering both ground-state energies by changing N

and excited-state energies for fixed N (Sec. IV). We access
the correlated ground state by computing the pair-correlation
function G(x), which allows us to estimate the size of Cooper
pairs (Sec. V). We eventually focus on the BEC-like regime
of strong attraction, showing that G(x) departs from the bulk
behavior due to Pauli blockade in real space (Sec. VI). After
Conclusions, the Appendix illustrates the derivation of the bulk
pair-correlation function G(x) plotted in Fig. 8(f).

II. EXACT DIAGONALIZATION

We consider N atoms of spin 1/2 confined in a one-
dimensional (1D) harmonic trap of frequency ω and interacting
through an attractive contact force,

H =
N∑

i=1

[
p2

i

2m
+ 1

2
mω2x2

i

]
+ g′ ∑

i<j

δ(xi − xj ), (1)

where g′ < 0 is the coupling constant and m is the atom mass.
Throughout this article we use �ω as energy unit and � =
(�/mω)1/2 as length unit; hence the dimensionless coupling
constant is g = g′/(�ω�).

The ED wave function is the superposition of those Slater
determinants obtained by filling the lowest Norb harmonic-
oscillator orbitals with N fermions in all possible ways (also
known as full configuration interaction [54]). In this Fock
space the Hamiltonian (1) is a sparse matrix, with blocks
labeled by the total spin projection Sz, parity, and N . The
maximum linear size of the eigenvalue problem (for N = 6 and
Norb = 25) is 2 644 928, which we solve with the home-built
parallel code DONRODRIGO [54]. The ED convergence is
demanding in the present attractive regime, as the method
just mimics the cusp of the exact wave function induced by
the contact interaction [61]. Therefore, the choice of Norb is
the trade-off between accuracy and computational load, the
Fock space size scaling exponentially with N . Here we used

Norb = 25, with an error on the ground-state interaction energy
of 5.6%, 17%, and 22% for g = −1, −2, and −3, respectively,
and Norb = 50 in the illustrative case N = 3 and g = −4 of
Fig. 8, which gives an error of 18%. The accuracy on � is
much higher due to mutual cancellation of systematic errors.

III. SEPARATION ENERGY

The key quantity we obtain from ED ground-state energies
E0(N ) is the chemical potential

�1(N ) = E0(N ) − E0(N − 1). (2)

This is the lowest resonating energy of the N th atom tunneling
out of the trap while leaving the other N − 1 atoms in the
trap in their ground state [34,35,56]. The separation energy
Esep(N ) is the net interaction energy contributing to �1,

Esep(N ) = �1(N ) − �∗
1(N ), (3)

with �∗
1 being the chemical potential in the absence of

interaction. The magnitude of Esep is the contribution to the
ionization energy due to interatomic attraction.

Figure 1 shows even-odd oscillations of Esep as the trap
is filled with atoms. The ED spectrum (black circles with
solid lines) fits well the measured data of [22] [red (gray)
circles with error bars and dashed lines] for g = −0.45. This
value reasonably compares with the experimental estimate of
g ∼ −0.9 (in our units), as the trap was strongly deformed
with respect to the harmonic potential to allow the escape
of atoms [68]. A possible reason for the residual mismatch
between theory and experiment is the anharmonicity of the
actual energy spacing in the trap.

In Fig. 1 both peak-to-valley ratios and magnitudes of
absolute minima increase with attraction strength. Besides, the
minima are deeper at higher atom numbers. These features are
consistent with a BCS-like scenario, since (i) the BCS ground
state is more stable for even N , as all atoms are paired and
(ii) its energy gain increases with N—a signature of collective
effect.

However, the observed even-odd oscillation of Esep might
have a different explanation, being simply due to the filling
of successive twofold degenerate trap orbitals. To clarify this
matter we plot in Fig. 2 the fundamental energy gap

�2(N ) = �1(N + 1) − �1(N ), (4)

which is the difference between the tunneling energies of
the atom added to and removed from the trap [56]. Here, it
is instructive to consider repulsive [red (gray) symbols with
dashed lines] interactions as well as attractive forces (black
symbols with solid lines), since in both cases �2 exhibits
an even-odd oscillation. At small coupling (|g| = 1, square
symbols) both patterns slightly deviate from the staggering
noninteracting sequence (filled black circles); hence �2 ≈ 1
for even N and ≈0 for odd N , the energy separation between
consecutive orbital levels being unity. As |g| increases �2

changes qualitatively depending on the interaction sign. Strong
repulsive interactions wash out the staggering of �2, which
tends to a homogeneous positive value [58]. On the con-
trary, strong attractive forces enhance even-odd oscillations,
suggesting BCS-like pairing. Indeed, if N is even, all atoms
form singlet pairs and a large amount of positive energy �2 is
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FIG. 2. (Color online) Fundamental energy gap �2(N ) vs atom
number N . The black [red (gray)] color with solid (dashed) lines
points to attractive (repulsive) interaction. Squares, diamonds, and
triangles correspond to |g| = 1,2, and 3, respectively. The filled black
circles are noninteracting data (g = 0). The energy unit is �ω. Lines
are guides to the eye.

required to add one unpaired atom. For odd N , the fundamental
gap �2(N ) is large and negative, since energy is gained by
pairing with an opposite-spin atom.

IV. PAIRING GAP

The computation of �1 allows us to evaluate the pairing
gap � from two consecutive chemical potentials,

� = �1(N ) − �1(N + 1)

2
, (5)

with N odd [12,56]. Here the sign change is due to the
staggering of �1, which alternately points to an energy
expense and gain respectively for adding an unpaired atom and
matching all pairs. Reassuringly, the pairing gaps � obtained
for N = 3 (black circles and solid lines in Fig. 3) and N = 5
(black squares and solid lines) exhibit a similar dependence on
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FIG. 3. (Color online) Complementary estimates of the pairing
gap � vs interaction strength g. The violet (gray) curve is the exact
prediction of the Gaudin-Yang model in the BCS limit with εF =
3/2 = �∗

1(N = 4). The dotted line is the prediction by perturbation
theory, whereas the remaining solid and dashed lines are guides to
the eye. We use �ω as energy unit and � = (�/mω)1/2 as length unit;
hence the dimensionless coupling constant is g = g′/(�ω�).
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FIG. 4. (Color online) Extraction of the pairing gap � from the
excitation spectrum of two atoms. (a) Pairing gap � vs interaction
strength g. The solid (dashed) curve refers to the exact result for
two fermions with parallel spins in a harmonic (hard-wall) trap,
with the harmonic oscillator length � = (�/mω)1/2 being equal to
the width of the hard-wall quantum well. Dotted and dashed-dotted
lines are the predictions of perturbation theory at first order in g for
the harmonic and hard-wall traps, respectively. (b) Low-lying energy
spectrum of two fermions in the harmonic trap in the relative frame
vs g. � is inferred from the spin excitation gap separating the two
lowest energy branches, which are respectively the lowest black line
(balanced system with Sz = 0) and the red (gray) line with triangles
(unbalanced system with Sz = ±1). The energy unit is �ω and the
dimensionless coupling constant is g = g′/(�ω�).

g, coinciding within 15% at worse at large interaction strength
g = −2. We see that � is a convex function of g, smoothly
rising up to the value � ∼ 0.5, which is of the order of level
spacing. The behavior of � is similar to that predicted in
2D [56] and 3D [66] for few atoms, suggesting that intra- and
intershell contributions to pairing [30–32] are comparable.

A complementary study of the pairing gap � relies on the
ED excitation spectrum for fixed N . For the sake of clarity,
we first focus on the paradigmatic case N = 2, whose exact
solution is known analytically [61,69]. The low-lying energy
spectrum for relative motion is shown in Fig. 4(b), limited to
negative interaction strength g. There are two distinct families
of energies branches, differing in orbital parity. The lines that
vary with g correspond to states that are even under particle
exchange and hence associated with atoms of opposite spin,
with Sz = 0. The horizontal lines, independent from g, are
the energies of two atoms of like spins with Sz = ±1, whose
contact interaction is void as the orbital wave function is odd.
Note that, in this odd sector, energy levels are degenerate with
multiple center-of-mass excitations.

We link the pairing gap � to the spin excitation gap [12,51],
which here is the energy difference between the two lowest-
energy branches, highlighted in Fig. 4(b). Clearly, we require
� to vanish in the noninteracting limit g → 0. Therefore, we
subtract from the excitation gap a residual excitation energy
quantum, which is unrelated to interactions and absent in the
bulk. The remaining excitation gap is expected to be twice
the gap � for BCS-like pairing, since the spin flip leaves two
atoms unpaired [12,15,56].
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FIG. 5. (Color online) Excitation energies Eexc(N ) for N = 4
(black lines) and N = 6 [red (gray) dashed lines] vs g for balanced
spin population (Sz = 0). Energies were referenced to the ground state
after subtracting the first center-of-mass excitation quantum. The two
lowest branches are degenerate with those of the unbalanced system
with Sz = ±1. We use �ω as energy unit and � = (�/mω)1/2 as length
unit; hence the dimensionless coupling constant is g = g′/(�ω�).

The extracted value of � for N = 2, shown in Fig. 4(a)
as a solid line, compares well with similar data obtained
for higher atom numbers, as illustrated in Figs. 3 and 5.
In Fig. 5 we plot the lowest excitation energies Eexc(N ) of
the system with N = 4 (black lines) and N = 6 [red (gray)
dashed lines] and Sz = 0, i.e., balanced spin population. Here
we have referenced all energies to the ground state after
subtracting the first center-of-mass excitation quantum. Again,
multiple center-of-mass excitations are unrelated to atom-atom
correlations and hence independent from g, as shown in Fig. 5
for the second excitation quantum. As the interaction strength
|g| increases an energy gap develops generically, since pairs
must be broken to excite the system. We find that, due to
the symmetry of Hamiltonian (1), the two lowest excitations
shown in Fig. 5 are degenerate with those obtained by flipping
one atom spin (Sz = ±1), as they are connected by a rotation
in spin space. Therefore, we take these excitations to be twice
the gap � (label in Fig. 5).

The estimate of � extracted from the excitation spectrum
of Fig. 5 is plotted in Fig. 3 for N = 6 [red (gray) squares and
dashed lines] and N = 4 [red (gray) circles and dashed lines].
The good overall matching between these excitation gaps and
the staggering-energy gaps discussed before (black symbols
and solid lines) shows that a BCS-like pairing gap � emerges
already for very few fermions, being relatively insensitive to
finite-size fluctuations.

However, the magnitude of � significantly exceeds the BCS
bulk value

� = 8

π
εF

√
|γ |
π

exp

(
− π2

2|γ |
)

(6)

(in standard units), which is shown by the violet (gray) curve
in Fig. 3, being the exact solution of Gaudin-Yang model in
the limit γ → 0− [42,51]. This discrepacy hardly depends
on the Fermi energy εF that enters the coupling constant
γ = (gπ/�)(m/8εF )1/2 [here εF = 3/2 = �∗

1(N = 4)], since

in the bulk � vanishes exponentially—a nonperturbative
result—whereas in the trap � scales almost linearly with g

up to g ≈ −1.
This latter trend is well reproduced by perturbation theory,

as shown by the dotted line in Fig. 3, using the estimate
� = −3g/(8

√
2π ), which is obtained by first averaging the

interaction over the noninteracting ground states and then
using these energy corrections for the staggering-energy defi-
nition (5) of � with N = 3. Therefore, for the experiment [22]
(arrow in Fig. 3), the wave function is substantially unaffected
by interatomic correlations. For stronger interactions � signif-
icantly deviates from linearity, as a consequence of cooperative
effects.

We attribute the departure of the functional form of � from
the bulk exponential behavior (6) to a genuine manifestation
of few-body physics. In fact, whereas perturbation theory
converges for the finite system, at least for small values of
g, the Gaudin-Yang expression (6) is not analytic for g → 0−
as a consequence of the divergence of perturbation theory in
the bulk even at vanishing interaction.

The few-body peculiarity of the functional dependence of
� on g is confirmed by the Bethe-ansatz result for two paired
fermions in a hard-wall trap of width L [70]. In fact, the
spin-excitation gap � for the hard-wall confinement potential
shown in Fig. 4(a) (dashed curve) almost matches that for the
harmonic trap (solid curve) up to g ∼ −3, provided that L

coincides with the harmonic-oscillator length � = (�/mω)1/2.
At small g the gap scales like � ∼ g2, which is clearly
unrelated to the BCS-like functional dependence of Eq. (6).

V. COOPER PAIRS

To investigate pair formation we evaluate the conditional
probability P (x1,x2) of finding one atom at position x2 with
spin σ2 =↑ if another atom is fixed at x1 with opposite spin
σ1 =↓,

P (x1,x2) = A

N∑
i,j=1

〈
δ(xi − x1)δσi ,↓δ(xj − x2)δσj ,↑

〉
, (7)

where the quantum average 〈 〉 is taken over the ED ground state
and A is a normalization constant specified below. In Fig. 6
we choose x1 as the average radius x0 = 〈|x1|〉 [located by the
red (gray) dot] and plot P (x1 = x0,x2) versus x2 [red (gray)
curves]. At small interaction strength g = −0.45 [dashed
red (gray) curves] the conditional probability is essentially
independent from the fixed atom position x0, thus replicating
the spin-↑ noninteracting one-body density

∑
j 〈δ(xj − x2)〉,

whose peaks are Friedel oscillations induced by the harmonic
confinement [58,71]. For strong attraction, g = −3 [solid red
(gray) curves], P (x0,x2) rearranges its weight, exhibiting a
clear shrinking of the lateral extension together with a marked
weight increase exactly at the position of the fixed atom. This
suggests that the spin-↑ atom at x2 forms a bound Cooper pair
with the spin-↓ atom located at x0.

To single out the internal structure of the Cooper pair
we average P (x1,x2) over the center-of-mass coordinate X =
(x1 + x2)/2. The outcome is the pair-correlation function

G(x) =
∫ ∞

−∞
dX P (X + x/2,X − x/2), (8)
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FIG. 6. (Color online) Conditional probability P (x0,x2) vs x2

[red (gray) curves, right and bottom axes] and pair correlation
function G(x) vs x (black curves, left and top axes). Left and
right panels concern N = 4 and N = 6, respectively. Dashed (solid)
lines correspond to g = −0.45 (g = −3). Red (gray) dots locate the
positions x0 of spin-↓ atoms. The length unit is � = (�/mω)1/2.

which is the probability of finding two atoms of opposite
spins at the relative distance x = x1 − x2. We choose the
normalization constant A of (7) to obtain

∫
dx G(x) = 1.

Figure 6 shows that G(x) develops a dominant peak at the
origin, whose height increases with the interaction—switching
from g = −0.45 (dashed black curves) to g = −3 (solid black
curves). This tendency maximizes the spatial overlap of two
atoms with opposite spins while suppressing the probability of
finding them to separately wander in the trap. Therefore, G(x)
must be understood as the wave-function square modulus of the
Cooper pair in the frame of the relative distance x between the
two paired atoms, unrelated to the X-dependent distribution of
pairs in the trap. Note that the counterpart of G(x) in the bulk
is the spatially varying contribution to P (x1,x2) explicited in
Eq. (A4), both quantities rapidly vanishing as |x1 − x2| → ∞
[cf. Fig. 8(f)].

The Cooper pair size ξ may be immediately obtained as the
quadratic displacement of G(x),

ξ 2
G =

∫ ∞

−∞
dx x2G(x). (9)

We see in Fig. 7 that ξG depends only weakly on the
atom number (black symbols with solid lines) and decreases
with increasing attraction, as the pair motion becomes more
correlated. For comparison, we also evaluate the pair size ξ

through the BCS coherence length formula [15] [red (gray)
symbols with dashed lines in Fig. 7], which in standard units
reads

ξc = �vF

2�
. (10)

Here vF is the Fermi velocity obtained through the equivalence
mv2

F /2 = �∗
1(N ) and � is taken from the ED excitation gap,

� = Eexc(N )/2.
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FIG. 7. (Color online) Cooper pair size ξ vs interaction strength
g for N = 4 (circles) and N = 6 (triangles). Black [red (gray)]
symbols with solid (dashed) lines point to the values of ξG (ξc).
We use �ω as energy unit and � = (�/mω)1/2 as length unit; hence
the dimensionless coupling constant is g = g′/(�ω�). The lines are
guides to the eye.

In the noninteracting limit obviously ξc → ∞ [red (gray)
symbols with dashed lines], whereas ξG (black symbols with
solid lines) tends to the natural limit fixed by the trap size.
However, for |g| > 2 the two estimates become comparable,
pointing to a BEC-like regime where the pair size ξ is smaller
than both trap size and interparticle spacing, which could
make correlated pair tunneling observable [22,35]. This latter
scenario contrasts with the nuclear case, where the size of
nucleon pairs is larger than the system.

VI. REGIME OF STRONG ATTRACTION: PAULI
BLOCKING IN REAL SPACE

For strong interspecies attraction, the pair-correlation func-
tion G(x) develops one (two) shoulder(s) for N = 4 (N = 6)
[black solid curve for g = −3 in the left (right) panel of
Fig. 6]. This suggests that pairs arrange themselves in the trap
to minimize the residual pair-pair repulsion due to exchange
forces acting between atoms with parallel spins, as previously
suggested in higher dimensions [56,64,72].

The shoulders in the pair wave function become more
evident when dimers are strongly bound, as shown in Fig. 8
for g = −4. The pair size ξ is now comparable to interparticle
spacing, placing us on the BEC side of the BCS-BEC crossover
(cf. Fig. 7). This is also seen from the overlap between the
wave-function square modulus G(x) in the trap [black line in
Fig. 8(a)] and in free space (circles) for a single pair, which
is insensitive to the boundary as it is squeezed by interaction.
Consistently, � = Eexc(N = 2)/2 = 2.23 in the trap matches
the expectation of Gaudin-Yang model for γ → −∞, which
is half the binding energy of a single dimer, � = g2/8 = 2.

However, for more than one pair [Figs. 8(b)–8(e)] G(x)
qualitatively departs from the bulk prediction shown in
Fig. 8(f) (derived in the Appendix). Whereas in the bulk
G(x) is a simple exponential, in the trap it displays N/2 − 1
shoulders (with N even), highlighted by arrows. While the first
shoulder already appears for N = 3 [Fig. 8(b)] this feature
is significantly strengthened for N = 4 [Fig. 8(c)], as the
available number of Cooper pairs increases in a combinatorial
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FIG. 8. (Color online) Pair correlation function G(x) vs x for (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, (e) N = 6, and (f) bulk at
g = −4. Curves shown in panel (a) are analytical, whereas those in panels (b)–(e) are computed using a basis set made of 50 [panel (b)] and
25 [panels (c)–(e)] harmonic-oscillator levels, respectively. The bulk curve of panel (f) is the spatially varying part of G(x) obtained from the
BCS wave function. The length unit is � = (�/mω)1/2.

fashion. Besides, as a second shoulder becomes evident for
N = 6 [Fig. 8(e)], the first shoulder moves closer to the origin.
We attribute the overall behavior to Pauli blocking in real
space, since two atoms of like spin cannot occupy the same
trap orbital in the relative frame. This structure, peculiar to the
trap, may be measured by time-of-flight spectroscopy [11].

VII. CONCLUSIONS

In conclusion, we have studied a few 1D Fermi atoms in
the presence of attractive contact forces through numerical
exact diagonalization and found evidence of BCS-like pairing.
Whereas the present experiments may be understood by
treating the interaction energy as a perturbation, we predict
that nontrivial cooperative effects emerge at viable interaction
strengths, when the Cooper pair size compares with the trap
size.
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APPENDIX: BULK PAIR-CORRELATION FUNCTION

In this Appendix we derive the expression of the bulk pair-
correlation function G(x) shown in Fig. 8(f). Throughout the
appendix we adopt standard units.

We introduce the BCS wave function |�BCS〉 as the bulk
ground state, being a standard variational ansatz in the
whole range of the BCS-BEC crossover [6,18,73]. In second
quantization, |�BCS〉 takes the form

|�BCS〉 =
∏
k

(uk + vkĉ
†
k↑ĉ−k↓)|0〉, (A1)

where ĉ
†
k↑ is the fermionic operator that acts on the vacuum

|0〉 creating an atom of spin ↑ and momentum k. As usual, the
BCS coherence factors uk and vk occurring in Eq. (A1) are
defined as

u2
k = 1

2

(
1 + ξk

Ek

)
,

with u2
k + v2

k = 1. Here the quantity ξk (not to be confused
with the pair size ξ ) is

ξk = εk − �1,

with εk = �
2k2/2m being the single-particle energy and �1

the bulk chemical potential, and the quasiparticle energy Ek is

Ek =
√

ξ 2
k + �2.

Depending on the value of the dimensionless coupling constant
γ = (gπ/�)(m/8εF )1/2, both chemical potentials �1 and
pairing gap � should be determined simultaneously [73].

The bulk conditional probability P (x1,x2) of finding one
atom at position x2 with spin ↑ if another atom is fixed at x1

with opposite spin ↓, analogous to the definition (7) in the
main text, is

P (x1,x2) = 〈�BCS|�̂†
↑(x2)�̂†

↓(x1)�̂↓(x1)�̂↑(x2)|�BCS〉. (A2)
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Here �̂σ (x) is the annihilation field operator that destroys a
fermion of spin σ at position x:

�̂σ (x) =
∑

k

1√
L

eikx ĉkσ , (A3)

with L being the system length. Inserting this expansion
into (A2) and applying a standard manipulation, which
parallels Appendix D of Ref. [16], we obtain

P (x1,x2) = N↑N↓
L2

+ G(x2 − x1), (A4)

with Nσ being the total number of atoms having spin σ . The
conditional probability (A4) is the sum of a homogeneous
background, N↑N↓/L2, due to uncorrelated atoms having
opposite spins, plus a spatially dependent part, G(x), which
depends only on the relative distance x = x2 − x1. Explicitly,
one has

G(x) = �2

16π2

∫
dk

∫
dk′ e

i(k−k′)x

EkEk′
. (A5)

This quantity may be regarded as the wave-function square
modulus of the Cooper pair.

We now focus on the strongly attractive regime of Fig. 8(f).
To proceed, we assume the pairing gap � to be the limit value
for γ → −∞, i.e., half the binding energy of a single pair in
free space, � = mg2/(8�

2). In this limit we may neglect the
contributions of εF and interpair interactions to the chemical
potential �1; hence �1 = −� [73]. This allows us to expand

the quasiparticle energy keeping only the linear term in εk ,
Ek ≈

√
�2

1 + �2[1 − �1εk/(�2
1 + �2)]. Therefore, we may

rewrite (A5) as G(x) ∝ I (x)2, where

I (x) =
∫

dk
eikx

k2 + k2
BCS

is the Fourier transform providing a decaying exponential, with

kBCS = m|g|√
2�2

. (A6)

The final form of the normalized BCS pair wave function in
the limit of strongly bound pairs, after dropping a prefactor, is

G(x) = kBCSe
−2kBCS|x|, (A7)

which is plotted in Fig. 8(f).
It is interesting to compare (A7) with the wave-function

square modulus |ψdimer(x)|2 of a single pair in free space,
which is shown in Fig. 8(a) (circles):

|ψdimer(x)|2 = kdimere
−2kdimer|x|. (A8)

This has the same form as (A7) except for the decay length
inverse,

kdimer = m|g|
2�2

,

which is a factor
√

2 smaller than kBCS. The shrinking of the
pair size in the condensate is the effect of the exchange forces
affecting the BCS many-body wave function [73].
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